1
|
Vatin M, Orlandini E, Locatelli E. Upsurge of Spontaneous Knotting in Polar Diblock Active Polymers. PHYSICAL REVIEW LETTERS 2025; 134:168301. [PMID: 40344114 DOI: 10.1103/physrevlett.134.168301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 02/12/2025] [Accepted: 03/12/2025] [Indexed: 05/11/2025]
Abstract
Spontaneous formation of knots in long polymers at equilibrium is inevitable but becomes rare in sufficiently short chains. Here, we show that knotting increases by orders of magnitude in diblock polymers having a fraction p of self-propelled monomers. Remarkably, this enhancement is not monotonic in p with an optimal value independent of the monomer's activity. By monitoring the knot's size and position we elucidate the mechanisms of its formation, diffusion, and untying and ascribe the nonmonotonic behavior to the competition between the rate of knot formation and the knot's lifetime. These findings suggest a nonequilibrium mechanism to generate entangled filaments at the nano- and microscales.
Collapse
Affiliation(s)
- Marin Vatin
- INFN, University of Padova, Department of Physics and Astronomy, Via Marzolo 8, I-35131 Padova, Italy and , Sezione di Padova, Via Marzolo 8, I-35131 Padova, Italy
| | - Enzo Orlandini
- INFN, University of Padova, Department of Physics and Astronomy, Via Marzolo 8, I-35131 Padova, Italy and , Sezione di Padova, Via Marzolo 8, I-35131 Padova, Italy
| | - Emanuele Locatelli
- INFN, University of Padova, Department of Physics and Astronomy, Via Marzolo 8, I-35131 Padova, Italy and , Sezione di Padova, Via Marzolo 8, I-35131 Padova, Italy
| |
Collapse
|
2
|
Caraglio M, Micheletti C, Orlandini E. Unraveling the Influence of Topology and Spatial Confinement on Equilibrium and Relaxation Properties of Interlocked Ring Polymers. Macromolecules 2024; 57:3223-3233. [PMID: 38616813 PMCID: PMC11008367 DOI: 10.1021/acs.macromol.3c02203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 04/16/2024]
Abstract
We use Langevin dynamics simulations to study linked ring polymers in channel confinement. We address the in- and out-of-equilibrium behavior of the systems for varying degrees of confinement and increasing topological and geometrical complexity of the interlocking. The main findings are three. First, metric observables of different link topologies collapse onto the same master curve when plotted against the crossing number, revealing a universal response to confinement. Second, the relaxation process from initially stretched states is faster for more complex links. We ascribe these properties to the interplay of several effects, including the dependence of topological friction on the link complexity. Finally, we show that transient forms of geometrical entanglement purposely added to the initial stressed state can leave distinctive signatures in force-spectroscopy curves. The insight provided by the findings could be leveraged in single-molecule nanochannel experiments to identify geometric entanglement within topologically linked rings.
Collapse
Affiliation(s)
- Michele Caraglio
- Institut
für Theoretische Physik, Universität
Innsbruck, Technikerstraße 21A, Innsbruck A-6020, Austria
| | - Cristian Micheletti
- Scuola
Internazionale Superiore di Studi Avanzati—SISSA, Via Bonomea 265, Trieste 34136, Italy
| | - Enzo Orlandini
- Department
of Physics and Astronomy, University of
Padova, Via Marzolo 8, Padova I-35100, Italy
| |
Collapse
|
3
|
Ozmaian M, Makarov DE. Long-lived metastable knots in polyampholyte chains. PLoS One 2023; 18:e0287200. [PMID: 37315055 PMCID: PMC10266668 DOI: 10.1371/journal.pone.0287200] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/31/2023] [Indexed: 06/16/2023] Open
Abstract
Knots in proteins and DNA are known to have significant effect on their equilibrium and dynamic properties as well as on their function. While knot dynamics and thermodynamics in electrically neutral and uniformly charged polymer chains are relatively well understood, proteins are generally polyampholytes, with varied charge distributions along their backbones. Here we use simulations of knotted polymer chains to show that variation in the charge distribution on a polyampholyte chain with zero net charge leads to significant variation in the resulting knot dynamics, with some charge distributions resulting in long-lived metastable knots that escape the (open-ended) chain on a timescale that is much longer than that for knots in electrically neutral chains. The knot dynamics in such systems can be described, quantitatively, using a simple one-dimensional model where the knot undergoes biased Brownian motion along a "reaction coordinate", equal to the knot size, in the presence of a potential of mean force. In this picture, long-lived knots result from charge sequences that create large electrostatic barriers to knot escape. This model allows us to predict knot lifetimes even when those times are not directly accessible by simulations.
Collapse
Affiliation(s)
- Masoumeh Ozmaian
- College of Engineering, West Texas A&M University, Canyon, Texas, United States of America
| | - Dmitrii E. Makarov
- Department of Chemistry, University of Texas at Austin, Austin, Texas, United States of America
- Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
4
|
Mao R, Dorfman KD. Diffusion of knots in nanochannel-confined DNA molecules. J Chem Phys 2023; 158:2890486. [PMID: 37184024 DOI: 10.1063/5.0151025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/03/2023] [Indexed: 05/16/2023] Open
Abstract
We used Langevin dynamics simulations without hydrodynamic interactions to probe knot diffusion mechanisms and the time scales governing the evolution and the spontaneous untying of trefoil knots in nanochannel-confined DNA molecules in the extended de Gennes regime. The knot untying follows an "opening up process," wherein the initially tight knot continues growing and fluctuating in size as it moves toward the end of the DNA molecule before its annihilation at the chain end. The mean knot size increases significantly and sub-linearly with increasing chain contour length. The knot diffusion in nanochannel-confined DNA molecules is subdiffusive, with the unknotting time scaling with chain contour length with an exponent of 2.64 ± 0.23 to within a 95% confidence interval. The scaling exponent for the mean unknotting time vs chain contour length, along with visual inspection of the knot conformations, suggests that the knot diffusion mechanism is a combination of self-reptation and knot region breathing for the simulated parameters.
