1
|
Coskun H, De Luca Bossa F, Hu X, Jockusch S, Sobieski J, Yilmaz G, Matyjaszewski K. ATRP with ppb Concentrations of Photocatalysts. J Am Chem Soc 2024; 146:28994-29005. [PMID: 39388608 PMCID: PMC11503771 DOI: 10.1021/jacs.4c09927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/12/2024]
Abstract
In atom transfer radical polymerization (ATRP), dormant alkyl halides are intermittently activated to form growing radicals in the presence of a CuI/L/X-CuII/L (activator/deactivator) catalytic system. Recently developed very active copper complexes could decrease the catalyst concentration to ppm level. However, unavoidable radical termination results in irreversible oxidation of the activator to the deactivator species, leading to limited monomer conversions. Therefore, successful ATRP at a low catalyst loading requires continuous regeneration of the activators. Such a regenerative ATRP can be performed with various reducing agents under milder reaction conditions and with catalyst concentrations diminished in comparison to conventional ATRP. Photoinduced ATRP (PhotoATRP) is one of the most efficient methods of activator regeneration. It initially employed UV irradiation to reduce the air-stable excited X-CuII/L deactivators to the activators in the presence of sacrificial electron donors. Photocatalysts (PCs) can be excited after absorbing light at longer wavelengths and, due to their favorable redox potentials, can reduce X-CuII/L to CuI/L. Herein, we present the application of three commercially available xanthene dyes as ATRP PCs: rose bengal (RB), rhodamine B (RD), and rhodamine 6G (RD-6G). Even at very low Cu catalyst concentrations (50 ppm), they successfully controlled PhotoATRP. Well-defined polymers with preserved livingness were prepared under green LED irradiation, with subppm concentrations ([PC] ≥ 10 ppb) of RB and RD-6G or 5 ppm of RD. Interestingly, these PCs efficiently controlled ATRP at wavelengths longer than their absorption maxima but required higher loadings. Polymerizations proceeded with high initiation efficiencies, yielding polymers with narrow molecular weight distributions and high chain-end fidelity. UV-vis, fluorescence, and laser flash photolysis studies helped to elucidate the mechanism of the processes involved in the dual-catalytic systems, comprising parts per million of Cu complexes and parts per billion of PCs.
Collapse
Affiliation(s)
- Halil
Ibrahim Coskun
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Ferdinando De Luca Bossa
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Xiaolei Hu
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Steffen Jockusch
- Department
of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Julian Sobieski
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Gorkem Yilmaz
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
2
|
Jazani AM, Murata H, Cvek M, Lewandowska-Andralojc A, Bernat R, Kapil K, Hu X, De Luca Bossa F, Szczepaniak G, Matyjaszewski K. Aqueous photo-RAFT polymerization under ambient conditions: synthesis of protein-polymer hybrids in open air. Chem Sci 2024; 15:9742-9755. [PMID: 38939137 PMCID: PMC11206215 DOI: 10.1039/d4sc01409j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/01/2024] [Indexed: 06/29/2024] Open
Abstract
A photoinduced reversible addition-fragmentation chain-transfer (photo-RAFT) polymerization technique in the presence of sodium pyruvate (SP) and pyruvic acid derivatives was developed. Depending on the wavelength of light used, SP acted as a biocompatible photoinitiator or promoter for polymerization, allowing rapid open-to-air polymerization in aqueous media. Under UV irradiation (370 nm), SP decomposes to generate CO2 and radicals, initiating polymerization. Under blue (450 nm) or green (525 nm) irradiation, SP enhances the polymerization rate via interaction with the excited state RAFT agent. This method enabled the polymerization of a range of hydrophilic monomers in reaction volumes up to 250 mL, eliminating the need to remove radical inhibitors from the monomers. In addition, photo-RAFT polymerization using SP allowed for the facile synthesis of protein-polymer hybrids in short reaction times (<1 h), low organic content (≤16%), and without rigorous deoxygenation and the use of transition metal photocatalysts. Enzymatic studies of a model protein (chymotrypsin) showed that despite a significant loss of protein activity after conjugation with RAFT chain transfer agents, the grafting polymers from proteins resulted in a 3-4-fold recovery of protein activity.
Collapse
Affiliation(s)
- Arman Moini Jazani
- Department of Chemistry, Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Hironobu Murata
- Department of Chemistry, Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Martin Cvek
- Department of Chemistry, Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
- Centre of Polymer Systems, Tomas Bata University in Zlin Trida T. Bati 5678 76001 Zlin Czech Republic
| | - Anna Lewandowska-Andralojc
- Faculty of Chemistry, Adam Mickiewicz University Uniwersytetu Poznanskiego 8 61-614 Poznan Poland
- Center for Advanced Technology, Adam Mickiewicz University Uniwersytetu Poznanskiego 10 61-614 Poznan Poland
| | - Roksana Bernat
- Department of Chemistry, Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
- Institute of Materials Engineering, University of Silesia 75 Pulku Piechoty 1A 41-500 Chorzow Poland
| | - Kriti Kapil
- Department of Chemistry, Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Xiaolei Hu
- Department of Chemistry, Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | | | - Grzegorz Szczepaniak
- Department of Chemistry, Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
- Faculty of Chemistry, University of Warsaw Pasteura 1 02-093 Warsaw Poland
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| |
Collapse
|
3
|
Kapil K, Jazani AM, Sobieski J, Madureira LP, Szczepaniak G, Martinez MR, Gorczyński A, Murata H, Kowalewski T, Matyjaszewski K. Hydrophilic Poly(meth)acrylates by Controlled Radical Branching Polymerization: Hyperbranching and Fragmentation. Macromolecules 2024; 57:5368-5379. [PMID: 38882197 PMCID: PMC11171460 DOI: 10.1021/acs.macromol.4c00408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/08/2024] [Accepted: 05/16/2024] [Indexed: 06/18/2024]
Abstract
Topology significantly impacts polymer properties and applications. Hyperbranched polymers (HBPs) synthesized via atom transfer radical polymerization (ATRP) using inimers typically exhibit broad molecular weight distributions and limited control over branching. Alternatively, copolymerization of inibramers (IB), such as α-chloro/bromo acrylates with vinyl monomers, yields HBPs with precise and uniform branching. Herein, we described the synthesis of hydrophilic HB polyacrylates in water by copolymerizing a water-soluble IB, oligo(ethylene oxide) methyl ether 2-bromoacrylate (OEOBA), with various hydrophilic acrylate comonomers. Visible-light-mediated controlled radical branching polymerization (CRBP) with dual catalysis using eosin Y (EY) and copper complexes resulted in HBPs with various molecular weights (M n = 38 000 to 170 000) and degrees of branching (2%-24%). Furthermore, the optimized conditions enabled the successful application of the OEOBA to synthesize linear-hyperbranched block copolymers and hyperbranched polymer protein hybrids (HB-PPH), demonstrating its potential to advance the synthesis of complex macromolecular architecture under environmentally benign conditions. Copolymerization of hydrophilic methacrylate monomer, oligo(ethylene oxide) methyl ether methacrylate (OEOMA500), and inibramer OEOBA was accompanied by fragmentation via β-carbon C-C bond scission and subsequent growth of polymer chains from the fragments. Furthermore, computational studies investigating the fragmentation depending on the IB and comonomer structure supported the experimental observations. This work expands the toolkit of water-soluble inibramers for CRBP and highlights the critical influence of the inibramer structure on reaction outcomes.
