1
|
Duan M, Xu Y, Fang S, Zhang C, Li J, Deng M, Hao Y. Preparation of Janus Polymer Nanosheets and Corresponding Oil Displacement Properties at Ultralow Concentration. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:6298-6310. [PMID: 40025730 DOI: 10.1021/acs.langmuir.5c00034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Conventional methods for preparing Janus nanosheets, including graphene oxide-based nanosheets, molybdenum disulfide-based nanosheets, and silicon dioxide-based nanosheets, as well as polymer-based nanosheets, involve complicated procedures, poor repeatability, and difficulty in imparting Janus properties, which hinder further application. Here, the present authors develop a facile modified suspension polymerization method for preparing Janus polymer nanosheets, in which deep eutectic solvents completely replace water as the continuous phase. Janus polymer nanosheets can be fabricated using common hydrophobic and hydrophilic monomers, such as styrene (St), butyl acrylate (BA), acrylamide (AM), 2-acrylamido-2-methylpropanesulfonic acid (AMPS), acryloyloxyethyl trimethylammonium chloride (DAC), and maleic anhydride (MAH). Additionally, the thickness of the Janus polymer nanosheets can be precisely controlled in a range from 40 to 100 nm by adjusting the volume ratio of higher alkanes to the hydrophobic monomer. Subsequently, the emulsification properties of polystyrene-based nanosheets were evaluated, showing better performance at concentrations ranging from 1 to 50 mg/L compared with higher concentrations. This observation aligns with the corresponding reduction in interfacial tension and changes in the moduli of the interfacial film. Moreover, the adsorption of the nanosheets onto the core alters its wettability, changing it from a water-wettable state to an oil-wettable state. Consequently, a series of core flooding tests reveal that the poly(St-co-AM), poly(St-co-MAH), and poly(St-co-AMPS) nanosheets enhance oil recovery and reduce injection pressure at ultralow concentrations (50 mg/L).
Collapse
Affiliation(s)
- Ming Duan
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, 8 Xindu Avenue, Xindu District, Chengdu, Sichuan 610500, PR China
| | - Yinan Xu
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, 8 Xindu Avenue, Xindu District, Chengdu, Sichuan 610500, PR China
| | - Shenwen Fang
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, 8 Xindu Avenue, Xindu District, Chengdu, Sichuan 610500, PR China
| | - Chunpeng Zhang
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, 8 Xindu Avenue, Xindu District, Chengdu, Sichuan 610500, PR China
| | - Jiaxue Li
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, 8 Xindu Avenue, Xindu District, Chengdu, Sichuan 610500, PR China
| | - Min Deng
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, 8 Xindu Avenue, Xindu District, Chengdu, Sichuan 610500, PR China
| | - Ye Hao
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, 8 Xindu Avenue, Xindu District, Chengdu, Sichuan 610500, PR China
| |
Collapse
|
2
|
Shen H, Yang Z, Xiong Y, Cao Q, Xu K, Lin M, Zhang J, Dong Z. An organic-based amphiphilic Janus polymer nanosheet: Synthesis, properties, and microscopic dispersion interpretations. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
3
|
Chen Y, Zhang L, Wang J, Sheng H, Wang K, Wang J, He S, Yu L, Lu G. Preparation of Janus nanosheets composed of gold/palladium nanoparticles and reduced graphene oxide for highly efficient emulsion catalysis. J Colloid Interface Sci 2022; 625:59-69. [DOI: 10.1016/j.jcis.2022.05.163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/23/2022] [Accepted: 05/28/2022] [Indexed: 10/31/2022]
|
4
|
Zhu Z, Tsai CY, Zhao M, Baker J, Sue HJ. PMMA Nanocomposites Based on PMMA-Grafted α-Zirconium Phosphate Nanoplatelets. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02337] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Zewen Zhu
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843-3003, United States
| | - Chia-Ying Tsai
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843-3003, United States
| | - Mingzhen Zhao
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843-3003, United States
| | - Joseph Baker
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843-3003, United States
| | - Hung-Jue Sue
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843-3003, United States
| |
Collapse
|
5
|
Cui D, Shi B, Xia Z, Zhu W, Lü C. Construction of polymer brush-decorated amphiphilic Janus graphene oxide nanosheets via a Pickering emulsion template for catalytic applications. NEW J CHEM 2022. [DOI: 10.1039/d2nj03874a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
2D amphiphilic Janus GO nanocatalysts were prepared using Pickering emulsions and grafted polymer brushes, with excellent performance in homogeneous and interfacial catalysis.