Collapse
Affiliation(s)
- Runfang Mao
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, USA
| | - Kevin D Dorfman
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
5
|
Jin X, Kim YT, Jo K. DNA Visualization Using Fluorescent Proteins. Methods Mol Biol 2023; 2564:223-246. [PMID: 36107345 DOI: 10.1007/978-1-0716-2667-2_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
DNA binding fluorescent proteins are a powerful tool for single-molecule visualization. In this chapter, we discuss a protocol for the synthesis of DNA binding fluorescent proteins and visualization of single DNA molecules. This chapter includes stepwise methods for molecular cloning, reversible staining, two-color staining, sequence-specific staining, and microscopic visualization of single DNA molecules in a microfluidic device. This content will be useful for DNA characterization using DNA binding fluorescent proteins and its visualization at the single-molecule level.
Collapse
Affiliation(s)
- Xuelin Jin
- College of Agriculture, Yanbian University, Yanji, Jilin Province, China.
| | - Y Tehee Kim
- Department of Chemistry and Program of Integrated Biotechnology, Sogang University, Seoul, Korea
| | - Kyubong Jo
- Department of Chemistry and Program of Integrated Biotechnology, Sogang University, Seoul, Korea.
| |
Collapse
|
6
|
Tagliabue A, Micheletti C, Mella M. Tuning Knotted Copolyelectrolyte Conformations via Solution Properties. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Andrea Tagliabue
- Dipartimento di Scienza ed Alta Tecnologia, Università degli Studi dell’Insubria, via Valleggio 11, 22100Como, Italy
- SISSA (Scuola Internazionale Superiore di Studi Avanzati), via Bonomea 265, 34136Trieste, Italy
| | - Cristian Micheletti
- SISSA (Scuola Internazionale Superiore di Studi Avanzati), via Bonomea 265, 34136Trieste, Italy
| | - Massimo Mella
- Dipartimento di Scienza ed Alta Tecnologia, Università degli Studi dell’Insubria, via Valleggio 11, 22100Como, Italy
| |
Collapse
|
7
|
Bagchi D. Macroscopic charge segregation in driven polyelectrolyte solutions. SOFT MATTER 2022; 18:5676-5686. [PMID: 35861507 DOI: 10.1039/d2sm00448h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Understanding the behavior of charged complex fluids is crucial for a plethora of important industrial, technological, and medical applications. Here, using coarse-grained molecular dynamics simulations, we investigate the properties of a polyelectrolyte solution with explicit counterions and implicit solvent that is driven by a steady electric field. By properly tuning the interplay between interparticle electrostatics and the applied electric field, we uncover two non-equilibrium continuous phase transitions as a function of the driving field. The first transition occurs from a homogeneous mixed phase to a macroscopic charge-segregated phase in which the polyelectrolyte solution self-organizes to form two lanes of like-charges, parallel to the applied field. We show that the fundamental underlying factor responsible for the emergence of this charge segregation in the presence of an electric field is the excluded volume interactions of the drifting polyelectrolyte chains. As the driving field is increased further, a re-entrant transition is observed from a charge-segregated phase to a homogeneous phase. The re-entrance is signaled by a decrease in the mobility of the monomers and counterions as the electric field is increased. Furthermore, with multivalent counterions, a counterintuitive regime of negative differential mobility is observed in which the charges move progressively more slowly as the driving field is increased. We show that all these features can be consistently explained using an intuitive trapping mechanism that operates between the oppositely moving charges, and present numerical evidence to support our claims. Parameter dependencies and phase diagrams are studied to better understand charge segregation in such driven polyelectrolyte solutions.
Collapse
Affiliation(s)
- Debarshee Bagchi
- International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bengaluru, India.
| |
Collapse
|
8
|
Nie X, Xiong C, Zhou X, Liu Y. Phase transition of DNA knotting in spherical space. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:385101. [PMID: 35820412 DOI: 10.1088/1361-648x/ac808f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Knots have been discovered in various biological systems, such as DNA. The knotting probability of DNA in free space depends non-monotonically on its bending rigidity and has a prominent peak. The current work aims to understand the underlying mechanism of the non-monotonic dependence of DNA knotting probability on bending rigidity. Monte Carlo simulations are performed on a closed DNA molecule confined in spherical space described by a worm-like chain model and a flexible kink model, respectively. The closed DNA's contour length and the spherical space radius both increase knotting probability, but also alter the unimodal dependence of knotting probability on bending rigidity. This is generalized using universal phase diagrams based on the two models. Under the flexible kink model, the total knotting probability of closed DNA is obviously increased at a relatively high excited energy. This supports the expectation that the entropy effect of knot size favours knot formation at a relatively low bending rigidity. In a given spherical space, the increasing contour length of closed DNA described by the worm-like chain model results in a visible shift in the knotting probability distribution. At the same time, the gyration radius of non-trivial closed DNA becomes comparable to that of trivial closed DNA, so that their ratio is not anti-correlated with average knot length. For closed DNA of various contour lengths, the relationship between average knot length and bending rigidity has a universal behaviour: the average knot length decreases to a local minimum at a bending rigidity of ∼5 and then gradually increases to a constant value. The existence of the local minimum is determined by the cut-off distance in repulsive Lennard-Jones potential. The bending rigidity corresponding to the beginning of the constant average knot length is consistent with that at the peak in the knotting distribution. At this point, the knot-size effect balances with the fragment free-energy effect and, at an even greater bending rigidity, knot length breathes around the average knot length value.
