1
|
Mijangos C, Martin J. Polymerization within Nanoporous Anodized Alumina Oxide Templates (AAO): A Critical Survey. Polymers (Basel) 2023; 15:polym15030525. [PMID: 36771824 PMCID: PMC9919978 DOI: 10.3390/polym15030525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/21/2023] Open
Abstract
In the last few years, the polymerization of monomers within the nanocavities of porous materials has been thoroughly studied and developed, allowing for the synthesis of polymers with tailored morphologies, chemical architectures and functionalities. This is thus a subject of paramount scientific and technological relevance, which, however, has not previously been analyzed from a general perspective. The present overview reports the state of the art on polymerization reactions in spatial confinement within porous materials, focusing on the use of anodized aluminum oxide (AAO) templates. It includes the description of the AAO templates used as nanoreactors. The polymerization reactions are categorized based on the polymerization mechanism. Amongst others, this includes electrochemical polymerization, free radical polymerization, step polymerization and atom transfer radical polymerization (ATRP). For each polymerization mechanism, a further subdivision is made based on the nature of the monomer used. Other aspects of "in situ" polymerization reactions in restricted AAO geometries include: conversion monitoring, kinetic studies, modeling and polymer characterization. In addition to the description of the polymerization process itself, the use of polymer materials derived from polymerization in AAO templates in nanotechnology applications, is also highlighted. Finally, the review is concluded with a general discussion outlining the challenges that remain in the field.
Collapse
Affiliation(s)
- Carmen Mijangos
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
- Donostia International Physics Center, DIPC, Paseo de Manuel Lardizabal 4, 20018 Donostia-San Sebastian, Spain
- POLYMAT, University of the Basque Country UPV/EHU, Avenida Tolosa 72, 20018 Donostia-San Sebastian, Spain
- Correspondence:
| | - Jaime Martin
- POLYMAT, University of the Basque Country UPV/EHU, Avenida Tolosa 72, 20018 Donostia-San Sebastian, Spain
- Grupo de Polímeros, Centro de Investigacións Tecnolóxicas (CIT), Universidade da Coruña, 15471 Ferrol, Spain
| |
Collapse
|
2
|
Binesh N, Farhadian N, Mohammadzadeh A, Karimi M. Dual‐drug delivery of sodium ceftriaxone and metronidazole by applying salt‐assisted chitosan nanoparticles: Stability, drug release, and time‐kill assay study against
Bacteroides fragilis. J Appl Polym Sci 2023. [DOI: 10.1002/app.53284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
- Nafiseh Binesh
- Chemical Engineering Department, Faculty of Engineering Ferdowsi University of Mashhad Mashhad Iran
| | - Nafiseh Farhadian
- Chemical Engineering Department, Faculty of Engineering Ferdowsi University of Mashhad Mashhad Iran
| | - Alireza Mohammadzadeh
- Microbiology Department, Faculty of Medicine Gonabad University of Medical Sciences Gonabad Iran
| | - Mohammad Karimi
- Emergency Medicine Department Birjand University of Medical Sciences Birjand Iran
| |
Collapse
|
3
|
Tertyshnaya YV, Karpova SG, Podzorova MV, Khvatov AV, Moskovskiy MN. Thermal Properties and Dynamic Characteristics of Electrospun Polylactide/Natural Rubber Fibers during Disintegration in Soil. Polymers (Basel) 2022; 14:polym14051058. [PMID: 35267881 PMCID: PMC8914975 DOI: 10.3390/polym14051058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/27/2022] [Accepted: 03/03/2022] [Indexed: 12/01/2022] Open
Abstract
In this work, PLA/NR electrospun fibers were used as substrates for growing basil. Thermal characteristics of initial samples and after 60 and 220 days of degradation were determined using differential scanning calorimetry. In the process of disintegration, the melting and glass transition temperatures in PLA/NR composites decreased, and in PLA fibers these values increased slightly. TGA analysis in an argon environment confirmed the effect of NR on the thermal degradation of PLA/NR fibers. After exposure to the soil for 220 days, the beginning of degradation shifted to the low-temperature region. The dynamic characteristics of the fibers were determined by the EPR method. A decrease in the correlation time of the probe-radical in comparison with the initial samples was shown. FTIR spectroscopy was used to analyze the chemical structure before and after degradation in soil. In PLA/NR fibrous substrates, there was a decrease in the intensity of the bands corresponding to the PLA matrix and the appearance of N-H C-N groups due to biodegradation by soil microorganisms.
