1
|
Khan M. Polymers as Efficient Non-Viral Gene Delivery Vectors: The Role of the Chemical and Physical Architecture of Macromolecules. Polymers (Basel) 2024; 16:2629. [PMID: 39339093 PMCID: PMC11435517 DOI: 10.3390/polym16182629] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
Gene therapy is the technique of inserting foreign genetic elements into host cells to achieve a therapeutic effect. Although gene therapy was initially formulated as a potential remedy for specific genetic problems, it currently offers solutions for many diseases with varying inheritance patterns and acquired diseases. There are two major groups of vectors for gene therapy: viral vector gene therapy and non-viral vector gene therapy. This review examines the role of a macromolecule's chemical and physical architecture in non-viral gene delivery, including their design and synthesis. Polymers can boost circulation, improve delivery, and control cargo release through various methods. The prominent examples discussed include poly-L-lysine, polyethyleneimine, comb polymers, brush polymers, and star polymers, as well as hydrogels and natural polymers and their modifications. While significant progress has been made, challenges still exist in gene stabilization, targeting specificity, and cellular uptake. Overcoming cytotoxicity, improving delivery efficiency, and utilizing natural polymers and hybrid systems are vital factors for prospects. This comprehensive review provides an illuminating overview of the field, guiding the way toward innovative non-viral-based gene delivery solutions.
Collapse
Affiliation(s)
- Majad Khan
- Department of Chemistry, King Fahd University of Petroleum & Minerals KFUPM, Dahran 31261, Saudi Arabia
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals KFUPM, Dahran 31261, Saudi Arabia
- Interdisciplinary Research Center for Refining and Advanced Chemicals (IRC-CRAC), King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia
| |
Collapse
|
2
|
Meng Z, Wang Y, Luo Y, Luo Z, Li L, Sha Y. Controllable Synthesis of Chain Center Dye-Labeled Star Polymers for Quantitative Examination of Interchain Conformation by Time-Resolved Fluorescence Resonance Energy Transfer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:19220-19227. [PMID: 39190808 DOI: 10.1021/acs.langmuir.4c02411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Using a "core-first" approach with atom transfer radical polymerization, fluorescent center-functional star polymers of equivalent molecular weight but with varying numbers of arms (di-, tri-, and tetra-arm) were prepared. The sensitivity of fluorescence, combined with a dye-labeling technique introducing a fluorescent donor (carbazole) and an acceptor (anthracene) at the center of poly(methyl methacrylate) (PMMA) chains, enabled the application of time-resolved fluorescence resonance energy transfer to obtain quantitative insights into the conformation of the star polymer chains in the film state. When the results of star-branched polymers were compared with those of linear polymers of identical type and molecular weight, the impact of branching on polymer behavior was isolated for examination. Although the star topology does not alter the average intercoil distance, it affects the distance dispersity. Star polymers with higher arm numbers display decreased dispersity from distance due to reduced intermolecular aggregation at their geometric centers. This study presents the first spectroscopic evidence regarding the distribution of geometric centers in star polymers, offering a physical understanding of chain interpenetration and entanglement within star polymers.
Collapse
Affiliation(s)
- Zihao Meng
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Ying Wang
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Yanlong Luo
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Zhenyang Luo
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Linling Li
- Institute of Critical Materials for Integrated Circuits, Shenzhen Polytechnic University, Shenzhen, Guangdong 518055, China
| | - Ye Sha
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
3
|
Wang C, He W, Wang F, Yong H, Bo T, Yao D, Zhao Y, Pan C, Cao Q, Zhang S, Li M. Recent progress of non-linear topological structure polymers: synthesis, and gene delivery. J Nanobiotechnology 2024; 22:40. [PMID: 38280987 PMCID: PMC10821314 DOI: 10.1186/s12951-024-02299-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/03/2024] [Indexed: 01/29/2024] Open
Abstract
Currently, many types of non-linear topological structure polymers, such as brush-shaped, star, branched and dendritic structures, have captured much attention in the field of gene delivery and nanomedicine. Compared with linear polymers, non-linear topological structural polymers offer many advantages, including multiple terminal groups, broad and complicated spatial architecture and multi-functionality sites to enhance gene delivery efficiency and targeting capabilities. Nevertheless, the complexity of their synthesis process severely hampers the development and applications of nonlinear topological polymers. This review aims to highlight various synthetic approaches of non-linear topological architecture polymers, including reversible-deactivation radical polymerization (RDRP) including atom-transfer radical polymerization (ATRP), nitroxide-mediated polymerization (NMP), reversible addition-fragmentation chain transfer (RAFT) polymerization, click chemistry reactions and Michael addition, and thoroughly discuss their advantages and disadvantages, as well as analyze their further application potential. Finally, we comprehensively discuss and summarize different non-linear topological structure polymers for genetic materials delivering performance both in vitro and in vivo, which indicated that topological effects and nonlinear topologies play a crucial role in enhancing the transfection performance of polymeric vectors. This review offered a promising guideline for the design and development of novel nonlinear polymers and facilitated the development of a new generation of polymer-based gene vectors.
Collapse
Affiliation(s)
- Chenfei Wang
- Department of Dermatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China.
| | - Wei He
- School of Medicine, Anhui University of Science and Technology, Huainan, 232000, Anhui, China
| | - Feifei Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Haiyang Yong
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Tao Bo
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Dingjin Yao
- Shanghai EditorGene Technology Co., Ltd, Shanghai, 200000, China
| | - Yitong Zhao
- School of Medicine, Anhui University of Science and Technology, Huainan, 232000, Anhui, China
| | - Chaolan Pan
- Department of Dermatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Qiaoyu Cao
- Department of Dermatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Si Zhang
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| | - Ming Li
- Department of Dermatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China.