Collapse
Affiliation(s)
- Xiaolin Nie
- School of Physics and Electronic Science, Guizhou Normal University, Guiyang 550025, People's Republic of China
- College of Physics, Guizhou University, Guiyang 550025, People's Republic of China
| | - Caiyun Xiong
- College of Physics, Guizhou University, Guiyang 550025, People's Republic of China
| | - Xun Zhou
- School of Physics and Electronic Science, Guizhou Normal University, Guiyang 550025, People's Republic of China
| | - Yanhui Liu
- College of Physics, Guizhou University, Guiyang 550025, People's Republic of China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, People's Republic of China
- Kechuang Industrial Development Company Limited, Gui'an New Area, Guiyang 550025, People's Republic of China
| |
Collapse
|
9
|
Cherayil BJ. Statistical Dynamics of Flow-Driven Globular Polymers. J Phys Chem B 2022; 126:5127-5136. [PMID: 35762816 DOI: 10.1021/acs.jpcb.2c02989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The response of collapsed polymers to the effects of linear mixed flow is studied theoretically in this paper using a model of a self-interacting finitely extensible Gaussian chain that evolves stochastically in the presence of random thermal fluctuations and an external fluid velocity gradient. The interactions that produce compact chain configurations are described by a harmonic pair potential of strength κ that acts between nonbonded sites on the chain backbone. Several chain properties are calculated analytically from this model as a function of κ for elongational and shear flows, including the dependence of the chain's steady-state mean-square end-to-end distance on the Weissenberg number of the flow, the time-dependence of the chain's relaxation to equilibrium from a steady-state of given chain extension, and the nature of the force-extension curves that are obtained from the free energy change between unperturbed and flow-stretched states of the chain. For both elongational and shear flows (but to different degrees), it is found that the greater the value of κ (and the more compact the chain), the more difficult it is, in general, for the imposed flow to induce a transition between compact and extended states, in broad agreement with available data from numerical simulations. For the relaxation process, the differences between the two flow types are more marked. The characteristic decay time for relaxation from a state prepared by elongational flow is essentially independent of κ, whereas in the case of a state prepared by shear flow, it is distinctly κ-dependent, the relaxation becoming faster at larger κ.
Collapse
Affiliation(s)
- Binny J Cherayil
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560012, India
| |
Collapse
|
10
|
Wen X, Wang D, Tang J, Yang Z. A Trefoil Knot Polymer Chain Translocates through a Funnel-like Channel: A Multi-Particle Collision Dynamics Study. Polymers (Basel) 2022; 14:1164. [PMID: 35335494 PMCID: PMC8954592 DOI: 10.3390/polym14061164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 11/16/2022] Open
Abstract
With combining multi-particle collision dynamics (MPCD) for the solvent and molecular dynamics (MD) for the polymer chains, we have studied the conformation and untying behaviors of a trefoil knot polymer chain translocated through a confined funnel-like channel. For the trefoil knot chain, we found that the untying knot behavior mostly happens during the translocation process, and the translocation behavior of linear chains is also simulated as a comparison. Some characteristics of the trefoil knot chain during translocation process, such as average gyration radius and the average end-to-end distances are discussed, and we statistic the scale relations of the translocation time versus the chain length, and that of the chain rigidity. This study may help to understand translocation behaviors of the knotted linear polymer chain in the capillary flow field.
Collapse
Affiliation(s)
- Xiaohui Wen
- Department of Physics, Chengdu University of Technology, Chengdu 610059, China; (X.W.); (D.W.); (J.T.)
| | - Deyin Wang
- Department of Physics, Chengdu University of Technology, Chengdu 610059, China; (X.W.); (D.W.); (J.T.)
| | - Jiajun Tang
- Department of Physics, Chengdu University of Technology, Chengdu 610059, China; (X.W.); (D.W.); (J.T.)
| | - Zhiyong Yang
- Department of Physics, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
11
|
Zhang ZH, Andreassen BJ, August DP, Leigh DA, Zhang L. Molecular weaving. NATURE MATERIALS 2022; 21:275-283. [PMID: 35115722 DOI: 10.1038/s41563-021-01179-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
Historically, the interlacing of strands at the molecular level has mainly been limited to coordination polymers and DNA. Despite being proposed on a number of occasions, the direct, bottom-up assembly of molecular building blocks into woven organic polymers remained an aspirational, but elusive, target for several decades. However, recent successes in two-dimensional and three-dimensional molecular-level weaving now offer new opportunities and research directions at the interface of polymer science and molecular nanotopology. This Perspective provides an overview of the features and potential of the periodic nanoscale weaving of polymer chains, distinguishing it from randomly entangled polymer networks and rigid crystalline frameworks. We review the background and experimental progress so far, and conclude by considering the potential of molecular weaving and outline some of the current and future challenges in this emerging field.