Collapse
Affiliation(s)
- Kriti Kapil
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Arman Moini Jazani
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Julian Sobieski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Leticia P Madureira
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Grzegorz Szczepaniak
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
- Faculty of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | - Michael R Martinez
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
- PPG Industries, Inc., 4325 Rosanna Drive, Allison Park, Pennysylvania 15101, United States
| | - Adam Gorczyński
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań, 61-614, Poland
| | - Hironobu Murata
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Tomasz Kowalewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
4
|
Mocny P, Lin TC, Parekh R, Zhao Y, Czarnota M, Urbańczyk M, Majidi C, Matyjaszewski K. Selective and Controlled Grafting from PVDF-Based Materials by Oxygen-Tolerant Green-Light-Mediated ATRP. ACS APPLIED MATERIALS & INTERFACES 2024; 16. [PMID: 38652837 PMCID: PMC11082848 DOI: 10.1021/acsami.4c03369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024]
Abstract
Poly(vinylidene fluoride) (PVDF) shows excellent chemical and thermal resistance and displays high dielectric strength and unique piezoelectricity, which are enabling for applications in membranes, electric insulators, sensors, or power generators. However, its low polarity and lack of functional groups limit wider applications. While inert, PVDF has been modified by grafting polymer chains by atom transfer radical polymerization (ATRP), albeit via an unclear mechanism, given the strong C-F bonds. Herein, we applied eosin Y and green-light-mediated ATRP to modify PVDF-based materials. The method gave nearly quantitative (meth)acrylate monomer conversions within 2 h without deoxygenation and without the formation of unattached homopolymers, as confirmed by control experiments and DOSY NMR measurements. The gamma distribution model that accounts for broadly dispersed polymers in DOSY experiments was essential and serves as a powerful tool for the analysis of PVDF. The NMR analysis of poly(methyl acrylate) graft chain-ends on PVDF-CTFE (statistical copolymer with chlorotrifluoroethylene) was carried out successfully for the first time and showed up to 23 grafts per PVDF-CTFE chain. The grafting density was tunable depending on the solvent composition and light intensity during the grafting. The initiation proceeded either from the C-Cl sites of PVDF-CTFE or via unsaturations in the PVDF backbones. The dehydrofluorinated PVDF was 20 times more active than saturated PVDF during the grafting. The method was successfully applied to modify PVDF, PVDF-HFP, and Viton A401C. The obtained PVDF-CTFE-g-PnBMA materials were investigated in more detail. They featured slightly lower crystallinity than PVDF-CTFE (12-18 vs 24.3%) and had greatly improved mechanical performance: Young's moduli of up to 488 MPa, ductility of 316%, and toughness of 46 × 106 J/m3.
Collapse
Affiliation(s)
- Piotr Mocny
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Ave., Pittsburgh, Pennsylvania 15213, United States
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Ting-Chih Lin
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Ave., Pittsburgh, Pennsylvania 15213, United States
| | - Rohan Parekh
- Department
of Materials Science & Engineering, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213, United States
| | - Yuqi Zhao
- Department
of Materials Science & Engineering, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213, United States
| | - Marek Czarnota
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Mateusz Urbańczyk
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Carmel Majidi
- Department
of Mechanical Engineering, Carnegie Mellon
University, 5000 Forbes
Ave., Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Ave., Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
5
|
Bernat R, Szczepaniak G, Kamiński K, Paluch M, Matyjaszewski K, Maksym P. Visible-light-induced ATRP under high-pressure: synthesis of ultra-high-molecular-weight polymers. Chem Commun (Camb) 2024; 60:843-846. [PMID: 38131455 DOI: 10.1039/d3cc04982e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
In this study, a high-pressure-assisted photoinduced atom transfer radical polymerization (p ≤ 250 MPa) enabled the synthesis of ultra-high-molecular-weight polymers (UHMWPs) of up to 9 350 000 and low/moderate dispersity (1.10 < Đ < 1.46) in a co-solvent system (water/DMSO), without reaction mixture deoxygenation.
Collapse
Affiliation(s)
- Roksana Bernat
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
- Silesian Center of Education and Interdisciplinary Research, University of Silesia, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland.
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland
| | - Grzegorz Szczepaniak
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA.
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Kamil Kamiński
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
- Silesian Center of Education and Interdisciplinary Research, University of Silesia, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland.
| | - Marian Paluch
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
- Silesian Center of Education and Interdisciplinary Research, University of Silesia, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland.
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA.
| | - Paulina Maksym
- Silesian Center of Education and Interdisciplinary Research, University of Silesia, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland.
- Institute of Materials Engineering, University of Silesia, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| |
Collapse
|
6
|
Hu X, Szczepaniak G, Lewandowska-Andralojc A, Jeong J, Li B, Murata H, Yin R, Jazani AM, Das SR, Matyjaszewski K. Red-Light-Driven Atom Transfer Radical Polymerization for High-Throughput Polymer Synthesis in Open Air. J Am Chem Soc 2023; 145:24315-24327. [PMID: 37878520 PMCID: PMC10636753 DOI: 10.1021/jacs.3c09181] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 10/27/2023]
Abstract
Photoinduced reversible-deactivation radical polymerization (photo-RDRP) techniques offer exceptional control over polymerization, providing access to well-defined polymers and hybrid materials with complex architectures. However, most photo-RDRP methods rely on UV/visible light or photoredox catalysts (PCs), which require complex multistep synthesis. Herein, we present the first example of fully oxygen-tolerant red/NIR-light-mediated photoinduced atom transfer radical polymerization (photo-ATRP) in a high-throughput manner under biologically relevant conditions. The method uses commercially available methylene blue (MB+) as the PC and [X-CuII/TPMA]+ (TPMA = tris(2-pyridylmethyl)amine) complex as the deactivator. The mechanistic study revealed that MB+ undergoes a reductive quenching cycle in the presence of the TPMA ligand used in excess. The formed semireduced MB (MB•) sustains polymerization by regenerating the [CuI/TPMA]+ activator and together with [X-CuII/TPMA]+ provides control over the polymerization. This dual catalytic system exhibited excellent oxygen tolerance, enabling polymerizations with high monomer conversions (>90%) in less than 60 min at low volumes (50-250 μL) and high-throughput synthesis of a library of well-defined polymers and DNA-polymer bioconjugates with narrow molecular weight distributions (Đ < 1.30) in an open-air 96-well plate. In addition, the broad absorption spectrum of MB+ allowed ATRP to be triggered under UV to NIR irradiation (395-730 nm). This opens avenues for the integration of orthogonal photoinduced reactions. Finally, the MB+/Cu catalysis showed good biocompatibility during polymerization in the presence of cells, which expands the potential applications of this method.