| |
Collapse
|
4
|
Zhang P, Ladelta V, Abou-Hamad E, Müller AJ, Hadjichristidis N. Catalyst switch strategy enabled a single polymer with five different crystalline phases. Nat Commun 2023; 14:7559. [PMID: 37985766 PMCID: PMC10662249 DOI: 10.1038/s41467-023-42955-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/26/2023] [Indexed: 11/22/2023] Open
Abstract
Well-defined multicrystalline multiblock polymers are essential model polymers for advancing crystallization physics, phase separation, self-assembly, and improving the mechanical properties of materials. However, due to different chain properties and incompatible synthetic methodologies, multicrystalline multiblock polymers with more than two crystallites are rarely reported. Herein, by combining polyhomologation, ring-opening polymerization, and catalyst switch strategy, we synthesized a pentacrystalline pentablock quintopolymer, polyethylene-b-poly(ethylene oxide)-b-poly(ε-caprolactone)-b-poly(L-lactide)-b-polyglycolide (PE-b-PEO-b-PCL-b-PLLA-b-PGA). The fluoroalcohol-assisted catalyst switch enables the successful incorporation of a high melting point polyglycolide block into the complex multiblock structure. Solid-state nuclear magnetic resonance spectroscopy, X-ray diffraction, and differential scanning calorimetry revealed the existence of five different crystalline phases.
Collapse
Affiliation(s)
- Pengfei Zhang
- Polymer Synthesis Laboratory, KAUST Catalysis Center, Chemistry Program, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Viko Ladelta
- Polymer Synthesis Laboratory, KAUST Catalysis Center, Chemistry Program, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Edy Abou-Hamad
- Imaging and Characterization Core Lab, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Alejandro J Müller
- Department of Polymers and Advanced Materials, Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018, Donostia-San Sebastián, Spain
| | - Nikos Hadjichristidis
- Polymer Synthesis Laboratory, KAUST Catalysis Center, Chemistry Program, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia.
| |
Collapse
|
5
|
Yang D, Tian G, Ma J. Triphenylamine-Based N,O-Bidentate BF 2 -Enolimine Initiator for Three-Arm Star Polymethacrylates with Dual-State Fluorescent Emission. Chem Asian J 2023; 18:e202300624. [PMID: 37671791 DOI: 10.1002/asia.202300624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/21/2023] [Accepted: 09/05/2023] [Indexed: 09/07/2023]
Abstract
Three-arm star polymethacrylates with dual-phase (solution and solid-state) fluorescent emission have been synthesized via atom transfer radical polymerization (ATRP) using a triphenylamine-derived organboron complex (TAPA-BKI-3Br) as initiator. The as-synthesized three-arm star polymethacrylates exhibited bright emission in both solution and the solid states due to the highly twisted structure and intramolecular charge transfer (ICT) effect of TAPA-BKI core, as well as the steric effect and restriction of intramolecular motions from the polymer arms. And the polymer chains have an important influence on the photophysical behavior of the as-synthesized three-arm star polymethacrylates in the aggregated state.
Collapse
Affiliation(s)
- Dong Yang
- Xi'an Key laboratory of Textile Composites, School of Materials Science and Engineering, Xi'an Polytechnic University, Xi'an, 710048, China
| | - Guangming Tian
- Xi'an Key laboratory of Textile Composites, School of Materials Science and Engineering, Xi'an Polytechnic University, Xi'an, 710048, China
| | - Jianhua Ma
- Xi'an Key laboratory of Textile Composites, School of Materials Science and Engineering, Xi'an Polytechnic University, Xi'an, 710048, China
| |
Collapse
|
6
|
Virat G, Maiti KK, Amal Raj RB, Gowd EB. Impact of polymer chain packing and crystallization on the emission behavior of curcumin-embedded poly(L-lactide)s. SOFT MATTER 2023; 19:6671-6682. [PMID: 37609667 DOI: 10.1039/d3sm00853c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The development of biodegradable and biocompatible fluorescent materials with tunable emission in the solid state has become increasingly relevant for smart packaging and biomedical applications. Molecular packing and conformations play a critical role in tuning the solid-state photophysical properties of fluorescent materials. In this work, tunable emission of bioactive curcumin was achieved through the manipulation of the crystallization conditions and the polymorphic form of covalently linked poly(L-lactide) in the curcumin-embedded poly(L-lactide) (curcumin-PLLA). In the melt-crystallized curcumin-PLLA, with the increase in the isothermal crystallization temperature, a bathochromic shift in the fluorescence of curcumin-PLLA was observed due to the change in the intramolecular conjugation length of curcumin. The change in the isothermal crystallization temperature of curcumin-PLLA resulted in the rotation of the terminal phenyl rings of curcumin with respect to the central keto-enol group due to the covalently linked helical PLLA chains. In addition, solvent-induced single crystals and a gel of curcumin-PLLA were prepared and the influence of the polymorphic form of PLLA on the emission behavior of curcumin-PLLA was investigated. The results suggest that the polymer chain packing, crystallization conditions, morphology, and polymorphic form could play an influential role in dictating the fluorescence properties of fluorophore-embedded polymers.
Collapse
Affiliation(s)
- G Virat
- Materials Science and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum 695 019, Kerala, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Kaustabh Kumar Maiti
- Chemical Sciences and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum 695 019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - R B Amal Raj
- Materials Science and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum 695 019, Kerala, India.