Collapse
Affiliation(s)
- Yulia V. Tertyshnaya
- Department of Biological and Chemical Physics of Polymers, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Str., 119334 Moscow, Russia; (S.G.K.); (M.V.P.); (A.V.K.)
- Perspective Composite Materials and Technologies Laboratory, Plekhanov Russian University of Economics, 36 Stremyanniy, 117997 Moscow, Russia
- Federal Scientific Agroengineering Center VIM, 1st Institutskiy Proezd, 5, 109428 Moscow, Russia;
- Correspondence: ; Tel.: +7-495-939-71-86
| | - Svetlana G. Karpova
- Department of Biological and Chemical Physics of Polymers, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Str., 119334 Moscow, Russia; (S.G.K.); (M.V.P.); (A.V.K.)
| | - Maria V. Podzorova
- Department of Biological and Chemical Physics of Polymers, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Str., 119334 Moscow, Russia; (S.G.K.); (M.V.P.); (A.V.K.)
- Perspective Composite Materials and Technologies Laboratory, Plekhanov Russian University of Economics, 36 Stremyanniy, 117997 Moscow, Russia
- Federal Scientific Agroengineering Center VIM, 1st Institutskiy Proezd, 5, 109428 Moscow, Russia;
| | - Anatoliy V. Khvatov
- Department of Biological and Chemical Physics of Polymers, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Str., 119334 Moscow, Russia; (S.G.K.); (M.V.P.); (A.V.K.)
| | - Maksim N. Moskovskiy
- Federal Scientific Agroengineering Center VIM, 1st Institutskiy Proezd, 5, 109428 Moscow, Russia;
| |
Collapse
|
4
|
Machtakova M, Wirsching S, Gehring S, Landfester K, Thérien-Aubin H. Controlling the semi-permeability of protein nanocapsules influences the cellular response to macromolecular payloads. J Mater Chem B 2021; 9:8389-8398. [PMID: 34676863 DOI: 10.1039/d1tb01368h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nanocapsules are an excellent platform for the delivery of macromolecular payloads such as proteins, nucleic acids or polyprodrugs, since they can both protect the sensitive cargo and target its delivery to the desired site of action. However, the release of macromolecules from nanocapsules remains a challenge due to their restricted diffusion through the nanoshell compared to small molecule cargo. Here, we designed degradable protein nanocapsules with varying crosslinking densities of the nanoshell to control the release of model macromolecules. While the crosslinking did not influence the degradability of the capsules by natural proteases, it significantly affected the release profiles. Furthermore, the optimized protein nanocapsules were successfully used to deliver and effectively release a bioactive macromolecular vaccine adjuvant in vitro and, thus, can be used as an efficient platform for the design of potential nanovaccines.
Collapse
Affiliation(s)
| | - Sebastian Wirsching
- Children's Hospital, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Stephan Gehring
- Children's Hospital, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | | | - Héloïse Thérien-Aubin
- Max Planck Institute for Polymer Research, Mainz, Germany. .,Department of Chemistry, Memorial University of Newfoundland, St. John's, NL, Canada.
| |
Collapse
|
5
|
Olkhov AA, Mastalygina EE, Ovchinnikov VA, Monakhova TV, Vetcher AA, Iordanskii AL. Thermo-Oxidative Destruction and Biodegradation of Nanomaterials from Composites of Poly(3-hydroxybutyrate) and Chitosan. Polymers (Basel) 2021; 13:polym13203528. [PMID: 34685287 PMCID: PMC8541602 DOI: 10.3390/polym13203528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/28/2021] [Accepted: 10/07/2021] [Indexed: 12/24/2022] Open
Abstract
A complex of structure-sensitive methods of morphology analysis was applied to study film materials obtained from blends of poly(3-hydroxybutyrate) (PHB) and chitosan (CHT) by pouring from a solution, and nonwoven fibrous materials obtained by the method of electrospinning (ES). It was found that with the addition of CHT to PHB, a heterophase system with a nonequilibrium stressed structure at the interface was formed. This system, if undergone accelerated oxidation and hydrolysis, contributed to the intensification of the growth of microorganisms. On the other hand, the antimicrobial properties of CHT led to inhibition of the biodegradation process. Nonwoven nanofiber materials, since having a large specific surface area of contact with an aggressive agent, demonstrated an increased ability to be thermo-oxidative and for biological degradation in comparison with film materials.