Collapse
Affiliation(s)
- Xiaolei Hu
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Grzegorz Szczepaniak
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Anna Lewandowska-Andralojc
- Faculty
of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland
- Center
for Advanced Technology, Adam Mickiewicz
University, Uniwersytetu
Poznanskiego 10, 61-614 Poznan, Poland
| | - Jaepil Jeong
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Center
for Nucleic Acids Science & Technology, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Bingda Li
- Department
of Biomedical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
| | - Hironobu Murata
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Rongguan Yin
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Arman Moini Jazani
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Subha R. Das
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Center
for Nucleic Acids Science & Technology, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
7
|
Mohammed M, Jones BA, Liarou E, Wilson P. Localised polymerisation of acrylamide using single-barrel scanning electrochemical cell microscopy. Chem Commun (Camb) 2023; 59:10992-10995. [PMID: 37622460 DOI: 10.1039/d3cc03582d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Single-barrel scanning electrochemical cell microscopy has been adapted for polymerisation of acrylamide in droplet cells formed at gold electrode surfaces. Localised electrochemical atom transfer radical polymerisation enables controlled synthesis and deposition of polyacrylamide or synthesis of polyacrylamide brushes from initiator-functionalised electrode surfaces.
Collapse
Affiliation(s)
- Mahir Mohammed
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| | - Bryn A Jones
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| | - Evelina Liarou
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| | - Paul Wilson
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
8
|
Kapil K, Jazani AM, Szczepaniak G, Murata H, Olszewski M, Matyjaszewski K. Fully Oxygen-Tolerant Visible-Light-Induced ATRP of Acrylates in Water: Toward Synthesis of Protein-Polymer Hybrids. Macromolecules 2023; 56:2017-2026. [PMID: 36938511 PMCID: PMC10019465 DOI: 10.1021/acs.macromol.2c02537] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/05/2023] [Indexed: 02/22/2023]
Abstract
Over the last decade, photoinduced ATRP techniques have been developed to harness the energy of light to generate radicals. Most of these methods require the use of UV light to initiate polymerization. However, UV light has several disadvantages: it can degrade proteins, damage DNA, cause undesirable side reactions, and has low penetration depth in reaction media. Recently, we demonstrated green-light-induced ATRP with dual catalysis, where eosin Y (EYH2) was used as an organic photoredox catalyst in conjunction with a copper complex. This dual catalysis proved to be highly efficient, allowing rapid and well-controlled aqueous polymerization of oligo(ethylene oxide) methyl ether methacrylate without the need for deoxygenation. Herein, we expanded this system to synthesize polyacrylates under biologically relevant conditions using CuII/Me6TREN (Me6TREN = tris[2-(dimethylamino)ethyl]amine) and EYH2 at ppm levels. Water-soluble oligo(ethylene oxide) methyl ether acrylate (average M n = 480, OEOA480) was polymerized in open reaction vessels under green light irradiation (520 nm). Despite continuous oxygen diffusion, high monomer conversions were achieved within 40 min, yielding polymers with narrow molecular weight distributions (1.17 ≤ D̵ ≤ 1.23) for a wide targeted DP range (50-800). In situ chain extension and block copolymerization confirmed the preserved chain end functionality. In addition, polymerization was triggered/halted by turning on/off a green light, showing temporal control. The optimized conditions also enabled controlled polymerization of various hydrophilic acrylate monomers, such as 2-hydroxyethyl acrylate, 2-(methylsulfinyl)ethyl acrylate), and zwitterionic carboxy betaine acrylate. Notably, the method allowed the synthesis of well-defined acrylate-based protein-polymer hybrids using a straightforward reaction setup without rigorous deoxygenation.
Collapse
Affiliation(s)
- Kriti Kapil
- Department of Chemistry, Carnegie
Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Arman Moini Jazani
- Department of Chemistry, Carnegie
Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Grzegorz Szczepaniak
- Department of Chemistry, Carnegie
Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Hironobu Murata
- Department of Chemistry, Carnegie
Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Mateusz Olszewski
- Department of Chemistry, Carnegie
Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie
Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
9
|
Zaborniak I, Chmielarz P. How we can improve ARGET ATRP in an aqueous system: Honey as an unusual solution for polymerization of (meth)acrylates. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2022.111735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Scaling-Up an Aqueous Self-Degassing Electrochemically Mediated ATRP in Dispersion for the Preparation of Cellulose-Polymer Composites and Films. Polymers (Basel) 2022; 14:polym14224981. [PMID: 36433108 PMCID: PMC9692721 DOI: 10.3390/polym14224981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Electrochemically mediated atom transfer radical polymerization (eATRP) is developed in dispersion conditions to assist the preparation of cellulose-based films. Self-degassing conditions are achieved by the addition of sodium pyruvate (SP) as a ROS scavenger, while an aluminum counter electrode provides a simplified and more cost-effective electrochemical setup. Different polyacrylamides were grown on a model cellulose substrate which was previously esterified with 2-bromoisobutyrate (-BriB), serving as initiator groups. Small-scale polymerizations (15 mL) provided optimized conditions to pursue the scale-up up to 1000 mL (scale-up factor ~67). Cellulose-poly(N-isopropylacrylamide) was then chosen to prepare the tunable, thermoresponsive, solvent-free, and flexible films through a dissolution/regeneration method. The produced films were characterized by Fourier-transform infrared (FTIR), scanning electron microscopy (SEM), dynamic scanning calorimetry (DSC), and thermogravimetric analysis (TGA).
Collapse
|
11
|
Qiao X, Qiao L, Zhou M, Zhang X, Shi G, He Y, Bourgeat-Lami E, Pang X. Carbon Quantum Dot-Catalyzed, Highly Efficient Miniemulsion Atom Transfer Radical Polymerization Induced by Visible Light. ACS Macro Lett 2022; 11:1298-1305. [DOI: 10.1021/acsmacrolett.2c00542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaoguang Qiao
- College of Materials Engineering, Henan International Joint Laboratory of Rare Earth Composite Materials, Henan Engineering Technology Research Center for Fiber Preparation and Modification, Henan University of Engineering, Zhengzhou 451191, China
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Liang Qiao
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Mengjie Zhou
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xi Zhang
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Ge Shi
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yanjie He
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Elodie Bourgeat-Lami
- Univ. Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, UMR 5128, Catalysis, Polymerization, Processes and Materials (CP2M), 43, Bvd. du 11 Novembre 1918, 69616 Villeurbanne, France
| | - Xinchang Pang
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
12
|
Luo J, Chavez M, Durante C, Gennaro A, Isse AA, Fantin M. Improvement of electrochemically mediated atom transfer radical polymerization: Use of aluminum as a sacrificial anode in water. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Flejszar M, Ślusarczyk K, Chmielarz P, Smenda J, Wolski K, Wytrwal-Sarna M, Oszajca M. SI-ATRP on the lab bench: A facile recipe for oxygen-tolerant PDMAEMA brushes synthesis using microliter volumes of reagents. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
14
|
Dworakowska S, Lorandi F, Gorczyński A, Matyjaszewski K. Toward Green Atom Transfer Radical Polymerization: Current Status and Future Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2106076. [PMID: 35175001 PMCID: PMC9259732 DOI: 10.1002/advs.202106076] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Indexed: 05/13/2023]
Abstract
Reversible-deactivation radical polymerizations (RDRPs) have revolutionized synthetic polymer chemistry. Nowadays, RDRPs facilitate design and preparation of materials with controlled architecture, composition, and functionality. Atom transfer radical polymerization (ATRP) has evolved beyond traditional polymer field, enabling synthesis of organic-inorganic hybrids, bioconjugates, advanced polymers for electronics, energy, and environmentally relevant polymeric materials for broad applications in various fields. This review focuses on the relation between ATRP technology and the 12 principles of green chemistry, which are paramount guidelines in sustainable research and implementation. The green features of ATRP are presented, discussing the environmental and/or health issues and the challenges that remain to be overcome. Key discoveries and recent developments in green ATRP are highlighted, while providing a perspective for future opportunities in this area.