| | - E Bhoje Gowd
- Materials Science and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum 695 019, Kerala, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| |
Collapse
|
7
|
A cyclopolymer incorporating tetraphenylethene groups in its cyclic repeating units. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
8
|
Weng MT, Elsyed AFN, Yang PC, Mohamed MG, Kuo SW, Lin KS. Fluorescent and thermoresponsive tetraphenylethene-based cross-linked poly(N-isopropylacrylamide)s: Synthesis, thermal/AIE properties, and cell viability. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Wei Z, Chen D, Zhang X, Wang L, Yang W. Precise Synthesis of Structurally Diverse Aggregation-Induced Emission-Active Polyacrylates by Cu(0)-Catalyzed SET-LRP with Macromolecular Structure-Correlated Emission. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhiqiang Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dong Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xinru Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Li Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wantai Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Engineering Research Center for the Syntheses and Applications of Waterborne Polymers, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing 100029, China
| |
Collapse
|
10
|
Song J, He J, Hu J, Ma J, Jiang H, Hu S, Ye H, Xu L. A Universal Strategy for Producing Fluorescent Polymers Based on Designer Hyperbranched Polyethylene Ternary Copolymers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Jinwei Song
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Pinghu Institute of Advanced Materials, Zhejiang University of Technology, Pinghu 314200, China
| | - Jie He
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Pinghu Institute of Advanced Materials, Zhejiang University of Technology, Pinghu 314200, China
| | - Jiawei Hu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Junjie Ma
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Pinghu Institute of Advanced Materials, Zhejiang University of Technology, Pinghu 314200, China
| | - Huilei Jiang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Pinghu Institute of Advanced Materials, Zhejiang University of Technology, Pinghu 314200, China
| | - Shujie Hu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Pinghu Institute of Advanced Materials, Zhejiang University of Technology, Pinghu 314200, China
| | - Huijian Ye
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Pinghu Institute of Advanced Materials, Zhejiang University of Technology, Pinghu 314200, China
| | - Lixin Xu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Pinghu Institute of Advanced Materials, Zhejiang University of Technology, Pinghu 314200, China
| |
Collapse
|
11
|
Jiang Q, Zhao L, Du Y, Huang W, Xue X, Yang H, Jiang L, Jiang Q, Jiang B. Synthesis of thermoresponsive nonconjugated fluorescent branched poly(ether amide)s via oxa-Michael addition polymerization. Polym Chem 2022. [DOI: 10.1039/d1py01437d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Novel thermoresponsive nonconjugated fluorescent branched poly(ether amide)s with tunable LCST via t-BuP2-catalyzed oxa-Michael addition polymerization of N,N′-methylenebis(acrylamide) with triols.
Collapse
Affiliation(s)
- Qimin Jiang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu, P. R. China 213164
| | - Liang Zhao
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu, P. R. China 213164
| | - Yongzhuang Du
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu, P. R. China 213164
| | - Wenyan Huang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu, P. R. China 213164
| | - Xiaoqiang Xue
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu, P. R. China 213164
| | - Hongjun Yang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu, P. R. China 213164
| | - Li Jiang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu, P. R. China 213164
| | - Qilin Jiang
- School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, UK EH9 3FJ
| | - Bibiao Jiang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu, P. R. China 213164
- Changzhou University Huaide College, Jingjiang, Jiangsu, P. R. China 214500
| |
Collapse
|
12
|
Virat G, Gowd EB. Poly(l-lactide)s with tetraphenylethylene: role of polymer chain packing in aggregation-induced emission behavior of tetraphenylethylene. Polym Chem 2022. [DOI: 10.1039/d1py01539g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The AIE behavior of tetraphenylethylene in biocompatible poly(l-lactide)s is found to be sensitive to the polymer chain packing, polymer crystal structure, solvent, and temperature.
Collapse
Affiliation(s)
- G. Virat
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum 695 019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - E. Bhoje Gowd
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum 695 019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| |
Collapse
|
13
|
Wang X, Hadjichristidis N. Steric Hindrance Drives the Boron‐Initiated Polymerization of Dienyltriphenylarsonium Ylides to Photoluminescent C5‐Polymers. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xin Wang
- Physical Sciences and Engineering Division KAUST Catalysis Center Polymer Synthesis Laboratory King Abdullah University of Science and Technology (KAUST) Thuwal 23955 Saudi Arabia
| | - Nikos Hadjichristidis
- Physical Sciences and Engineering Division KAUST Catalysis Center Polymer Synthesis Laboratory King Abdullah University of Science and Technology (KAUST) Thuwal 23955 Saudi Arabia
| |
Collapse
|
14
|
Wang X, Hadjichristidis N. Steric Hindrance Drives the Boron-Initiated Polymerization of Dienyltriphenylarsonium Ylides to Photoluminescent C5-Polymers. Angew Chem Int Ed Engl 2021; 60:22469-22477. [PMID: 34387919 PMCID: PMC8518972 DOI: 10.1002/anie.202109190] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Indexed: 12/02/2022]
Abstract
A series of alkyl-subsituted dienyltriphenylarsonium ylides were synthesized and used as monomers in borane-initiated polymerization to obtain practically pure C5-polymers (main-chain grows by five carbon atoms at a time). The impact of triethylborane (Et3 B), tributylborane (Bu3 B), tri-sec-butylborane (s-Bu3 B), and triphenylborane (Ph3 B) initiators on C5 polymerization was studied. Based on NMR and SEC results, we have shown that all synthesized polymers have C5 units with a unique unsaturated backbone where two conjugated double bonds are separated by one methylene. The synthesized C5-polymers possess predictable molecular weights and narrow molecular weight distributions (Mn,NMR =2.8 -11.9 kg mol-1 , Ð=1.04-1.24). It has been found that increasing the steric hindrance of both the monomer and the initiator can facilitate the formation of more C5 repeating units, thus driving the polymerization to almost pure C5-polymer (up to 95.8 %). The polymerization mechanism was studied by 11 B NMR and confirmed by DFT calculations. The synthesized C5-polymers are amorphous with tunable glass-transition temperatures by adjusting the substituents of monomers, ranging from +30.1 °C to -38.4 °C. Furthermore, they possess blue photoluminescence that changes to yellow illuminating the polymers for 5 days with UV radiation of 365 nm (IIE, isomerization induced emission).