Collapse
Affiliation(s)
- Zhi-Hui Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | | | - David P August
- Department of Chemistry, University of Manchester, Manchester, UK
| | - David A Leigh
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.
- Department of Chemistry, University of Manchester, Manchester, UK.
| | - Liang Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.
| |
Collapse
|
12
|
Sharma RK, Agrawal I, Dai L, Doyle P, Garaj S. DNA Knot Malleability in Single-Digit Nanopores. NANO LETTERS 2021; 21:3772-3779. [PMID: 33661654 DOI: 10.1021/acs.nanolett.0c05142] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Knots in long DNA molecules are prevalent in biological systems and serve as a model system for investigating static and dynamic properties of biopolymers. We explore the dynamics of knots in double-stranded DNA in a new regime of nanometer-scale confinement, large forces, and short time scales, using solid-state nanopores. We show that DNA knots undergo isomorphic translocation through a nanopore, retaining their equilibrium morphology by swiftly compressing in a lateral direction to fit the constriction. We observe no evidence of knot tightening or jamming, even for single-digit nanopores. We explain the observations as the malleability of DNA, characterized by sharp buckling of the DNA in nanopores, driven by the transient disruption of base pairing. Our molecular dynamics simulations support the model. These results are relevant not only for the understanding of DNA packing and manipulation in living cells but also for the polymer physics of DNA and the development of nanopore-based sequencing technologies.
Collapse
Affiliation(s)
- Rajesh Kumar Sharma
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
- Singapore-MIT Alliance for Research and Technology Centre, Singapore 138602, Singapore
- Centre for Advanced 2D Materials, National University of Singapore, Singapore 117546, Singapore
| | - Ishita Agrawal
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Liang Dai
- Department of Physics, City University of Hong Kong, Kowloon, Hong Kong, P. R. China
| | - Patrick Doyle
- Singapore-MIT Alliance for Research and Technology Centre, Singapore 138602, Singapore
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - Slaven Garaj
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
- Centre for Advanced 2D Materials, National University of Singapore, Singapore 117546, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
| |
Collapse
|
13
|
Gendron I, Savard K, Capaldi X, Liu Z, Zeng L, Reisner W, Capaldi L. Time-dependent knotting of agitated chains. Phys Rev E 2021; 103:032501. [PMID: 33862677 DOI: 10.1103/physreve.103.032501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/19/2021] [Indexed: 11/07/2022]
Abstract
Agitated strings serve as macroscale models of spontaneous knotting, providing valuable insight into knotting dynamics at the microscale while allowing explicit analysis of the resulting knot topologies. We present an experimental setup for confined macroscale knot formation via tumbling along with a software interface to process complex knot data. Our setup allows characterization of knotting probability, knot complexity, and knot formation dynamics for knots with as many as 50 crossings. We find that the probability of knotting saturates below 80% within 100 s of the initiation of tumbling and that this saturation probability does not increase for chains above a critical length, an indication of nonequilibrium knot-formation conditions in our experiment. Despite the saturation in knot formation, we show that longer chains, while being more confined, will always tend to form knots of higher complexity since the free end can access a greater number of loops during tumbling.
Collapse
Affiliation(s)
- Ingrid Gendron
- Physics Department, McGill University, 3600 rue University, Montreal, Canada
| | - Katherine Savard
- Physics Department, McGill University, 3600 rue University, Montreal, Canada
| | - Xavier Capaldi
- Physics Department, McGill University, 3600 rue University, Montreal, Canada
| | - Zezhou Liu
- Physics Department, McGill University, 3600 rue University, Montreal, Canada
| | - Lili Zeng
- Physics Department, McGill University, 3600 rue University, Montreal, Canada
| | - Walter Reisner
- Physics Department, McGill University, 3600 rue University, Montreal, Canada
| | - Luc Capaldi
- Department of Mechanical Engineering, University of Vermont, Burlington, Vermont 05405, USA
| |
Collapse
|
14
|
Caraglio M, Marcone B, Baldovin F, Orlandini E, Stella AL. Topological Disentanglement of Linear Polymers under Tension. Polymers (Basel) 2020; 12:E2580. [PMID: 33153057 PMCID: PMC7692779 DOI: 10.3390/polym12112580] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 10/30/2020] [Accepted: 10/30/2020] [Indexed: 01/01/2023] Open
Abstract
We develop a theoretical description of the topological disentanglement occurring when torus knots reach the ends of a semiflexible polymer under tension. These include decays into simpler knots and total unknotting. The minimal number of crossings and the minimal knot contour length are the topological invariants playing a key role in the model. The crossings behave as particles diffusing along the chain and the application of appropriate boundary conditions at the ends of the chain accounts for the knot disentanglement. Starting from the number of particles and their positions, suitable rules allow reconstructing the type and location of the knot moving on the chain Our theory is extensively benchmarked with corresponding molecular dynamics simulations and the results show a remarkable agreement between the simulations and the theoretical predictions of the model.