Collapse
Affiliation(s)
- Sylwia Dworakowska
- Department of ChemistryCarnegie Mellon University4400 Fifth AvenuePittsburghPA15213USA
- Faculty of Chemical Engineering and TechnologyCracow University of TechnologyWarszawska 24Cracow31‐155Poland
| | - Francesca Lorandi
- Department of ChemistryCarnegie Mellon University4400 Fifth AvenuePittsburghPA15213USA
- Department of Industrial EngineeringUniversity of Padovavia Marzolo 9Padova35131Italy
| | - Adam Gorczyński
- Department of ChemistryCarnegie Mellon University4400 Fifth AvenuePittsburghPA15213USA
- Faculty of ChemistryAdam Mickiewicz UniversityUniwersytetu Poznańskiego 8Poznań61‐614Poland
| | | |
Collapse
|
15
|
Zaborniak I, Sroka M, Chmielarz P. Lemonade as a rich source of antioxidants: Polymerization of 2-(dimethylamino)ethyl methacrylate in lemon extract. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
16
|
Flejszar M, Ślusarczyk K, Chmielarz P, Wolski K, Isse AA, Gennaro A, Wytrwal-Sarna M, Oszajca M. Working electrode geometry effect: A new concept for fabrication of patterned polymer brushes via SI-seATRP at ambient conditions. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
17
|
Qiao L, Zhou M, Shi G, Cui Z, Zhang X, Fu P, Liu M, Qiao X, He Y, Pang X. Ultrafast Visible-Light-Induced ATRP in Aqueous Media with Carbon Quantum Dots as the Catalyst and Its Application for 3D Printing. J Am Chem Soc 2022; 144:9817-9826. [PMID: 35617524 DOI: 10.1021/jacs.2c02303] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Photoinduced atom transfer radical polymerization (ATRP) has been proved to be a versatile technique for polymer network formation. However, the slow polymerization rates of typical ATRP limited its application in the field of additive manufacturing (3D printing). In this work, we introduced carbon quantum dots (CQDs) for the first time to the ATRP in aqueous media and developed an ultrafast visible-light-induced polymerization system. After optimization, the polymerization could achieve a high monomer conversion (>90%) within 1 min, and the polydispersity index (PDI) of the polymer was lower than 1.25. This system was then applied as the first example of ATRP for the 3D printing of hydrogel through digital light processing (DLP), and the printed object exhibited good dimensional accuracy. Additionally, the excellent and stable optical properties of CQDs also provided interesting photoluminescence capabilities to the printed objects. We deduce this ATRP mediated 3D printing process would provide a new platform for the preparation of functional and stimuli-responsive hydrogel materials.
Collapse
Affiliation(s)
- Liang Qiao
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Mengjie Zhou
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Ge Shi
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Zhe Cui
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaomeng Zhang
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Peng Fu
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Minying Liu
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaoguang Qiao
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.,College of Materials Engineering, Henan International Joint Laboratory of Rare Earth Composite Materials, Henan Engineering Technology Research Center for Fiber Preparation and Modification, Henan University of Engineering, Zhengzhou 451191, China
| | - Yanjie He
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xinchang Pang
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
18
|
Kim S, Kim C, Chung H. N-heterocyclic Carbene Containing Homogeneous Ru Catalyst for Aqueous Atom Transfer Radical Polymerization of Water-soluble Vinyl Monomers. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Ribeiro JP, Mendonça PV, Santo D, De Bon F, Faneca H, Guliashvili T, Coelho JF, Serra AC. Expanding the use of affordable CuSO4·5H2O in ATRP techniques in homogeneous media. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
20
|
Zhao B, Pashley-Johnson F, Jones BA, Wilson P. Aqueous electrochemically-triggered atom transfer radical polymerization. Chem Sci 2022; 13:5741-5749. [PMID: 35694359 PMCID: PMC9116290 DOI: 10.1039/d2sc01832b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/19/2022] [Indexed: 01/12/2023] Open
Abstract
Simplified electrochemical atom transfer radical polymerization (seATRP) using CuII–N-propyl pyridineimine complexes (CuII(NPPI)2) is reported for the first time. In aqueous solution, using oligo(ethylene glycol) methyl ether methacrylate (OEGMA), standard electrolysis conditions yield POEGMA with good control over molecular weight distribution (Đm < 1.35). Interestingly, the polymerizations are not under complete electrochemical control, as monomer conversion continues when electrolysis is halted. Alternatively, it is shown that the extent and rate of polymerization depends upon an initial period of electrolysis. Thus, it is proposed that seATRP using CuII(NPPI)2 follows an electrochemically-triggered, rather than electrochemically mediated, ATRP mechanism, which distinguishes them from other CuIIL complexes that have been previously reported in the literature. Simplified electrochemical atom transfer radical polymerization (seATRP) using CuII-pyridineimine complexes is reported and follows a previously unreported electrochemically triggered mechanism.![]()
Collapse
|
21
|
Romio M, Grob B, Trachsel L, Mattarei A, Morgese G, Ramakrishna SN, Niccolai F, Guazzelli E, Paradisi C, Martinelli E, Spencer ND, Benetti EM. Dispersity within Brushes Plays a Major Role in Determining Their Interfacial Properties: The Case of Oligoxazoline-Based Graft Polymers. J Am Chem Soc 2021; 143:19067-19077. [PMID: 34738797 PMCID: PMC8769490 DOI: 10.1021/jacs.1c08383] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Indexed: 12/14/2022]
Abstract
Many synthetic polymers used to form polymer-brush films feature a main backbone with functional, oligomeric side chains. While the structure of such graft polymers mimics biomacromolecules to an extent, it lacks the monodispersity and structural purity present in nature. Here we demonstrate that side-chain heterogeneity within graft polymers significantly influences hydration and the occurrence of hydrophobic interactions in the subsequently formed brushes and consequently impacts fundamental interfacial properties. This is demonstrated for the case of poly(methacrylate)s (PMAs) presenting oligomeric side chains of different length (n) and dispersity. A precise tuning of brush structure was achieved by first synthesizing oligo(2-ethyl-2-oxazoline) methacrylates (OEOXMAs) by cationic ring-opening polymerization (CROP), subsequently purifying them into discrete macromonomers with distinct values of n by column chromatography, and finally obtaining poly[oligo(2-ethyl-2-oxazoline) methacrylate]s (POEOXMAs) by reversible addition-fragmentation chain-transfer (RAFT) polymerization. Assembly of POEOXMA on Au surfaces yielded graft polymer brushes with different side-chain dispersities and lengths, whose properties were thoroughly investigated by a combination of variable angle spectroscopic ellipsometry (VASE), quartz crystal microbalance with dissipation (QCMD), and atomic force microscopy (AFM) methods. Side-chain dispersity, or dispersity within brushes, leads to assemblies that are more hydrated, less adhesive, and more lubricious and biopassive compared to analogous films obtained from graft polymers characterized by a homogeneous structure.