Collapse
Affiliation(s)
- Xin Wang
- Physical Sciences and Engineering DivisionKAUST Catalysis CenterPolymer Synthesis LaboratoryKing Abdullah University of Science and Technology (KAUST)Thuwal23955Saudi Arabia
| | - Nikos Hadjichristidis
- Physical Sciences and Engineering DivisionKAUST Catalysis CenterPolymer Synthesis LaboratoryKing Abdullah University of Science and Technology (KAUST)Thuwal23955Saudi Arabia
| |
Collapse
|
15
|
Liu W, Yang Q, Yang Y, Xing F, Xiao P. PhotoATRP Approach to Poly(methyl methacrylate) with Aggregation-Induced Emission. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00798] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wenli Liu
- Department of Immunobiology, College of Life Science and Technology, Jinan University 601 Huangpu West Avenue, Guangzhou 510632, China
| | - Qizhi Yang
- Department of Immunobiology, College of Life Science and Technology, Jinan University 601 Huangpu West Avenue, Guangzhou 510632, China
| | - Yili Yang
- Department of Immunobiology, College of Life Science and Technology, Jinan University 601 Huangpu West Avenue, Guangzhou 510632, China
| | - Feiyue Xing
- Department of Immunobiology, College of Life Science and Technology, Jinan University 601 Huangpu West Avenue, Guangzhou 510632, China
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou 510632, China
| | - Pu Xiao
- Research School of Chemistry, The Australian National University, Canberra ACT 2601, Australia
| |
Collapse
|
16
|
Amphiphilic copolymers in biomedical applications: Synthesis routes and property control. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:111952. [PMID: 33812580 DOI: 10.1016/j.msec.2021.111952] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 12/16/2022]
Abstract
The request of new materials, matching strict requirements to be applied in precision and patient-specific medicine, is pushing for the synthesis of more and more complex block copolymers. Amphiphilic block copolymers are emerging in the biomedical field due to their great potential in terms of stimuli responsiveness, drug loading capabilities and reversible thermal gelation. Amphiphilicity guarantees self-assembly and thermoreversibility, while grafting polymers offers the possibility of combining blocks with various properties in one single material. These features make amphiphilic block copolymers excellent candidates for fine tuning drug delivery, gene therapy and for designing injectable hydrogels for tissue engineering. This manuscript revises the main techniques developed in the last decade for the synthesis of amphiphilic block copolymers for biomedical application. Strategies for fine tuning the properties of these novel materials during synthesis are discussed. A deep knowledge of the synthesis techniques and their effect on the performance and the biocompatibility of these polymers is the first step to move them from the lab to the bench. Current results predict a bright future for these materials in paving the way towards a smarter, less invasive, while more effective, medicine.
Collapse
|
17
|
Furukawa M, Nakabayashi K, Mori H. Aggregation‐induced
multicolor luminescent nanoparticles with adaptive and fixed cores derived from brominated
tetraphenylethene‐containing
block copolymer. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20200886] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Masaki Furukawa
- Graduate School of Organic Materials Science Yamagata University Yonezawa Japan
| | | | - Hideharu Mori
- Graduate School of Organic Materials Science Yamagata University Yonezawa Japan
| |
Collapse
|
18
|
Han T, Wang X, Wang D, Tang BZ. Functional Polymer Systems with Aggregation-Induced Emission and Stimuli Responses. Top Curr Chem (Cham) 2021; 379:7. [PMID: 33428022 PMCID: PMC7797498 DOI: 10.1007/s41061-020-00321-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 12/18/2020] [Indexed: 01/31/2023]
Abstract
Functional polymer systems with stimuli responses have attracted great attention over the years due to their diverse range of applications. Such polymers are capable of altering their chemical and/or physical properties, such as chemical structures, chain conformation, solubility, shape, morphologies, and optical properties, in response to single or multiple stimuli. Among various stimuli-responsive polymers, those with aggregation-induced emission (AIE) properties possess the advantages of high sensitivity, fast response, large contrast, excellent photostability, and low background noise. The changes in fluorescence signal can be conveniently detected and monitored using portable instruments. The integration of AIE and stimuli responses into one polymer system provides a feasible and effective strategy for the development of smart polymers with high sensitivity to environmental variations. Here, we review the recent advances in the design, preparation, performance, and applications of functional synthetic polymer systems with AIE and stimuli responses. Various AIE-based polymer systems with responsiveness toward single physical or chemical stimuli as well as multiple stimuli are summarized with specific examples. The current challenges and perspectives on the future development of this research area will also be discussed at the end of this review.
Collapse
Affiliation(s)
- Ting Han
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xinnan Wang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Ben Zhong Tang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
19
|
Zuo H, Yang F, Yuan L, Zhang Y, Zhao Y. Thermo-responsive polymers with aggregation induced emission. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2020. [DOI: 10.1080/10601325.2020.1852089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Huazhen Zuo
- Superconductivity and New Energy R&D Center, Key Laboratory of Advanced Technology of Materials (Ministry of Education of China), School of Physical Science and Technology, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Feng Yang
- Superconductivity and New Energy R&D Center, Key Laboratory of Advanced Technology of Materials (Ministry of Education of China), School of Physical Science and Technology, Southwest Jiaotong University, Chengdu, Sichuan, China
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Ling Yuan
- Superconductivity and New Energy R&D Center, Key Laboratory of Advanced Technology of Materials (Ministry of Education of China), School of Physical Science and Technology, Southwest Jiaotong University, Chengdu, Sichuan, China
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Yong Zhang
- Superconductivity and New Energy R&D Center, Key Laboratory of Advanced Technology of Materials (Ministry of Education of China), School of Physical Science and Technology, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Yong Zhao
- Superconductivity and New Energy R&D Center, Key Laboratory of Advanced Technology of Materials (Ministry of Education of China), School of Physical Science and Technology, Southwest Jiaotong University, Chengdu, Sichuan, China
| |
Collapse
|
20
|
Liu P, Pirela V, Ocando C, Müller AJ, Hadjichristidis N. High trans-Selectivity in Boron-Catalyzed Polymerization of Allylic Arsonium Ylide and its Contribution to Thermal Properties of C3-Polymers. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c02066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pibo Liu
- Physical Sciences and Engineering Division, KAUST Catalysis Center, Polymer Synthesis Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | - Valentina Pirela
- POLYMAT and Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Lardizabal 3,, Donostia-San Sebastián 20018, Spain
| | - Connie Ocando
- POLYMAT and Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Lardizabal 3,, Donostia-San Sebastián 20018, Spain
| | - Alejandro J. Müller
- POLYMAT and Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Lardizabal 3,, Donostia-San Sebastián 20018, Spain