Collapse
Affiliation(s)
- Donghui Cui
- Institute of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Bingfeng Shi
- Institute of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Zhinan Xia
- Institute of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Wenjing Zhu
- Institute of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Changli Lü
- Institute of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| |
Collapse
|
6
|
Facile asymmetric modification of graphene nanosheets using κ-carrageenan as a green template. J Colloid Interface Sci 2021; 607:1131-1141. [PMID: 34571300 DOI: 10.1016/j.jcis.2021.09.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 11/22/2022]
Abstract
The synthesis of Janus nanosheets using κ-carrageenan (κ-Ca) as a green template endows a greener and more straightforward method compared to traditional approaches of using wax template. We hypothesize that the hydrogen bonding interaction between κ-Ca and graphene oxide (GO) allows partial masking of GO's single facet, paving the way for the asymmetric modification of the exposed surface. GO is first encapsulated within the porous hydrogel matrix formed by κ-Ca to isolate one of the facets. The exposed surface was then selectively hydrophobized to produce an amphiphilic asymmetrically modified graphene oxide (AMGO). The properties of AMGO synthesized under different κ-Ca/GO ratios were studied. The κ-Ca/GO interactions and the properties of GO and AMGO were investigated and characterized. AMGO was successfully produced with a yield of 90.37 % under optimized synthesis conditions. The separation of κ-Ca and AMGO was conducted without organic solvents, and the κ-Ca could be subsequently recovered. Furthermore, the porous hydrogel matrix formed by κ-Ca and GO exhibited excellent shape-retaining properties with high thermal tolerance of up to 50 °C. Given these benefits, this newly developed method endows sustainability and open the possibility of formulating more flexible material synthesis protocols.
Collapse
|
7
|
Chen Y, Liang Y, Wang L, Guan M, Zhu Y, Yue X, Huang X, Lu G. Preparation and applications of freestanding Janus nanosheets. NANOSCALE 2021; 13:15151-15176. [PMID: 34486634 DOI: 10.1039/d1nr04284j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In the family of Janus nanomaterials, Janus nanosheets possess not only the advantages of Janus nanomaterials, but also the advantages of two-dimensional nanosheets, endowing them with many extraordinary properties. Therefore, Janus nanosheets have great potential in the fields of interfacial engineering, catalysis, and molecular recognition. This review summarizes and discusses the recent advances in both the preparation and applications of freestanding Janus nanosheets. After a short introduction to different types of Janus nanosheets, a variety of methods for preparing freestanding Janus nanosheets are introduced, including the surface reaction, interface reaction, emulsion reaction, self-assembly, and stripping of non-Janus nanosheets, as well as selective grafting of existing Janus nanosheets. Then, the wide applications of Janus nanosheets in the fields of emulsification, catalysis, polymer reinforcement, nanomotors, and molecular recognition are summarized in detail. Finally, a discussion on the remaining challenges and future perspectives in this field is included. This review will not only deepen the understanding of Janus nanosheets, but also benefit the designs and fabrications of extraordinary and multi-functional Janus nanosheets.
Collapse
Affiliation(s)
- Yaqi Chen
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Yan Liang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Li Wang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Mengdan Guan
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Yameng Zhu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Xiaoping Yue
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Xiao Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Gang Lu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
- National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
8
|
Sheng W, Li W, Yu B, Li B, Jordan R, Jia X, Zhou F. Mussel‐Inspired Two‐Dimensional Freestanding Alkyl‐Polydopamine Janus Nanosheets. Angew Chem Int Ed Engl 2019; 58:12018-12022. [DOI: 10.1002/anie.201903527] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/12/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Wenbo Sheng
- State Key Laboratory of Solid LubricationLanzhou Institute of Chemical PhysicsChinese Academy of Sciences Tianshui middle road 18 Lanzhou 730000 China
- Chair of Macromolecular ChemistryFaculty of Chemistry and Food ChemistrySchool of ScienceTechnische Universität Dresden Mommsenstraße 4 01069 Dresden Germany