Collapse
Affiliation(s)
- Matteo Romio
- Biointerfaces
Lab, Swiss Federal Laboratories for Materials
Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
- Laboratory
for Surface Science and Technology, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Benjamin Grob
- Laboratory
for Surface Science and Technology, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Lucca Trachsel
- George
& Josephine Butler Polymer Research Laboratory, Department of
Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611-7200, United States
| | - Andrea Mattarei
- Department
of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Giulia Morgese
- Institute
of Materials and Process Engineering (IMPE), School of Engineering
(SoE), Zürich University of Applied
Sciences (ZHAW), Technikumstrasse 9, 8401 Winterthur, Switzerland
| | - Shivaprakash N. Ramakrishna
- Soft Materials
and Interfaces, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg
5, 8093 Zürich, Switzerland
| | - Francesca Niccolai
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, Via Moruzzi 13, 56124 Pisa, Italy
| | - Elisa Guazzelli
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, Via Moruzzi 13, 56124 Pisa, Italy
| | - Cristina Paradisi
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, 35122 Padova, Italy
| | - Elisa Martinelli
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, Via Moruzzi 13, 56124 Pisa, Italy
| | - Nicholas D. Spencer
- Laboratory
for Surface Science and Technology, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Edmondo M. Benetti
- Biointerfaces
Lab, Swiss Federal Laboratories for Materials
Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
- Laboratory
for Surface Science and Technology, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, 35122 Padova, Italy
| |
Collapse
|
22
|
Sun M, Lorandi F, Yuan R, Dadashi-Silab S, Kowalewski T, Matyjaszewski K. Assemblies of Polyacrylonitrile-Derived Photoactive Polymers as Blue and Green Light Photo-Cocatalysts for Cu-Catalyzed ATRP in Water and Organic Solvents. Front Chem 2021; 9:734076. [PMID: 34476232 PMCID: PMC8407075 DOI: 10.3389/fchem.2021.734076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/04/2021] [Indexed: 11/30/2022] Open
Abstract
Photoluminescent nanosized quasi-spherical polymeric assemblies prepared by the hydrothermal reaction of polyacrylonitrile (PAN), ht-PLPPAN, were demonstrated to have the ability to photo-induce atom transfer radical polymerization (ATRP) catalyzed by low, parts per million concentrations of CuII complex with tris(2-pyridylmethyl)amine (TPMA). Such photo induced ATRP reactions of acrylate and methacrylate monomers were performed in water or organic solvents, using ht-PLPPAN as the photo-cocatalyst under blue or green light irradiation. Mechanistic studies indicate that ht-PLPPAN helps to sustain the polymerization by facilitating the activation of alkyl bromide species by two modes: 1) green or blue light-driven photoreduction of the CuII catalyst to the activating CuI form, and 2) direct activation of dormant alkyl bromide species which occurs only under blue light. The photoreduction of the CuII complex by ht-PLPPAN was confirmed by linear sweep voltammetry performed under illumination. Analysis of the polymerization kinetics in aqueous media indicated even though CuI complexes comprised only 1-1.4% of all Cu species at equilibrium, they exhibited high activation rate constant and activated the alkyl bromide initiators five to six orders of magnitude faster than ht-PLPPAN.
Collapse
|
23
|
Flejszar M, Chmielarz P, Smenda J, Wolski K. Following principles of green chemistry: Low ppm photo-ATRP of DMAEMA in water/ethanol mixture. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123905] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
24
|
Pavan P, Lorandi F, De Bon F, Gennaro A, Isse AA. Enhancement of the Rate of Atom Transfer Radical Polymerization in Organic Solvents by Addition of Water: An Electrochemical Study. ChemElectroChem 2021. [DOI: 10.1002/celc.202100430] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Paola Pavan
- Department of Chemical Sciences University of Padova Via Marzolo 1 35131 Padova Italy
| | - Francesca Lorandi
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh Pennsylvania 15213 USA
| | - Francesco De Bon
- Department of Chemical Sciences University of Padova Via Marzolo 1 35131 Padova Italy
- Present address: Centre for Mechanical Engineering Materials and Processes (CEMMPRE) Department of Chemical Engineering University of Coimbra Rua Silvio Lima, Polo II 3030-790 Coimbra Portugal
| | - Armando Gennaro
- Department of Chemical Sciences University of Padova Via Marzolo 1 35131 Padova Italy
| | - Abdirisak A. Isse
- Department of Chemical Sciences University of Padova Via Marzolo 1 35131 Padova Italy
| |
Collapse
|
25
|
Tévenot Q, Kawahara S. ATRP-ARGET of a Styrene Monomer onto Modified Natural Rubber Latex as an Initiator. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:6151-6157. [PMID: 33982561 DOI: 10.1021/acs.langmuir.1c00168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Atom transfer radical polymerization with an activator regenerated by electron transfer (ATRP-ARGET) was performed for graft copolymerization of styrene onto natural rubber in the latex stage as a heterogeneous system. Deproteinized and subsequently brominated natural rubber particles in the latex stage were subjected to graft copolymerization of styrene on their surfaces in the presence of an activated ATRP catalyst. 1H NMR spectroscopy and size exclusion chromatography (SEC) characterized the particles. Ozonolysis was performed to deduct the polyisoprene contribution to SEC. Graft copolymerization in heterogeneous media by extraction with an acetone/2-butanone solution. Both the linear evolution of the molecular weight versus monomer conversion and the high grafting efficiency associated with a narrow molecular weight distribution of the resulting grafted polystyrene confirm a living radical behavior.
Collapse
Affiliation(s)
- Quentin Tévenot
- Department of Materials Science and Technology, Nagaoka University of Technology, 1603-1 Kamitomiokamachi, Nagaoka, Niigata 940-2188, Japan
| | - Seiichi Kawahara
- Department of Materials Science and Technology, Nagaoka University of Technology, 1603-1 Kamitomiokamachi, Nagaoka, Niigata 940-2188, Japan
| |
Collapse
|
26
|
Isse AA, Gennaro A. Electrochemistry for Atom Transfer Radical Polymerization. CHEM REC 2021; 21:2203-2222. [PMID: 33750023 DOI: 10.1002/tcr.202100028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 12/31/2022]
Abstract
Atom Transfer Radical Polymerization (ATRP) is the most powerful and most employed technology of Controlled Radical Polymerization (CRP) to produce polymers with well-defined architecture, that is, composition, topology, and functionality. Several hundreds of papers are published every year on ATRP processes, mainly based on empiric experimental procedures. Electrochemistry powerfully entered in the field of ATRP about 10 years ago, providing important contributions both to the further development of the process and to a better understanding of its mechanism. Five main issues took advantage of electrochemistry and/or its synergism with ATRP: i) understanding the mechanism of ATRP activation; ii) determination of thermodynamic parameters; iii) determination of activation and deactivation rate constants; iv) the SARA ATRP vs SET-LRP dispute: the role of Cu0 ; v) electrochemically-mediated ATRP.