- Ikerbasque, Basque Science Foundation, Bilbao 48009, Spain
| | - Nikos Hadjichristidis
- Physical Sciences and Engineering Division, KAUST Catalysis Center, Polymer Synthesis Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| |
Collapse
|
21
|
Al‐Sulami A, Ladelta V, Hadjichristidis N. In‐chain functionalized poly(
ε
‐caprolactone): A valuable precursor towards the synthesis of 3‐miktoarm star containing hyperbranched polyethylene. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ahlam Al‐Sulami
- King Abdullah University of Science and Technology (KAUST) Physical Sciences and Engineering Division, KAUST Catalysis Center, Polymer Synthesis Laboratory Thuwal Saudi Arabia
- University of Jeddah (UJ) Department of Chemistry, College of Science Jeddah Saudi Arabia
| | - Viko Ladelta
- King Abdullah University of Science and Technology (KAUST) Physical Sciences and Engineering Division, KAUST Catalysis Center, Polymer Synthesis Laboratory Thuwal Saudi Arabia
| | - Nikos Hadjichristidis
- King Abdullah University of Science and Technology (KAUST) Physical Sciences and Engineering Division, KAUST Catalysis Center, Polymer Synthesis Laboratory Thuwal Saudi Arabia
| |
Collapse
|
22
|
Jiang Q, Du Y, Zhang Y, Zhao L, Jiang L, Huang W, Yang H, Xue X, Jiang B. pH
and thermo responsive aliphatic tertiary amine chromophore hyperbranched poly(amino ether ester)s from
oxa‐Michael
addition polymerization. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200432] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Qimin Jiang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering Changzhou University Changzhou China
| | - Yongzhuang Du
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering Changzhou University Changzhou China
| | - YuanLiang Zhang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering Changzhou University Changzhou China
| | - Liang Zhao
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering Changzhou University Changzhou China
| | - Li Jiang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering Changzhou University Changzhou China
| | - Wenyan Huang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering Changzhou University Changzhou China
| | - Hongjun Yang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering Changzhou University Changzhou China
| | - Xiaoqiang Xue
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering Changzhou University Changzhou China
| | - Bibiao Jiang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering Changzhou University Changzhou China
- Huaide College Changzhou University Jingjiang China
| |
Collapse
|
23
|
Bai L, Yan H, Bai T, Guo L, Lu T, Zhao Y, Li C. Energy-Transfer-Induced Multiexcitation and Enhanced Emission of Hyperbranched Polysiloxane. Biomacromolecules 2020; 21:3724-3735. [PMID: 32692548 DOI: 10.1021/acs.biomac.0c00823] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fluorescent hyperbranched polysiloxane (HBPSi) has attracted increasing attention due to its good biocompatibility. However, its emission mechanism remains an open question. Unfortunately, the excitation spectra of HBPSi are rarely systematically investigated and show a narrow excitation band, which hinders the emission mechanism study. Herein, we synthesized a series of novel HBPSi containing l-glutamic acid (HBPSi-GA). Surprisingly, these polymers have four excitation peaks and two emission peaks, which are caused by the energy transfer from free functional groups to heterogeneous electron delocalizations in different clusters. Meanwhile, the fluorescence and biocompatibility of HBPSi-GA are significantly improved with increasing l-glutamic acid. Furthermore, HBPSi-GA exhibits dual stimuli-responsive fluorescence to temperature and Fe3+ as well as potential application in cell imaging. This research possesses important guidance to develop multiexcitation unconventional fluorescent polymers.
Collapse
Affiliation(s)
- Lihua Bai
- Key Laboratory of Polymer Science and Technology of Shaanxi Province, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Hongxia Yan
- Key Laboratory of Polymer Science and Technology of Shaanxi Province, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Tian Bai
- Key Laboratory of Polymer Science and Technology of Shaanxi Province, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Liulong Guo
- Key Laboratory of Polymer Science and Technology of Shaanxi Province, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Tingli Lu
- Key Laboratory for Space Biosciences & Biotechnology, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China
| | - Yan Zhao
- Key Laboratory of Polymer Science and Technology of Shaanxi Province, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Chujia Li
- Queen Mary University of London Engineering School, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China
| |
Collapse
|
24
|
Ntetsikas K, Zapsas G, Bilalis P, Gnanou Y, Feng X, Thomas EL, Hadjichristidis N. Complex Star Architectures of Well-Defined Polyethylene-Based Co/Terpolymers. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00668] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Konstantinos Ntetsikas
- Physical Sciences and Engineering Division, KAUST Catalysis Center, Polymer Synthesis Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - George Zapsas
- Physical Sciences and Engineering Division, KAUST Catalysis Center, Polymer Synthesis Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Panayiotis Bilalis
- Physical Sciences and Engineering Division, KAUST Catalysis Center, Polymer Synthesis Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Yves Gnanou
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Xueyan Feng
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77030, United States
| | - Edwin L. Thomas
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77030, United States
| | - Nikos Hadjichristidis
- Physical Sciences and Engineering Division, KAUST Catalysis Center, Polymer Synthesis Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| |
Collapse
|
25
|
Nakabayashi K, Takata M, Furukawa M, Mori H. Luminescent core–shell nanoparticles with crosslinked aggregation‐induced emission core structures: Emission both in solution and solid states. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Mizuki Takata
- Graduate School of Organic Materials ScienceYamagata University Yonezawa Japan
| | - Masaki Furukawa
- Graduate School of Organic Materials ScienceYamagata University Yonezawa Japan
| | - Hideharu Mori
- Graduate School of Organic Materials ScienceYamagata University Yonezawa Japan
| |
Collapse
|
26
|
Wang G, Zhou L, Zhang P, Zhao E, Zhou L, Chen D, Sun J, Gu X, Yang W, Tang BZ. Fluorescence Self-Reporting Precipitation Polymerization Based on Aggregation-Induced Emission for Constructing Optical Nanoagents. Angew Chem Int Ed Engl 2020; 59:10122-10128. [PMID: 31828915 DOI: 10.1002/anie.201913847] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/07/2019] [Indexed: 12/30/2022]
Abstract
Precipitation polymerization is becoming increasingly popular in energy, environment and biomedicine. However, its proficient utilization highly relies on the mechanistic understanding of polymerization process. Now, a fluorescence self-reporting method based on aggregation-induced emission (AIE) is used to shed light on the mechanism of precipitation polymerization. The nucleation and growth processes during the copolymerization of a vinyl-modified AIEgen, styrene, and maleic anhydride can be sensitively monitored in real time. The phase-separation and dynamic hardening processes can be clearly discerned by tracking fluorescence changes. Moreover, polymeric fluorescent particles (PFPs) with uniform and tunable sizes can be obtained in a self-stabilized manner. These PFPs exhibit biolabeling and photosensitizing abilities and are used as superior optical nanoagents for photo-controllable immunotherapy, indicative of their great potential in biomedical applications.