Collapse
Affiliation(s)
- Michele Caraglio
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria
| | - Boris Marcone
- Istituto Tecnico Economico Tecnologico Statale ‘L. Einaudi’, via Tommaso D’Aquino 8, I-36061 Bassano del Grappa, Italy;
| | - Fulvio Baldovin
- Dipartimento di Fisica e Astronomia and Sezione INFN Università di Padova, Via Marzolo 8, I-35131 Padova, Italy; (F.B.); (E.O.); (A.L.S.)
| | - Enzo Orlandini
- Dipartimento di Fisica e Astronomia and Sezione INFN Università di Padova, Via Marzolo 8, I-35131 Padova, Italy; (F.B.); (E.O.); (A.L.S.)
| | - Attilio L. Stella
- Dipartimento di Fisica e Astronomia and Sezione INFN Università di Padova, Via Marzolo 8, I-35131 Padova, Italy; (F.B.); (E.O.); (A.L.S.)
| |
Collapse
|
15
|
Polson JM, Hastie CG. Free energy of a knotted polymer confined to narrow cylindrical and conical channels. Phys Rev E 2020; 102:052502. [PMID: 33327190 DOI: 10.1103/physreve.102.052502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/16/2020] [Indexed: 06/12/2023]
Abstract
Monte Carlo simulations are used to study the conformational behavior of a semiflexible polymer confined to cylindrical and conical channels. The channels are sufficiently narrow that the conditions for the Odijk regime are marginally satisfied. For cylindrical confinement, we examine polymers with a single knot of topology 3_{1}, 4_{1}, or 5_{1}, as well as unknotted polymers that are capable of forming S loops. We measure the variation of the free energy F with the end-to-end polymer extension length X and examine the effect of varying the polymer topology, persistence length P, and cylinder diameter D on the free-energy functions. Similarly, we characterize the behavior of the knot span along the channel. We find that increasing the knot complexity increases the typical size of the knot. In the regime of low X, where the knot/S-loop size is large, the conformational behavior is independent of polymer topology. In addition, the scaling properties of the free energy and knot span are in agreement with predictions from a theoretical model constructed using known properties of interacting polymers in the Odijk regime. We also examine the variation of F with the position of a knot in conical channels for various values of the cone angle α. The free energy decreases as the knot moves in a direction where the cone widens, and it also decreases with increasing α and with increasing knot complexity. The behavior is in agreement with predictions from a theoretical model in which the dominant contribution to the change in F is the change in the size of the hairpins as the knot moves to the wider region of the channel.
Collapse
Affiliation(s)
- James M Polson
- Department of Physics, University of Prince Edward Island, 550 University Ave., Charlottetown, Prince Edward Island, C1A 4P3, Canada
| | - Cameron G Hastie
- Department of Physics, University of Prince Edward Island, 550 University Ave., Charlottetown, Prince Edward Island, C1A 4P3, Canada
| |
Collapse
|
16
|
Affiliation(s)
- Zixue Ma
- Department of Chemical Engineering and Materials Science, University of Minnesota, Twin Cities, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Kevin D. Dorfman
- Department of Chemical Engineering and Materials Science, University of Minnesota, Twin Cities, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
17
|
Klotz AR, Soh BW, Doyle PS. Equilibrium structure and deformation response of 2D kinetoplast sheets. Proc Natl Acad Sci U S A 2020; 117:121-127. [PMID: 31811027 PMCID: PMC6955370 DOI: 10.1073/pnas.1911088116] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The considerable interest in two-dimensional (2D) materials and complex molecular topologies calls for a robust experimental system for single-molecule studies. In this work, we study the equilibrium properties and deformation response of a complex DNA structure called a kinetoplast, a 2D network of thousands of linked rings akin to molecular chainmail. Examined in good solvent conditions, kinetoplasts appear as a wrinkled hemispherical sheet. The conformation of each kinetoplast is dictated by its network topology, giving it a unique shape, which undergoes small-amplitude thermal fluctuations at subsecond timescales, with a wide separation between fluctuation and diffusion timescales. They deform elastically when weakly confined and swell to their equilibrium dimensions when the confinement is released. We hope that, in the same way that linear DNA became a canonical model system on the first investigations of its polymer-like behavior, kinetoplasts can serve that role for 2D and catenated polymer systems.
Collapse
Affiliation(s)
- Alexander R Klotz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142
- Department of Physics and Astronomy, California State University, Long Beach, CA 90840
| | - Beatrice W Soh
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Patrick S Doyle
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142;
| |
Collapse
|
18
|
Kumar Sharma R, Agrawal I, Dai L, Doyle PS, Garaj S. Complex DNA knots detected with a nanopore sensor. Nat Commun 2019; 10:4473. [PMID: 31578328 PMCID: PMC6775256 DOI: 10.1038/s41467-019-12358-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 08/27/2019] [Indexed: 01/15/2023] Open
Abstract
Equilibrium knots are common in biological polymers-their prevalence, size distribution, structure, and dynamics have been extensively studied, with implications to fundamental biological processes and DNA sequencing technologies. Nanopore microscopy is a high-throughput single-molecule technique capable of detecting the shape of biopolymers, including DNA knots. Here we demonstrate nanopore sensors that map the equilibrium structure of DNA knots, without spurious knot tightening and sliding. We show the occurrence of both tight and loose knots, reconciling previous contradictory results from different experimental techniques. We evidence the occurrence of two quantitatively different modes of knot translocation through the nanopores, involving very different tension forces. With large statistics, we explore the complex knots and, for the first time, reveal the existence of rare composite knots. We use parametrized complexity, in concert with simulations, to test the theoretical assumptions of the models, further asserting the relevance of nanopores in future investigation of knots.