Collapse
Affiliation(s)
- Anatoly A. Olkhov
- Scientific Laboratory “Advanced Composite Materials and Technologies”, Plekhanov Russian University of Economics, 36 Stremyanny Ln, 117997 Moscow, Russia; (A.A.O.); (E.E.M.); (V.A.O.)
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin St., 119991 Moscow, Russia;
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 4 Kosygin St. 4, 119334 Moscow, Russia;
| | - Elena E. Mastalygina
- Scientific Laboratory “Advanced Composite Materials and Technologies”, Plekhanov Russian University of Economics, 36 Stremyanny Ln, 117997 Moscow, Russia; (A.A.O.); (E.E.M.); (V.A.O.)
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin St., 119991 Moscow, Russia;
| | - Vasily A. Ovchinnikov
- Scientific Laboratory “Advanced Composite Materials and Technologies”, Plekhanov Russian University of Economics, 36 Stremyanny Ln, 117997 Moscow, Russia; (A.A.O.); (E.E.M.); (V.A.O.)
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 4 Kosygin St. 4, 119334 Moscow, Russia;
| | - Tatiana V. Monakhova
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin St., 119991 Moscow, Russia;
| | - Alexandre A. Vetcher
- Institute of Biochemical Technology and Nanotechnology (IBTN), Peoples’ Friendship University of Russia (RUDN), 6 Miklukho-Maklaya St., 117198 Moscow, Russia
- Complementary and Integrative Health Clinic of Dr. Shishonin, 5 Yasnogorskaya St., 117588 Moscow, Russia
- Correspondence:
| | - Alexey L. Iordanskii
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 4 Kosygin St. 4, 119334 Moscow, Russia;
| |
Collapse
|
6
|
Phoungtawee P, Crespy D. Shining a new light on the structure of polyurea/polyurethane materials. Polym Chem 2021. [DOI: 10.1039/d1py00649e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polyurea and polyurethane are widely used in coatings, foams, and micro- and nanocapsules. Investigations of the polymers structure indicate that a significant amount of hydrolyzed isocyanate is incorporated in the macromolecular backbone.
Collapse
Affiliation(s)
- Piangtawan Phoungtawee
- Department of Materials Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology (VISTEC)
- Rayong 21210
- Thailand
| | - Daniel Crespy
- Department of Materials Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology (VISTEC)
- Rayong 21210
- Thailand
| |
Collapse
|
7
|
Safari M, Maiz J, Shi G, Juanes D, Liu G, Wang D, Mijangos C, Alegría Á, Müller AJ. How Confinement Affects the Nucleation, Crystallization, and Dielectric Relaxation of Poly(butylene succinate) and Poly(butylene adipate) Infiltrated within Nanoporous Alumina Templates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:15168-15179. [PMID: 31621336 DOI: 10.1021/acs.langmuir.9b02215] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This work describes the successful melt infiltration of poly(butylene succinate) (PBS) and poly(butylene adipate) (PBA) within 70 nm diameter anodic aluminum oxide (AAO) templates. The infiltrated samples were characterized by SEM, Raman, and FTIR spectroscopy. The crystallization behaviors and crystalline structures of both polymers, bulk and confined, were analyzed by differential scanning calorimetry (DSC) and grazing incidence wide angle X-ray scattering (GIWAXS). DSC revealed that a change in the nucleation process occurred from heterogeneous nucleation for bulk samples to homogeneous nucleation for infiltrated PBA and to surface-induced nucleation for infiltrated PBS. GIWAXS results indicate that PBS nanofibers crystallize in the α-phase, as well as their bulk samples. However, PBA nanofibers crystallize just in the β-phase, whereas PBA bulk samples crystallize in a mixture of α- and β-phases. The crystal orientation within the pores was determined, and differences between PBS and PBA were also found. Finally, broadband dielectric spectroscopy was applied to study the segmental dynamics for bulk and infiltrated samples. The glass temperature was found to significantly decrease in the PBS case upon infiltration, while that of PBA remained unchanged. These differences were correlated with the higher affinity of PBS to the AAO walls than PBA, in accordance with their nucleation behavior (surface-induced versus homogeneous nucleation, respectively).