Collapse
Affiliation(s)
- Guan Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing, 100029, China
| | - Liangyu Zhou
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing, 100029, China
| | - Pengfei Zhang
- Guangdong Key Laboratory of Nanomedicine, Shenzhen, Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, 518055, P. R. China
| | - Engui Zhao
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, 1st University Road, Songshan Lake District, Dongguan, 523808, China
| | - Lihua Zhou
- Guangdong Key Laboratory of Nanomedicine, Shenzhen, Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, 518055, P. R. China
| | - Dong Chen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing, 100029, China
| | - Jiangman Sun
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing, 100029, China
| | - Xinggui Gu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing, 100029, China
| | - Wantai Yang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing, 100029, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
27
|
Wang G, Zhou L, Zhang P, Zhao E, Zhou L, Chen D, Sun J, Gu X, Yang W, Tang BZ. Fluorescence Self‐Reporting Precipitation Polymerization Based on Aggregation‐Induced Emission for Constructing Optical Nanoagents. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913847] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Guan Wang
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringCollege of Materials Science and EngineeringState Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical Technology North Third Ring Road 15, Chaoyang District Beijing 100029 China
| | - Liangyu Zhou
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringCollege of Materials Science and EngineeringState Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical Technology North Third Ring Road 15, Chaoyang District Beijing 100029 China
| | - Pengfei Zhang
- Guangdong Key Laboratory of Nanomedicine, ShenzhenEngineering Laboratory of Nanomedicine and NanoformulationsCAS Key Lab for Health InformaticsShenzhen Institutes of Advanced TechnologyChinese Academy of Sciences 1068 Xueyuan Avenue Shenzhen University Town Shenzhen 518055 P. R. China
| | - Engui Zhao
- School of Chemical Engineering and Energy TechnologyDongguan University of Technology 1st University Road, Songshan Lake District Dongguan 523808 China
| | - Lihua Zhou
- Guangdong Key Laboratory of Nanomedicine, ShenzhenEngineering Laboratory of Nanomedicine and NanoformulationsCAS Key Lab for Health InformaticsShenzhen Institutes of Advanced TechnologyChinese Academy of Sciences 1068 Xueyuan Avenue Shenzhen University Town Shenzhen 518055 P. R. China
| | - Dong Chen
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringCollege of Materials Science and EngineeringState Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical Technology North Third Ring Road 15, Chaoyang District Beijing 100029 China
| | - Jiangman Sun
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringCollege of Materials Science and EngineeringState Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical Technology North Third Ring Road 15, Chaoyang District Beijing 100029 China
| | - Xinggui Gu
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringCollege of Materials Science and EngineeringState Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical Technology North Third Ring Road 15, Chaoyang District Beijing 100029 China
| | - Wantai Yang
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringCollege of Materials Science and EngineeringState Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical Technology North Third Ring Road 15, Chaoyang District Beijing 100029 China
| | - Ben Zhong Tang
- Department of ChemistryHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionInstitute for Advanced StudyThe Hong Kong University of Science and Technology Clear Water Bay Kowloon, Hong Kong China
| |
Collapse
|
28
|
Park J, Smith SJD, Wood CD, Mulet X, Seo M. Core hyper-cross-linked star polymers from block polymer micelle precursors. Polym Chem 2020. [DOI: 10.1039/d0py01225d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Hyper-cross-linking of a core of block polymer micelles produces core cross-linked polymer with a spacious hyper-cross-linked core, which is solution-processible.
Collapse
Affiliation(s)
- Jongmin Park
- Department of Chemistry
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Korea
| | - Stefan J. D. Smith
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)
- Australia
- Monash Centre for Membrane Innovation (MCMI)
- Monash University
- Australia
| | - Colin D. Wood
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)
- Australia
| | - Xavier Mulet
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)
- Australia
| | - Myungeun Seo
- Department of Chemistry
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Korea
- KAIST Institute for Nanocentury
| |
Collapse
|
29
|
Affiliation(s)
- Yu Jiang
- Physical Sciences and Engineering Division, KAUST Catalysis Center, Polymer Synthesis Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Nikos Hadjichristidis
- Physical Sciences and Engineering Division, KAUST Catalysis Center, Polymer Synthesis Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| |
Collapse
|
30
|
Hou F, Xi B, Wang X, Yang Y, Zhao H, Li W, Qin J, He Y. Self-healing hydrogel with cross-linking induced thermo-response regulated light emission property. Colloids Surf B Biointerfaces 2019; 183:110441. [PMID: 31445357 DOI: 10.1016/j.colsurfb.2019.110441] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/08/2019] [Accepted: 08/15/2019] [Indexed: 12/22/2022]
Abstract
With increasing attention paid to smart materials, self-healing hydrogels with thermo-responses have been greatly developed in the past several years. At the same time, fluorescent or light emitting polymers have been studied for use as bioimaging tools and drug delivery vehicles. In this research, thermo-responsive self-healing hydrogels with aggregation-induced emission (AIE) property were prepared from tetraphenylethylene (TPE) containing TPE-poly(N,N-dimethylacrylamide-stat-Diacetone acrylamide) [TPE-P(DMA-stat-DAA)] cross-linked by diacylhydrazide. In addition to self-healing based on reversible acylhydrazone bond, the copolymer and hydrogels showed thermo-responses. The lower critical solution temperature (LCST) of the hydrogels was regulated to body temperature. Based on the AIE property of the TPE unit, the hydrogels showed an enhanced light emitting property above the LCST, which was regulated by temperature change. The in vitro cytotoxicity experiment showed that the hydrogels are not toxic, and the DOX release rate can be enhanced by low pH values, which endowed this kind of thermo-responsive light emitting hydrogel with great potential for applications in bio-diagnosis, drug delivery, artificial organs with light sensitive detection, etc.