Collapse
Affiliation(s)
- Rajesh Kumar Sharma
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
- Singapore-MIT Alliance for Research and Technology Centre, 1 CREATE Way, Singapore, 138602, Singapore
- Centre for Advanced 2D Materials, National University of Singapore, 6 Science Drive 2, Singapore, 117546, Singapore
| | - Ishita Agrawal
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Liang Dai
- Department of Physics, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Patrick S Doyle
- Singapore-MIT Alliance for Research and Technology Centre, 1 CREATE Way, Singapore, 138602, Singapore.
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA.
| | - Slaven Garaj
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore.
- Centre for Advanced 2D Materials, National University of Singapore, 6 Science Drive 2, Singapore, 117546, Singapore.
- Department of Physics, National University of Singapore, Singapore, Science Drive 3, Singapore, 117551, Singapore.
| |
Collapse
|
19
|
Caraglio M, Baldovin F, Marcone B, Orlandini E, Stella AL. Topological Disentanglement Dynamics of Torus Knots on Open Linear Polymers. ACS Macro Lett 2019; 8:576-581. [PMID: 35619367 DOI: 10.1021/acsmacrolett.9b00055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We simulate and study the topological disentanglement occurring when torus knots reach the ends of a semiflexible open polymer (decay into simpler knots or unknotting). Through a rescaling procedure and the application of appropriate boundary conditions, we show that the full unknotting process can be understood in terms of point-like particles representing essential crossings, diffusing on the support [0, 1]. We address the bending and configurational free energy drives on the diffusion process, together with the scaling properties of the effective diffusion and friction coefficients. Agreement with simulations suggests universal features for these two model parameters.
Collapse
Affiliation(s)
- Michele Caraglio
- KU Leuven, Soft Matter and Biophysics Section, Celestijnenlaan 200D, 3001 Leuven, Belgium
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria
| | - Fulvio Baldovin
- Department of Physics and Astronomy, University of Padova, Via Marzolo 8, I-35131 Padova, Italy
- INFN, Sezione di Padova, Via Marzolo 8, I-35131 Padova, Italy
| | - Boris Marcone
- Center of Excellence for Stability Police Units, via Medici 87, 36100 Vicenza, Italy
| | - Enzo Orlandini
- Department of Physics and Astronomy, University of Padova, Via Marzolo 8, I-35131 Padova, Italy
- INFN, Sezione di Padova, Via Marzolo 8, I-35131 Padova, Italy
| | - Attilio L. Stella
- Department of Physics and Astronomy, University of Padova, Via Marzolo 8, I-35131 Padova, Italy
- INFN, Sezione di Padova, Via Marzolo 8, I-35131 Padova, Italy
| |
Collapse
|
20
|
Soh BW, Klotz AR, Doyle PS. Untying of Complex Knots on Stretched Polymers in Elongational Fields. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01879] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Beatrice W. Soh
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Alexander R. Klotz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Patrick S. Doyle
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
21
|
Cardelli C, Tubiana L, Bianco V, Nerattini F, Dellago C, Coluzza I. Heteropolymer Design and Folding of Arbitrary Topologies Reveals an Unexpected Role of Alphabet Size on the Knot Population. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01359] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Chiara Cardelli
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| | - Luca Tubiana
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| | - Valentino Bianco
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| | - Francesca Nerattini
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| | - Christoph Dellago
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| | - Ivan Coluzza
- CIC biomaGUNE, Paseo Miramon 182, 20014 San Sebastian, Spain
- IKERBASQUE,
Basque
Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
| |
Collapse
|
22
|
Affiliation(s)
- Liang Dai
- BioSystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology Centre, Singapore 117543
| | - Patrick S. Doyle
- BioSystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology Centre, Singapore 117543
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, United States
| |
Collapse
|
23
|
Tubiana L, Polles G, Orlandini E, Micheletti C. KymoKnot: A web server and software package to identify and locate knots in trajectories of linear or circular polymers. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2018; 41:72. [PMID: 29884956 DOI: 10.1140/epje/i2018-11681-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/18/2018] [Indexed: 06/08/2023]
Abstract
The KymoKnot software package and web server identifies and locates physical knots or proper knots in a series of polymer conformations. It is mainly intended as an analysis tool for trajectories of linear or circular polymers, but it can be used on single instances too, e.g. protein structures in PDB format. A key element of the software package is the so-called minimally interfering chain closure algorithm that is used to detect physical knots in open chains and to locate the knotted region in both open and closed chains. The web server offers a user-friendly graphical interface that identifies the knot type and highlights the knotted region on each frame of the trajectory, which the user can visualize interactively from various viewpoints. The dynamical evolution of the knotted region along the chain contour is presented as a kymograph. All data can be downloaded in text format. The KymoKnot package is licensed under the BSD 3-Clause licence. The server is publicly available at http://kymoknot.sissa.it/kymoknot/interactive.php .