Collapse
Affiliation(s)
- Abdirisak Ahmed Isse
- Department of Chemical Sciences-University of Padova, Via Marzolo, 1-35131, Padova, Italy
| | - Armando Gennaro
- Department of Chemical Sciences-University of Padova, Via Marzolo, 1-35131, Padova, Italy
| |
Collapse
|
27
|
Hu W, Xu L. Investigation of eATRP for a Carboxylic‐Acid‐Functionalized Ionic Liquid Monomer. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202000348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Weiling Hu
- School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 P. R. China
- Chongqing Key Laboratory of Soft‐Matter Material Chemistry and Function Manufacturing Southwest University Chongqing 400715 P. R. China
| | - Lan Xu
- School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 P. R. China
- Chongqing Key Laboratory of Soft‐Matter Material Chemistry and Function Manufacturing Southwest University Chongqing 400715 P. R. China
| |
Collapse
|
28
|
De Bon F, Abreu CMR, Serra AC, Gennaro A, Coelho JFJ, Isse AA. Catalytic Halogen Exchange in Supplementary Activator and Reducing Agent Atom Transfer Radical Polymerization for the Synthesis of Block Copolymers. Macromol Rapid Commun 2020; 42:e2000532. [PMID: 33289265 DOI: 10.1002/marc.202000532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/24/2020] [Indexed: 11/08/2022]
Abstract
Synthesis of block copolymers (BCPs) by catalytic halogen exchange (cHE) is reported, using supplemental activator and reducing agent Atom Transfer Radical Polymerization (SARA ATRP). The cHE mechanism is based on the use of a small amount of a copper catalyst in the presence of a suitable excess of halide ions, for the synthesis of block copolymers from macroinitiators with monomers of mismatching reactivity. cHE overcomes the problem of inefficient initiation in block copolymerizations in which the second monomer provides dormant species that are more reactive than the initiator. Model macroinitiators with low dispersity are prepared and extended to afford well-defined block copolymers of various compositions. Combined cHE/SARA ATRP is therefore a simple and potent polymerization tool for the copolymerization of a wide range of monomers allowing the production of tailored block copolymers.
Collapse
Affiliation(s)
- Francesco De Bon
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, Padova, 35131, Italy
- Centre for Mechanical Engineering, Materials and Processes, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima, Pólo II, Coimbra, 3030-790, Portugal
| | - Carlos M R Abreu
- Centre for Mechanical Engineering, Materials and Processes, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima, Pólo II, Coimbra, 3030-790, Portugal
| | - Arménio C Serra
- Centre for Mechanical Engineering, Materials and Processes, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima, Pólo II, Coimbra, 3030-790, Portugal
| | - Armando Gennaro
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, Padova, 35131, Italy
| | - Jorge F J Coelho
- Centre for Mechanical Engineering, Materials and Processes, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima, Pólo II, Coimbra, 3030-790, Portugal
| | - Abdirisak A Isse
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, Padova, 35131, Italy
| |
Collapse
|
29
|
Rucco DJ, Barnes BE, Garrison JB, Sumerlin BS, Savin DA. Modular Genetic Code Expansion Platform and PISA Yield Well-Defined Protein-Polymer Assemblies. Biomacromolecules 2020; 21:5077-5085. [DOI: 10.1021/acs.biomac.0c01225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Dominic J. Rucco
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Brooke E. Barnes
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - John B. Garrison
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Brent S. Sumerlin
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Daniel A. Savin
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
30
|
Fromel M, Li M, Pester CW. Surface Engineering with Polymer Brush Photolithography. Macromol Rapid Commun 2020; 41:e2000177. [DOI: 10.1002/marc.202000177] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/28/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Michele Fromel
- Department of Chemical Engineering The Pennsylvania State University University Park PA 16802 USA
| | - Mingxiao Li
- Department of Chemical Engineering The Pennsylvania State University University Park PA 16802 USA
| | - Christian W. Pester
- Department of Chemical Engineering The Pennsylvania State University University Park PA 16802 USA
- Department of Materials Science and Engineering The Pennsylvania State University University Park PA 16802 USA
| |
Collapse
|
31
|
Zaborniak I, Surmacz K, Chmielarz P. Synthesis of sugar‐based macromolecules via
sono‐ATRP
in miniemulsion. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.4921] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Izabela Zaborniak
- Department of Physical Chemistry, Faculty of ChemistryRzeszow University of Technology Rzeszów Poland
| | - Karolina Surmacz
- Doctoral School of Engineering and Technical Sciences at Rzeszów University of Technology Rzeszów Poland
| | - Paweł Chmielarz
- Department of Physical Chemistry, Faculty of ChemistryRzeszow University of Technology Rzeszów Poland
| |
Collapse
|
32
|
De Bon F, Marenzi S, Isse AA, Durante C, Gennaro A. Electrochemically Mediated Aqueous Atom Transfer Radical Polymerization of
N
,
N
‐Dimethylacrylamide. ChemElectroChem 2020. [DOI: 10.1002/celc.202000131] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Francesco De Bon
- Department of Chemical Sciences University of Padova Via Marzolo 1 35131 Padova Italy
- Present address: Department of Chemical Engineering University of Coimbra Rua Silvio Lima, Polo II 3030-790 Coimbra Portugal
| | - Sofia Marenzi
- Department of Chemical Sciences University of Padova Via Marzolo 1 35131 Padova Italy
| | - Abdirisak A. Isse
- Department of Chemical Sciences University of Padova Via Marzolo 1 35131 Padova Italy
| | - Christian Durante
- Department of Chemical Sciences University of Padova Via Marzolo 1 35131 Padova Italy
| | - Armando Gennaro
- Department of Chemical Sciences University of Padova Via Marzolo 1 35131 Padova Italy
| |
Collapse
|
33
|
Zhou YN, Li JJ, Wu YY, Luo ZH. Role of External Field in Polymerization: Mechanism and Kinetics. Chem Rev 2020; 120:2950-3048. [PMID: 32083844 DOI: 10.1021/acs.chemrev.9b00744] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The past decades have witnessed an increasing interest in developing advanced polymerization techniques subjected to external fields. Various physical modulations, such as temperature, light, electricity, magnetic field, ultrasound, and microwave irradiation, are noninvasive means, having superb but distinct abilities to regulate polymerizations in terms of process intensification and spatial and temporal controls. Gas as an emerging regulator plays a distinctive role in controlling polymerization and resembles a physical regulator in some cases. This review provides a systematic overview of seven types of external-field-regulated polymerizations, ranging from chain-growth to step-growth polymerization. A detailed account of the relevant mechanism and kinetics is provided to better understand the role of each external field in polymerization. In addition, given the crucial role of modeling and simulation in mechanisms and kinetics investigation, an overview of model construction and typical numerical methods used in this field as well as highlights of the interaction between experiment and simulation toward kinetics in the existing systems are given. At the end, limitations and future perspectives for this field are critically discussed. This state-of-the-art research progress not only provides the fundamental principles underlying external-field-regulated polymerizations but also stimulates new development of advanced polymerization methods.