Collapse
Affiliation(s)
- Fangjie Hou
- Pharmaceutical College, Hebei University of Chinese Medicine, Shijiazhuang City, Hebei Province 050200, China
| | - Baozhong Xi
- Pharmaceutical College, Hebei University of Chinese Medicine, Shijiazhuang City, Hebei Province 050200, China
| | - Xuemeng Wang
- College of Chemistry and Environmental Science, Hebei University, 180 East Wusi Road, Baoding 071002, China
| | - Yan Yang
- Pharmaceutical College, Hebei University of Chinese Medicine, Shijiazhuang City, Hebei Province 050200, China
| | - Haifeng Zhao
- Pharmaceutical College, Hebei University of Chinese Medicine, Shijiazhuang City, Hebei Province 050200, China
| | - Wenjuan Li
- College of Medical, Hebei University, Baoding 071002, China
| | - Jianglei Qin
- College of Chemistry and Environmental Science, Hebei University, 180 East Wusi Road, Baoding 071002, China
| | - Yingna He
- Pharmaceutical College, Hebei University of Chinese Medicine, Shijiazhuang City, Hebei Province 050200, China; Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Shijiazhuang City, Hebei Province 050200, China.
| |
Collapse
|
31
|
Wang X, Chang L, Lang X, An H, Wang Y, Li W, Qin J. Cross-linking induced thermo-responsive self-healable hydrogels with temperature regulated light emission property. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1791-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Zhao CM, Wang KR, Wang C, He X, Li XL. Cooling-Induced NIR Emission Enhancement and Targeting Fluorescence Imaging of Biperylene Monoimide and Glycodendrimer Conjugates. ACS Macro Lett 2019; 8:381-386. [PMID: 35651141 DOI: 10.1021/acsmacrolett.9b00095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Under high concentrations, strong pressure, and low temperature, fluorophores usually exhibit the fluorescence quenching phenomenon. Of significance, the development of aggregation-induced emission (AIE) and pressure-induced emission (PIE) fluorophores has perfectly prevented fluorescence quenching under high concentrations and strong pressure. However, cooling-induced fluorescence quenching in water is still an urgent problem. In this paper, cooling-induced emission (CIE) enhancement based on a biperylene monoimide (BPMI) derivative, BPMI-18Lac, with a conjugated lactose-based glycodendrimer was developed. BPMI-18Lac, as a non-AIE molecule, exhibited the CIE phenomenon with a fluorescent intensity increasing 7-fold when the temperature decreased from 80 to -40 °C. The mechanism was due to the inhibition of the intramolecular electron interactions between the perylene monoimide moieties linked by the C-C single bond. In addition, BPMI-18Lac, as a multivalent glycodendrimer, showed selective fluorescence imaging for HepG 2 cells through the ASGP receptor on the cell surface. Importantly, this work developed a water-soluble CIE molecule for potential application below freezing temperature.
Collapse
Affiliation(s)
- Chun-Miao Zhao
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Ke-Rang Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Chong Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Xu He
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Xiao-Liu Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| |
Collapse
|
33
|
Shen J, Wang X, An H, Chang L, Wang Y, Li W, Qin J. Cross-linking induced thermoresponsive hydrogel with light emitting and self-healing property. ACTA ACUST UNITED AC 2019. [DOI: 10.1002/pola.29337] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Jiafu Shen
- College of Chemistry and Environmental Science; Hebei University; Baoding 071002 China
| | - Xuemeng Wang
- College of Chemistry and Environmental Science; Hebei University; Baoding 071002 China
| | - Heng An
- College of Chemistry and Environmental Science; Hebei University; Baoding 071002 China
| | - Limin Chang
- College of Chemistry and Environmental Science; Hebei University; Baoding 071002 China
| | - Yong Wang
- Medical College; Hebei University; Baoding 071002 China
| | - Wenjuan Li
- Medical College; Hebei University; Baoding 071002 China
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Diseases in Hebei Province; Hebei University; Baoding 071002 China
| | - Jianglei Qin
- College of Chemistry and Environmental Science; Hebei University; Baoding 071002 China
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Diseases in Hebei Province; Hebei University; Baoding 071002 China
| |
Collapse
|
34
|
Light emitting self-healable hydrogel with bio-degradability prepared form pectin and Tetraphenylethylene bearing polymer. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-018-1690-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
35
|
Zhang Z, Hadjichristidis N. Temperature and pH-Dual Responsive AIE-Active Core Crosslinked Polyethylene-Poly(methacrylic acid) Multimiktoarm Star Copolymers. ACS Macro Lett 2018; 7:886-891. [PMID: 35650764 DOI: 10.1021/acsmacrolett.8b00329] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A series of aggregation-induced emission (AIE) active core crosslinked miktoarm star copolymers, having multi polyethylene (PE) and poly(methacrylic acid) (PMAA) arms, were synthesized and their thermal/pH responsive properties were studied. The procedure involves (a) the synthesis of PE-Br by polyhomologation of dimethylsulfoxonium methylide with triethylborane as initiator, followed by oxidation-hydrolysis/esterification reactions and of poly(tert-butyl methacrylate) (PtBMA-Br) by atom transfer radical polymerization (ATRP) of tert-butyl methacrylate, (b) the synthesis of (PE)n-(PtBMA)m-P(TPE-2St) by ATRP of a double styrene-functionalized tetraphenylethene (TPE-2St) with PE-Br and PtBMA-Br macroinitiators, and (c) the hydrolysis of (PE)n-(PtBMA)m-P(TPE-2St) to afford the amphiphilic miktoarm star copolymers (PE)n-(PMMA)m-P(TPE-2St). Due to their spherical core-shell structure (temperature-responsive) and the presence of hydrophilic PMAA (pH-responsive) and TPE-2St (AIE), these miktoarm star copolymers are AIE materials with temperature/pH-dual responsivity. In addition, thanks to the coexistence of hydrophilic and hydrophobic arms, these materials promote stable water-in-oil emulsions.