Collapse
Affiliation(s)
- Luca Tubiana
- Computational Physics Department, University of Vienna, Sensengasse 8/10, 1090, Vienna, Austria.
| | - Guido Polles
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, 90089, Los Angeles, CA, USA
| | - Enzo Orlandini
- Dipartimento di Fisica e Astronomia and Sezione INFN, Università di Padova, Via Marzolo 8, 35131, Padova, Italy
| | - Cristian Micheletti
- SISSA, International School for Advanced Studies, Via Bonomea 265, I-34136, Trieste, Italy
| |
Collapse
|
24
|
Suma A, Di Stefano M, Micheletti C. Electric-Field-Driven Trapping of Polyelectrolytes in Needle-like Backfolded States. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Antonio Suma
- International School for Advanced Studies (SISSA), via Bonomea 265, I-34136 Trieste, Italy
| | - Marco Di Stefano
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain
| | - Cristian Micheletti
- International School for Advanced Studies (SISSA), via Bonomea 265, I-34136 Trieste, Italy
| |
Collapse
|
25
|
Klotz AR, Soh BW, Doyle PS. Motion of Knots in DNA Stretched by Elongational Fields. PHYSICAL REVIEW LETTERS 2018; 120:188003. [PMID: 29775326 DOI: 10.1103/physrevlett.120.188003] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/07/2018] [Indexed: 06/08/2023]
Abstract
Knots in DNA occur in biological systems, serve as a model system for polymer entanglement, and affect the efficacy of modern genomics technologies. We study the motion of complex knots in DNA by stretching molecules with a divergent electric field that provides an elongational force. We demonstrate that the motion of knots is nonisotropic and driven towards the closest end of the molecule. We show for the first time experimentally that knots can go from a mobile to a jammed state by varying an applied strain rate, and that this jamming is reversible. We measure the mobility of knots as a function of strain rate, demonstrating the conditions under which knots can be driven towards the ends of the molecule and untied.
Collapse
Affiliation(s)
- Alexander R Klotz
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02142, USA
| | - Beatrice W Soh
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02142, USA
| | - Patrick S Doyle
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
26
|
Liebetreu M, Ripoll M, Likos CN. Trefoil Knot Hydrodynamic Delocalization on Sheared Ring Polymers. ACS Macro Lett 2018; 7:447-452. [PMID: 35619341 DOI: 10.1021/acsmacrolett.8b00059] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The behavior of unknotted and trefoil-knotted ring polymers under shear flow is here examined by means of mesoscopic simulations. In contrast to most polymers, ring polymers in a hydrodynamic solvent at high shear rates do not get shortened in the vorticity direction. This is a consequence of the backflow produced by the interaction of the sheared solvent with the end-free polymer topology. The extended structures of the ring in the vorticity-flow plane, when they are aligned in a constant velocity plane, favor ring contour fluctuations. This variety of conformations largely suppresses the tank-treading type of rotation with extended conformations in favor of the tumbling type of rotations, where stretched and collapsed conformations alternate. The extension of trefoil knots is also enhanced, so that the knots become delocalized. We anticipate that these effects, which disappear in the absence of hydrodynamic interactions, will have a crucial impact on the rheological properties of concentrated ring solutions, and will also influence the behavior of more complicated systems such as mixtures of polymers with different topologies.
Collapse
Affiliation(s)
- Maximilian Liebetreu
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| | - Marisol Ripoll
- Forschungszentrum Jülich, Institute of Complex Systems, Theoretical Soft Matter and Biophysics, 52425 Jülich, Germany
| | - Christos N. Likos
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| |
Collapse
|
27
|
Amin S, Khorshid A, Zeng L, Zimny P, Reisner W. A nanofluidic knot factory based on compression of single DNA in nanochannels. Nat Commun 2018; 9:1506. [PMID: 29666466 PMCID: PMC5904144 DOI: 10.1038/s41467-018-03901-w] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 03/21/2018] [Indexed: 11/09/2022] Open
Abstract
Knots form when polymers self-entangle, a process enhanced by compaction with important implications in biological and artificial systems involving chain confinement. In particular, new experimental tools are needed to assess the impact of multiple variables influencing knotting probability. Here, we introduce a nanofluidic knot factory for efficient knot formation and detection. Knots are produced during hydrodynamic compression of single DNA molecules against barriers in a nanochannel; subsequent extension of the chain enables direct assessment of the number of independently evolving knots. Knotting probability increases with chain compression as well as with waiting time in the compressed state. Using a free energy derived from scaling arguments, we develop a knot-formation model that can quantify the effect of interactions and the breakdown of Poisson statistics at high compression. Our model suggests that highly compressed knotted states are stabilized by a decreased free energy as knotted contour contributes a lower self-exclusion derived free energy.
Collapse
Affiliation(s)
- Susan Amin
- Department of Physics, McGill University, 3600 rue université, Montréal, QC, H3A 2T8, Canada
| | - Ahmed Khorshid
- Department of Physics, McGill University, 3600 rue université, Montréal, QC, H3A 2T8, Canada
| | - Lili Zeng
- Department of Physics, McGill University, 3600 rue université, Montréal, QC, H3A 2T8, Canada
| | - Philip Zimny
- Department of Biomedical Engineering, McGill University, 3775 rue université, Montréal, QC, H3A 2B4, Canada
| | - Walter Reisner
- Department of Physics, McGill University, 3600 rue université, Montréal, QC, H3A 2T8, Canada.
| |
Collapse
|
28
|
Soh BW, Narsimhan V, Klotz AR, Doyle PS. Knots modify the coil-stretch transition in linear DNA polymers. SOFT MATTER 2018; 14:1689-1698. [PMID: 29423476 DOI: 10.1039/c7sm02195j] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We perform single-molecule DNA experiments to investigate the relaxation dynamics of knotted polymers and examine the steady-state behavior of knotted polymers in elongational fields. The occurrence of a knot reduces the relaxation time of a molecule and leads to a shift in the molecule's coil-stretch transition to larger strain rates. We measure chain extension and extension fluctuations as a function of strain rate for unknotted and knotted molecules. The curves for knotted molecules can be collapsed onto the unknotted curves by defining an effective Weissenberg number based on the measured knotted relaxation time in the low extension regime, or a relaxation time based on Rouse/Zimm scaling theories in the high extension regime. Because a knot reduces a molecule's relaxation time, we observe that knot untying near the coil-stretch transition can result in dramatic changes in the molecule's conformation. For example, a knotted molecule at a given strain rate can experience a stretch-coil transition, followed by a coil-stretch transition, after the knot partially or fully unties.