Collapse
Affiliation(s)
- Maryam Safari
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry , University of the Basque Country UPV/EHU , Paseo Manuel de Lardizábal, 3 , 20018 Donostia-San Sebastián , Spain
| | - Jon Maiz
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry , University of the Basque Country UPV/EHU , Paseo Manuel de Lardizábal, 3 , 20018 Donostia-San Sebastián , Spain
| | - Guangyu Shi
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, the Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Diana Juanes
- Instituto de Ciencia y Tecnología de Polímeros , Consejo Superior de Investigaciones Científicas, ICTP-CSIC , Juan de la Cierva 3 , Madrid 28006 , Spain
| | - Guoming Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, the Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Dujin Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, the Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Carmen Mijangos
- Instituto de Ciencia y Tecnología de Polímeros , Consejo Superior de Investigaciones Científicas, ICTP-CSIC , Juan de la Cierva 3 , Madrid 28006 , Spain
- Departamento de Física de Materiales , University of the Basque Country UPV/EHU and Centro de Física de Materiales (CFM) (CSIC-UPV/EHU) - Materials Physics Center (MPC) , Paseo Manuel de Lardizabal 5 , 20018 San Sebastián , Spain
| | - Ángel Alegría
- Departamento de Física de Materiales , University of the Basque Country UPV/EHU and Centro de Física de Materiales (CFM) (CSIC-UPV/EHU) - Materials Physics Center (MPC) , Paseo Manuel de Lardizabal 5 , 20018 San Sebastián , Spain
| | - Alejandro J Müller
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry , University of the Basque Country UPV/EHU , Paseo Manuel de Lardizábal, 3 , 20018 Donostia-San Sebastián , Spain
- IKERBASQUE, Basque Foundation for Science , 48013 Bilbao , Spain
| |
Collapse
|
8
|
Niyom Y, Phakkeeree T, Flood A, Crespy D. Synergy between polymer crystallinity and nanoparticles size for payloads release. J Colloid Interface Sci 2019; 550:139-146. [DOI: 10.1016/j.jcis.2019.04.085] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 11/29/2022]
|
9
|
Lv D, Sheng L, Wan J, Dong J, Ouyang H, Jiao H, Liu J. Bioinspired hierarchically hairy particles for robust superhydrophobic coatings via a droplet dynamic template method. Polym Chem 2019. [DOI: 10.1039/c8py01564c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Bioinspired hierarchically hairy particles are prepared by using initiator droplets as dynamic templates to achieve a robust superhydrophobic coating.
Collapse
Affiliation(s)
- Dongmei Lv
- College of Animal Science
- Jilin University
- Changchun
- China
| | - Li Sheng
- Petrochemical Research Institute
- PetroChina
- Beijing
- China
| | - Jiping Wan
- Laboratory of Polymer Physics and Chemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Jianwei Dong
- College of Animal Science
- Jilin University
- Changchun
- China
| | | | - Huping Jiao
- College of Animal Science
- Jilin University
- Changchun
- China
| | - Junqiu Liu
- College of Animal Science
- Jilin University
- Changchun
- China
- State Key Laboratory of Supramolecular Structure and Materials
| |
Collapse
|
10
|
Deng Y, Ling J, Li MH. Physical stimuli-responsive liposomes and polymersomes as drug delivery vehicles based on phase transitions in the membrane. NANOSCALE 2018; 10:6781-6800. [PMID: 29616274 DOI: 10.1039/c8nr00923f] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This paper reviews liposomes with crystalline phase and polymersomes exhibiting crystalline and thermotropic liquid crystalline phases in the membrane. Intriguing morphologies of vesicles are described, including spherical, ellipsoidal and faceted vesicles, produced by a large variety of amphiphilic molecules and polymers with nematic phase, smectic phase or crystalline phase. It is highlighted how the phase transitions and the phase grain boundaries could be used ingeniously to destabilize the vesicular structure and to achieve cargo-release under the action of external stimulation. These liposomes and polymersomes are responsive to physical stimuli, such as temperature variation, shear stress, light illumination, and magnetic and electric fields. These stimuli-responsive properties make them promising candidates as new smart drug delivery systems.