Collapse
Affiliation(s)
- Zhen Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Physical Sciences and Engineering Division, KAUST Catalysis Center, Polymer Synthesis Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Nikos Hadjichristidis
- Physical Sciences and Engineering Division, KAUST Catalysis Center, Polymer Synthesis Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| |
Collapse
|
36
|
A Facile Approach towards Fluorescent Nanogels with AIE-Active Spacers. Polymers (Basel) 2018; 10:polym10070722. [PMID: 30960647 PMCID: PMC6403691 DOI: 10.3390/polym10070722] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/21/2018] [Accepted: 06/29/2018] [Indexed: 11/17/2022] Open
Abstract
A facile and efficient approach for design and synthesis of organic fluorescent nanogels has been developed by using a pre-synthesized polymeric precursor. This strategy is achieved by two key steps: (i) precise synthesis of core⁻shell star-shaped block copolymers with crosslinkable AIEgen-precursor (AIEgen: aggregation induced emission luminogen) as pending groups on the inner blocks; (ii) gelation of the inner blocks by coupling the AIEgen-precursor moieties to generate AIE-active spacers, and thus, fluorescent nanogel. By using this strategy, a series of star-shaped block copolymers with benzophenone groups pending on the inner blocks were synthesized by grafting from a hexafunctional initiator through atom transfer radical copolymerization (ATRP) of 4-benzoylphenyl methacrylate (BPMA) or 2-(4-benzoylphenoxy)ethyl methacrylate (BPOEMA) with methyl methacrylate (MMA) and tert-butyldimethylsilyl-protected 2-hydroxyethyl methacrylate (ProHEMA) followed by a sequential ATRP to grow PMMA or PProHEMA. The pendent benzophenone groups were coupled by McMurry reaction to generate tetraphenylethylene (TPE) groups which served as AIE-active spacers, affording a fluorescent nanogel. The nanogel showed strong emission not only at aggregated state but also in dilute solution due to the strongly restricted inter- and intramolecular movement of TPE moiety in the crosslinked polymeric network. The nanogel has been used as a fluorescent macromolecular additive to fabricate fluorescent film.
Collapse
|
37
|
García-González MC, Aguilar-Granda A, Zamudio-Medina A, Miranda LD, Rodríguez-Molina B. Synthesis of Structurally Diverse Emissive Molecular Rotors with Four-Component Ugi Stators. J Org Chem 2018; 83:2570-2581. [PMID: 29457731 DOI: 10.1021/acs.joc.7b02858] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The use of the multicomponent Ugi reaction to rapidly prepare a library of dumbbell-like molecular rotors is highlighted here. The synthetic strategy consisted of the atom-economic access to 15 bulky and structurally diverse iodinated stators, which were cross-coupled to the 1,4-diethynylphenylene rotator. From those experiments, up to six rotors 1a-c and 1l-n were obtained, with yields ranging from 35 to 69% per coupled C-C bond. In addition to the framework diversity, five of these compounds showed aggregate-enhanced emission properties thanks to their conjugated 1,4-bis(phenylethynyl)benzene cores, a property that rises by increasing the water fraction (fw) in their THF solutions. The results highlight the significance of the diversity-oriented synthesis of rapid access to new molecular fluorescent rotors.
Collapse
Affiliation(s)
- Ma Carmen García-González
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria , Ciudad de México 04510, Mexico
| | - Andrés Aguilar-Granda
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria , Ciudad de México 04510, Mexico
| | - Angel Zamudio-Medina
- Departamento de Ciencias Básicas, Unidad Profesional Interdisciplinaria de Biotecnología del Instituto Politécnico Nacional , Av. Acueducto s/n Barrio la Laguna Ticomán, Ciudad de México 07340, Mexico
| | - Luis D Miranda
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria , Ciudad de México 04510, Mexico
| | - Braulio Rodríguez-Molina
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria , Ciudad de México 04510, Mexico
| |
Collapse
|
38
|
Wang X, Xu K, Yao H, Chang L, Wang Y, Li W, Zhao Y, Qin J. Temperature-regulated aggregation-induced emissive self-healable hydrogels for controlled drug delivery. Polym Chem 2018. [DOI: 10.1039/c8py01064a] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Thermoresponsive copolymers TPE-[P(DMA-stat-DAA)]2 containing a tetraphenylethylene (TPE) moiety and a ketone group were synthesized.
Collapse
Affiliation(s)
- Xuemeng Wang
- College of Chemistry and Environmental Science
- Hebei University
- Baoding 071002
- China
| | - Kaiyue Xu
- Medical College
- Hebei University
- Baoding 071002
- China
| | - Haicui Yao
- College of Chemistry and Environmental Science
- Hebei University
- Baoding 071002
- China
| | - Limin Chang
- College of Chemistry and Environmental Science
- Hebei University
- Baoding 071002
- China
| | - Yong Wang
- Medical College
- Hebei University
- Baoding 071002
- China
| | - Wenjuan Li
- Medical College
- Hebei University
- Baoding 071002
- China
| | - Youliang Zhao
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| | - Jianglei Qin
- College of Chemistry and Environmental Science
- Hebei University
- Baoding 071002
- China
| |
Collapse
|
39
|
Alshumrani RA, Hadjichristidis N. Well-defined triblock copolymers of polyethylene with polycaprolactone or polystyrene using a novel difunctional polyhomologation initiator. Polym Chem 2017. [DOI: 10.1039/c7py01079f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
α,ω-Dihydroxy polyethylene, valuable precursor for the synthesis of polyethylene-based terpolymers with polar blocks, was synthesized by polyhomologation of dimethylsulfoxonium methylide with 9-thexyl-9-BBN, a novel difunctional initiator with two active and one blocked sites.
Collapse
Affiliation(s)
- Reem A. Alshumrani
- King Abdullah University of Science and Technology (KAUST)
- Physical Sciences and Engineering Division
- KAUST Catalysis Center
- Polymer Synthesis Laboratory
- Thuwal 23955
| | - Nikos Hadjichristidis
- King Abdullah University of Science and Technology (KAUST)
- Physical Sciences and Engineering Division
- KAUST Catalysis Center
- Polymer Synthesis Laboratory
- Thuwal 23955
| |
Collapse
|