Collapse
Affiliation(s)
- Beatrice W Soh
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | - Vivek Narsimhan
- Department of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Alexander R Klotz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | - Patrick S Doyle
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| |
Collapse
|
29
|
Mai DJ, Saadat A, Khomami B, Schroeder CM. Stretching Dynamics of Single Comb Polymers in Extensional Flow. Macromolecules 2018. [DOI: 10.1021/acs.macromol.7b02759] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Danielle J. Mai
- Department
of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Amir Saadat
- Material
Research and Innovation Laboratory,
Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Bamin Khomami
- Material
Research and Innovation Laboratory,
Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Charles M. Schroeder
- Department
of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
30
|
Narsimhan V, Klotz AR, Doyle PS. Steady-State and Transient Behavior of Knotted Chains in Extensional Fields. ACS Macro Lett 2017; 6:1285-1289. [PMID: 35650783 DOI: 10.1021/acsmacrolett.7b00600] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Recently, there has been a push to understand how molecular topology alters the nonequilibrium dynamics of polymer systems. In this paper, we probe how knotted polymers evolve in planar extensional fields using Brownian dynamics simulations and single-molecule experiments. In the first part of the study, we quantify the extension versus strain-rate curves of polymers and find that knots shift these curves to larger strain-rates. These trends can be quantitatively explained by Rouse-like scaling theories. In the second half of the study, we examine the consequences of knot untying on the time-dependent conformations of polymers in these external fields. We find that knot untying creates significant, transient changes in chain extension. If the topology is complex, the chain undergoes a wide range of time-dependent conformations since knot untying proceeds through many different stages. We provide examples of such untying trajectories over time.
Collapse
Affiliation(s)
- Vivek Narsimhan
- Department
of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Alexander R. Klotz
- Department
of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Patrick S. Doyle
- Department
of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
31
|
Dabrowski-Tumanski P, Sulkowska JI. To Tie or Not to Tie? That Is the Question. Polymers (Basel) 2017; 9:E454. [PMID: 30965758 PMCID: PMC6418553 DOI: 10.3390/polym9090454] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 09/11/2017] [Accepted: 09/12/2017] [Indexed: 12/18/2022] Open
Abstract
In this review, we provide an overview of entangled proteins. Around 6% of protein structures deposited in the PBD are entangled, forming knots, slipknots, lassos and links. We present theoretical methods and tools that enabled discovering and classifying such structures. We discuss the advantages and disadvantages of the non-trivial topology in proteins, based on available data about folding, stability, biological properties and evolutionary conservation. We also formulate intriguing and challenging questions on the border of biophysics, bioinformatics, biology and mathematics, which arise from the discovery of an entanglement in proteins. Finally, we discuss possible applications of entangled proteins in medicine and nanotechnology, such as the chance to design super stable proteins, whose stability could be controlled by chemical potential.
Collapse
Affiliation(s)
- Pawel Dabrowski-Tumanski
- Centre of New Technologies, University of Warsaw, Warsaw 02-097, Poland.
- Faculty of Chemistry, University of Warsaw, Warsaw 02-093, Poland.
| | - Joanna I Sulkowska
- Centre of New Technologies, University of Warsaw, Warsaw 02-097, Poland.
- Faculty of Chemistry, University of Warsaw, Warsaw 02-093, Poland.
| |
Collapse
|
32
|
Siebert JT, Kivel AN, Atkinson LP, Stevens TJ, Laue ED, Virnau P. Are There Knots in Chromosomes? Polymers (Basel) 2017; 9:polym9080317. [PMID: 30971010 PMCID: PMC6418659 DOI: 10.3390/polym9080317] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 02/02/2023] Open
Abstract
Recent developments have for the first time allowed the determination of three-dimensional structures of individual chromosomes and genomes in nuclei of single haploid mouse embryonic stem (ES) cells based on Hi⁻C chromosome conformation contact data. Although these first structures have a relatively low resolution, they provide the first experimental data that can be used to study chromosome and intact genome folding. Here we further analyze these structures and provide the first evidence that G1 phase chromosomes are knotted, consistent with the fact that plots of contact probability vs sequence separation show a power law dependence that is intermediate between that of a fractal globule and an equilibrium structure.
Collapse
Affiliation(s)
- Jonathan T Siebert
- Department of Physics, Johannes Gutenberg University Mainz, Staudinger Weg 9, 55128 Mainz, Germany.
| | - Alexey N Kivel
- Department of Physics, Johannes Gutenberg University Mainz, Staudinger Weg 9, 55128 Mainz, Germany.
| | - Liam P Atkinson
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK.
| | - Tim J Stevens
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK.
| | - Ernest D Laue
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK.
| | - Peter Virnau
- Department of Physics, Johannes Gutenberg University Mainz, Staudinger Weg 9, 55128 Mainz, Germany.
| |
Collapse
|