Collapse
Affiliation(s)
- Yin-Ning Zhou
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jin-Jin Li
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yi-Yang Wu
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zheng-Hong Luo
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
34
|
Abstract
Biomacromolecules and engineered materials can achieve molecular recognition if they engage their ligand with properly oriented and chemically complementary moieties. Recently, there has been significant interest in fabricating recognitive soft materials, which possess specific affinity for biological analytes. We present a summary and evaluation of current recognitive materials for biosensing, drug delivery, and regenerative medicine applications. We highlight the impact of material composition on the extent and specificity of ligand adsorption, citing new theoretical and empirical evidence. We conclude with a guide for synthesizing and characterizing novel recognitive materials, as well as recommendations for ligand selection and experimental design.
Collapse
Affiliation(s)
- John R Clegg
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX 78712, USA.
| | - Nicholas A Peppas
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX 78712, USA. and McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, TX 78712, USA and Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX 78712, USA and Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Ave. Stop A1900, Austin, TX 78712, USA and Department of Surgery and Perioperative Care, Dell Medical School, 1601 Trinity St., Bldg. B, Stop Z0800, Austin, TX 78712, USA and Department of Pediatrics, Dell Medical School, 1400 Barbara Jordan Blvd., Austin, TX 7872, USA
| |
Collapse
|
35
|
Tsuji S, Aso Y, Ohara H, Tanaka T. Aqueous synthesis of sialylglycopeptide‐grafted glycopolymers with high affinity for the lectin and the influenza virus hemagglutinin. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20190184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Sotaro Tsuji
- Department of Biobased Materials ScienceGraduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo‐ku Kyoto 606‐8585 Japan
| | - Yuji Aso
- Department of Biobased Materials ScienceGraduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo‐ku Kyoto 606‐8585 Japan
| | - Hitomi Ohara
- Department of Biobased Materials ScienceGraduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo‐ku Kyoto 606‐8585 Japan
| | - Tomonari Tanaka
- Department of Biobased Materials ScienceGraduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo‐ku Kyoto 606‐8585 Japan
| |
Collapse
|
36
|
Zaborniak I, Chmielarz P, Matyjaszewski K. Synthesis of Riboflavin‐Based Macromolecules through Low ppm ATRP in Aqueous Media. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.201900496] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Izabela Zaborniak
- Department of Physical ChemistryFaculty of ChemistryRzeszow University of Technology Al. Powstańców Warszawy 6 35‐959 Rzeszów Poland
- Center for Macromolecular EngineeringDepartment of ChemistryCarnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Paweł Chmielarz
- Department of Physical ChemistryFaculty of ChemistryRzeszow University of Technology Al. Powstańców Warszawy 6 35‐959 Rzeszów Poland
- Center for Macromolecular EngineeringDepartment of ChemistryCarnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Krzysztof Matyjaszewski
- Center for Macromolecular EngineeringDepartment of ChemistryCarnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| |
Collapse
|
37
|
Baker SL, Kaupbayeva B, Lathwal S, Das SR, Russell AJ, Matyjaszewski K. Atom Transfer Radical Polymerization for Biorelated Hybrid Materials. Biomacromolecules 2019; 20:4272-4298. [PMID: 31738532 DOI: 10.1021/acs.biomac.9b01271] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Proteins, nucleic acids, lipid vesicles, and carbohydrates are the major classes of biomacromolecules that function to sustain life. Biology also uses post-translation modification to increase the diversity and functionality of these materials, which has inspired attaching various other types of polymers to biomacromolecules. These polymers can be naturally (carbohydrates and biomimetic polymers) or synthetically derived and have unique properties with tunable architectures. Polymers are either grafted-to or grown-from the biomacromolecule's surface, and characteristics including polymer molar mass, grafting density, and degree of branching can be controlled by changing reaction stoichiometries. The resultant conjugated products display a chimerism of properties such as polymer-induced enhancement in stability with maintained bioactivity, and while polymers are most often conjugated to proteins, they are starting to be attached to nucleic acids and lipid membranes (cells) as well. The fundamental studies with protein-polymer conjugates have improved our synthetic approaches, characterization techniques, and understanding of structure-function relationships that will lay the groundwork for creating new conjugated biomacromolecular products which could lead to breakthroughs in genetic and tissue engineering.
Collapse
Affiliation(s)
- Stefanie L Baker
- Department of Biomedical Engineering , Carnegie Mellon University , Scott Hall 4N201, 5000 Forbes Avenue , Pittsburgh , Pennsylvania 15213 , United States.,Center for Polymer-Based Protein Engineering , Carnegie Mellon University , 5000 Forbes Avenue , Pittsburgh , Pennsylvania 15213 , United States
| | - Bibifatima Kaupbayeva
- Center for Polymer-Based Protein Engineering , Carnegie Mellon University , 5000 Forbes Avenue , Pittsburgh , Pennsylvania 15213 , United States.,Department of Biological Sciences , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States
| | - Sushil Lathwal
- Department of Chemistry , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States
| | - Subha R Das
- Department of Chemistry , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States
| | - Alan J Russell
- Department of Biomedical Engineering , Carnegie Mellon University , Scott Hall 4N201, 5000 Forbes Avenue , Pittsburgh , Pennsylvania 15213 , United States.,Center for Polymer-Based Protein Engineering , Carnegie Mellon University , 5000 Forbes Avenue , Pittsburgh , Pennsylvania 15213 , United States.,Department of Biological Sciences , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States.,Department of Chemistry , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States.,Department of Chemical Engineering , Carnegie Mellon University , 5000 Forbes Avenue , Pittsburgh , Pennsylvania 15213 , United States
| | - Krzysztof Matyjaszewski
- Center for Polymer-Based Protein Engineering , Carnegie Mellon University , 5000 Forbes Avenue , Pittsburgh , Pennsylvania 15213 , United States.,Department of Chemistry , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States.,Department of Chemical Engineering , Carnegie Mellon University , 5000 Forbes Avenue , Pittsburgh , Pennsylvania 15213 , United States
| |
Collapse
|
38
|
Fu L, Simakova A, Park S, Wang Y, Fantin M, Matyjaszewski K. Axially Ligated Mesohemins as Bio-Mimicking Catalysts for Atom Transfer Radical Polymerization. Molecules 2019; 24:E3969. [PMID: 31684005 PMCID: PMC6864814 DOI: 10.3390/molecules24213969] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 10/26/2019] [Accepted: 10/30/2019] [Indexed: 11/29/2022] Open
Abstract
Copper is the most common metal catalyst used in atom transfer radical polymerization (ATRP), but iron is an excellent alternative due to its natural abundance and low toxicity compared to copper. In this work, two new iron-porphyrin-based catalysts inspired by naturally occurring proteins, such as horseradish peroxidase, hemoglobin, and cytochrome P450, were synthesized and tested for ATRP. Natural protein structures were mimicked by attaching imidazole or thioether groups to the porphyrin, leading to increased rates of polymerization, as well as providing polymers with low dispersity, even in the presence of ppm amounts of catalysts.