Collapse
Affiliation(s)
- Yangwei Deng
- Chimie ParisTech, PSL University Paris, CNRS, Institut de Recherche de Chimie Paris, UMR8247, 11 rue Pierre et Marie Curie, 75005 Paris, France.
| | | | | |
Collapse
|
11
|
Schlegel I, Renz P, Simon J, Lieberwirth I, Pektor S, Bausbacher N, Miederer M, Mailänder V, Muñoz-Espí R, Crespy D, Landfester K. Highly Loaded Semipermeable Nanocapsules for Magnetic Resonance Imaging. Macromol Biosci 2018; 18:e1700387. [DOI: 10.1002/mabi.201700387] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 12/30/2017] [Indexed: 01/21/2023]
Affiliation(s)
- Isabel Schlegel
- Max Planck Institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany
| | - Patricia Renz
- Max Planck Institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany
| | - Johanna Simon
- Max Planck Institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany
| | - Ingo Lieberwirth
- Max Planck Institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany
| | - Stefanie Pektor
- Department of Nuclear Medicine; University Medical Center Mainz; Langenbeckstraße 1 55131 Mainz Germany
| | - Nicole Bausbacher
- Department of Nuclear Medicine; University Medical Center Mainz; Langenbeckstraße 1 55131 Mainz Germany
| | - Matthias Miederer
- Department of Nuclear Medicine; University Medical Center Mainz; Langenbeckstraße 1 55131 Mainz Germany
| | - Volker Mailänder
- Max Planck Institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany
- Dermatology Clinic; University Medical Center Mainz; Langenbeckstraße 1 55131 Mainz Germany
| | - Rafael Muñoz-Espí
- Max Planck Institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany
- Institute of Materials Science (ICMUV); Universitat de València; C/ Catedràtic José Beltrán 2 46980 Paterna València Spain
| | - Daniel Crespy
- Max Planck Institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany
- Department of Materials Science and Engineering; School of Molecular Science and Engineering; Vidyasirimedhi Institute of Science and Technology (VISTEC); Rayong 21210 Thailand
| | | |
Collapse
|
12
|
Castro AGB, Löwik DPM, van Steenbergen MJ, Jansen JA, van den Beucken JJJP, Yang F. Incorporation of simvastatin in PLLA membranes for guided bone regeneration: effect of thermal treatment on simvastatin release. RSC Adv 2018; 8:28546-28554. [PMID: 35542464 PMCID: PMC9084343 DOI: 10.1039/c8ra04397c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/05/2018] [Indexed: 01/09/2023] Open
Abstract
Electrospun membranes based on biodegradable polymers are promising materials to be used for guided bone regeneration (GBR) therapy. The incorporation of osteostimulatory compounds can improve the biofunctionality of those membranes, making them active players in bone regeneration. Simvastatin has been shown to promote osteogenic differentiation both in vitro and in vivo. However, in most of these systems, the drug was quickly released, not matching the pace of bone regeneration. The aim of this study was to develop poly(l-lactic acid) (PLLA) membranes containing simvastatin (SV) that have a prolonged drug release rate, compatible with GBR applications. To this end, SV was mixed with PLLA and electrospun. The membranes were subjected to a thermal treatment in order to increase the crystallinity of PLLA. Morphological, structural and chemical properties of the electrospun membranes were characterized. The effect of the thermal treatment on the release profile of SV was evaluated by near physiological release experiments at 37 °C. The osteostimulatory potential was determined by in vitro culture of the membranes with rat bone marrow stromal cells (rBMSCs). The results confirmed that the thermal treatment led to an increase in polymer crystallinity and a more sustained release of SV. In vitro assays demonstrate cellular proliferation over time for all the membranes and a significant increase in osteogenic differentiation for the membranes containing SV subjected to thermal treatment. Thermal treatment resulted in a sustained release of simvastatin and a positive response from rBMSCs.![]()
Collapse
Affiliation(s)
| | - Dennis W. P. M. Löwik
- Bio-organic Chemistry
- Institute for Molecules and Materials
- Radboud University Nijmegen
- Nijmegen
- The Netherlands
| | - Mies J. van Steenbergen
- Utrecht Institute for Pharmaceutical Sciences (UIPS)
- Utrecht University
- 3584 CG Utrecht
- The Netherlands
| | - John A. Jansen
- Department of Biomaterials
- Radboudumc
- Nijmegen
- The Netherlands
| | | | - Fang Yang
- Department of Biomaterials
- Radboudumc
- Nijmegen
- The Netherlands
| |
Collapse
|
13
|
Staub MC, Li CY. Confined and Directed Polymer Crystallization at Curved Liquid/Liquid Interface. MACROMOL CHEM PHYS 2017. [DOI: 10.1002/macp.201700455] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mark C. Staub
- Department of Materials Science and Engineering Drexel University College of Engineering 3141 Chestnut Street Philadelphia PA 19104 USA
| | - Christopher Y. Li
- Department of Materials Science and Engineering Drexel University College of Engineering 3141 Chestnut Street Philadelphia PA 19104 USA
| |
Collapse
|