Collapse
Affiliation(s)
- Liye Fu
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Antonina Simakova
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Sangwoo Park
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Yi Wang
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Marco Fantin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | | |
Collapse
|
39
|
Affiliation(s)
- Francesca Lorandi
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213 United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213 United States
| |
Collapse
|
40
|
Michieletto A, Lorandi F, De Bon F, Isse AA, Gennaro A. Biocompatible polymers via aqueous electrochemically mediated atom transfer radical polymerization. JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1002/pola.29462] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Francesca Lorandi
- Department of ChemistryCarnegie Mellon University, 4400 Fifth Avenue Pittsburgh Pennsylvania 15213
| | - Francesco De Bon
- Department of Chemical SciencesUniversity of Padova via Marzolo 1, 35131 Padova Italy
| | - Abdirisak Ahmed Isse
- Department of Chemical SciencesUniversity of Padova via Marzolo 1, 35131 Padova Italy
| | - Armando Gennaro
- Department of Chemical SciencesUniversity of Padova via Marzolo 1, 35131 Padova Italy
| |
Collapse
|
41
|
Fantin M, Lorandi F, Ribelli TG, Szczepaniak G, Enciso AE, Fliedel C, Thevenin L, Isse AA, Poli R, Matyjaszewski K. Impact of Organometallic Intermediates on Copper-Catalyzed Atom Transfer Radical Polymerization. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00870] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Marco Fantin
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Francesca Lorandi
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Thomas G. Ribelli
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Grzegorz Szczepaniak
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Alan E. Enciso
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 United States
| | - Christophe Fliedel
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, 205 Route de Narbonne, F-31077 Toulouse Cedex 4, France
| | - Lucas Thevenin
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, 205 Route de Narbonne, F-31077 Toulouse Cedex 4, France
| | - Abdirisak A. Isse
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Rinaldo Poli
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, 205 Route de Narbonne, F-31077 Toulouse Cedex 4, France
- Institut Universitaire de France, 1 Rue Descartes, 75231 Paris Cedex 05, France
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
42
|
Enciso AE, Fu L, Lathwal S, Olszewski M, Wang Z, Das SR, Russell AJ, Matyjaszewski K. Biocatalytic “Oxygen‐Fueled” Atom Transfer Radical Polymerization. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Alan E. Enciso
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Liye Fu
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Sushil Lathwal
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Mateusz Olszewski
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Zhenhua Wang
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Subha R. Das
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Alan J. Russell
- Department of Chemical Engineering Carnegie Mellon University 5000 Forbes Avenue Pittsburgh PA 15213 USA
| | - Krzysztof Matyjaszewski
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| |
Collapse
|
43
|
Enciso AE, Fu L, Lathwal S, Olszewski M, Wang Z, Das SR, Russell AJ, Matyjaszewski K. Biocatalytic "Oxygen-Fueled" Atom Transfer Radical Polymerization. Angew Chem Int Ed Engl 2018; 57:16157-16161. [PMID: 30329207 DOI: 10.1002/anie.201809018] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 09/25/2018] [Indexed: 01/06/2023]
Abstract
Atom transfer radical polymerization (ATRP) can be carried out in a flask completely open to air using a biocatalytic system composed of glucose oxidase (GOx) and horseradish peroxidase (HRP) with an active copper catalyst complex. Nanomolar concentrations of the enzymes and ppm amounts of Cu provided excellent control over the polymerization of oligo(ethylene oxide) methyl ether methacrylate (OEOMA500 ), generating polymers with high molecular weight (Mn >70 000) and low dispersities (1.13≤Đ≤1.27) in less than an hour. The continuous oxygen supply was necessary for the generation of radicals and polymer chain growth as demonstrated by temporal control and by inducing hypoxic conditions. In addition, the enzymatic cascade polymerization triggered by oxygen was used for a protein and DNA functionalized with initiators to form protein-b-POEOMA and DNA-b-POEOMA bioconjugates, respectively.
Collapse
Affiliation(s)
- Alan E Enciso
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Liye Fu
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Sushil Lathwal
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Mateusz Olszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Zhenhua Wang
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Subha R Das
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Alan J Russell
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| |
Collapse
|
44
|
Ribelli TG, Lorandi F, Fantin M, Matyjaszewski K. Atom Transfer Radical Polymerization: Billion Times More Active Catalysts and New Initiation Systems. Macromol Rapid Commun 2018; 40:e1800616. [DOI: 10.1002/marc.201800616] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/18/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Thomas G. Ribelli
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Francesca Lorandi
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Marco Fantin
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Krzysztof Matyjaszewski
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| |
Collapse
|
45
|
Fantin M, Ramakrishna SN, Yan J, Yan W, Divandari M, Spencer ND, Matyjaszewski K, Benetti EM. The Role of Cu0 in Surface-Initiated Atom Transfer Radical Polymerization: Tuning Catalyst Dissolution for Tailoring Polymer Interfaces. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01306] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Marco Fantin
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Shivaprakash N. Ramakrishna
- Polymer Surfaces Group, Laboratory for Surface Science and Technology, Department of Materials, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 1-5/10, CH-8093 Zurich, Switzerland
| | - Jiajun Yan
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Wenqing Yan
- Polymer Surfaces Group, Laboratory for Surface Science and Technology, Department of Materials, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 1-5/10, CH-8093 Zurich, Switzerland
| | - Mohammad Divandari
- Polymer Surfaces Group, Laboratory for Surface Science and Technology, Department of Materials, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 1-5/10, CH-8093 Zurich, Switzerland
| | - Nicholas D. Spencer
- Polymer Surfaces Group, Laboratory for Surface Science and Technology, Department of Materials, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 1-5/10, CH-8093 Zurich, Switzerland
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Edmondo M. Benetti
- Polymer Surfaces Group, Laboratory for Surface Science and Technology, Department of Materials, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 1-5/10, CH-8093 Zurich, Switzerland
| |
Collapse
|
46
|
|
47
|
Kupfervermittelte radikalische Polymerisation mit reversibler Deaktivierung in wässrigen Medien. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201802091] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
48
|
Jones GR, Anastasaki A, Whitfield R, Engelis N, Liarou E, Haddleton DM. Copper‐Mediated Reversible Deactivation Radical Polymerization in Aqueous Media. Angew Chem Int Ed Engl 2018; 57:10468-10482. [DOI: 10.1002/anie.201802091] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Glen R. Jones
- University of WarwickDepartment of Chemistry Library Road Coventry CV4 7AL UK
| | - Athina Anastasaki
- Materials Research LaboratoryUniversity of California Santa Barbara California 93106 USA
| | - Richard Whitfield
- University of WarwickDepartment of Chemistry Library Road Coventry CV4 7AL UK
| | - Nikolaos Engelis
- University of WarwickDepartment of Chemistry Library Road Coventry CV4 7AL UK
| | - Evelina Liarou
- University of WarwickDepartment of Chemistry Library Road Coventry CV4 7AL UK
| | - David M. Haddleton
- University of WarwickDepartment of Chemistry Library Road Coventry CV4 7AL UK
| |
Collapse
|
49
|
Wang X, Shen L, An Z. Dispersion polymerization in environmentally benign solvents via reversible deactivation radical polymerization. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2018.05.003] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
50
|
Lorandi F, Wang Y, Fantin M, Matyjaszewski K. Ab Initio Emulsion Atom‐Transfer Radical Polymerization. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Francesca Lorandi
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Yi Wang
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Marco Fantin
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Krzysztof Matyjaszewski
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| |
Collapse
|