- School of Chemistry and Chemical EngineeringShihezi University 832003 Shihezi China
| | - Wei Li
- Chair of Macromolecular ChemistryFaculty of Chemistry and Food ChemistrySchool of ScienceTechnische Universität Dresden Mommsenstraße 4 01069 Dresden Germany
- School of Chemistry and Chemical EngineeringShihezi University 832003 Shihezi China
| | - Bo Yu
- State Key Laboratory of Solid LubricationLanzhou Institute of Chemical PhysicsChinese Academy of Sciences Tianshui middle road 18 Lanzhou 730000 China
| | - Bin Li
- State Key Laboratory of Solid LubricationLanzhou Institute of Chemical PhysicsChinese Academy of Sciences Tianshui middle road 18 Lanzhou 730000 China
- Current address: Physik Department, TUM—Technische Universität München James-Franck-Straße 1 85748 Garching Germany
| | - Rainer Jordan
- Chair of Macromolecular ChemistryFaculty of Chemistry and Food ChemistrySchool of ScienceTechnische Universität Dresden Mommsenstraße 4 01069 Dresden Germany
| | - Xin Jia
- School of Chemistry and Chemical EngineeringShihezi University 832003 Shihezi China
| | - Feng Zhou
- State Key Laboratory of Solid LubricationLanzhou Institute of Chemical PhysicsChinese Academy of Sciences Tianshui middle road 18 Lanzhou 730000 China
| |
Collapse
|
9
|
Sheng W, Li W, Yu B, Li B, Jordan R, Jia X, Zhou F. Mussel‐Inspired Two‐Dimensional Freestanding Alkyl‐Polydopamine Janus Nanosheets. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Wenbo Sheng
- State Key Laboratory of Solid LubricationLanzhou Institute of Chemical PhysicsChinese Academy of Sciences Tianshui middle road 18 Lanzhou 730000 China
- Chair of Macromolecular ChemistryFaculty of Chemistry and Food ChemistrySchool of ScienceTechnische Universität Dresden Mommsenstraße 4 01069 Dresden Germany
- School of Chemistry and Chemical EngineeringShihezi University 832003 Shihezi China
| | - Wei Li
- Chair of Macromolecular ChemistryFaculty of Chemistry and Food ChemistrySchool of ScienceTechnische Universität Dresden Mommsenstraße 4 01069 Dresden Germany
- School of Chemistry and Chemical EngineeringShihezi University 832003 Shihezi China
| | - Bo Yu
- State Key Laboratory of Solid LubricationLanzhou Institute of Chemical PhysicsChinese Academy of Sciences Tianshui middle road 18 Lanzhou 730000 China
| | - Bin Li
- State Key Laboratory of Solid LubricationLanzhou Institute of Chemical PhysicsChinese Academy of Sciences Tianshui middle road 18 Lanzhou 730000 China
- Current address: Physik Department, TUM—Technische Universität München James-Franck-Straße 1 85748 Garching Germany
| | - Rainer Jordan
- Chair of Macromolecular ChemistryFaculty of Chemistry and Food ChemistrySchool of ScienceTechnische Universität Dresden Mommsenstraße 4 01069 Dresden Germany
| | - Xin Jia
- School of Chemistry and Chemical EngineeringShihezi University 832003 Shihezi China
| | - Feng Zhou
- State Key Laboratory of Solid LubricationLanzhou Institute of Chemical PhysicsChinese Academy of Sciences Tianshui middle road 18 Lanzhou 730000 China
| |
Collapse
|
10
|
|
11
|
Zhang X, Gong C, Akakuru OU, Su Z, Wu A, Wei G. The design and biomedical applications of self-assembled two-dimensional organic biomaterials. Chem Soc Rev 2019; 48:5564-5595. [DOI: 10.1039/c8cs01003j] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Self-assembling 2D organic biomaterials exhibit versatile abilities for structural and functional tailoring, as well as high potential for biomedical applications.
Collapse
Affiliation(s)
- Xiaoyuan Zhang
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- China
- Faculty of Physics and Astronomy
- University of Jena
| | - Coucong Gong
- Faculty of Production Engineering
- University of Bremen
- Bremen
- Germany
| | - Ozioma Udochukwu Akakuru
- Cixi Institute of Biomedical Engineering
- CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo
| | - Zhiqiang Su
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- China
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering
- CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo
| | - Gang Wei
- Faculty of Production Engineering
- University of Bremen
- Bremen
- Germany
- Cixi Institute of Biomedical Engineering
| |
Collapse
|
12
|
Nie H, Liang X, He A. Enthalpy-Enhanced Janus Nanosheets for Trapping Nonequilibrium Morphology of Immiscible Polymer Blends. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00039] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Huarong Nie
- Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization, Key Laboratory of Rubber-Plastics (Ministry of Education), School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Xincheng Liang
- Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization, Key Laboratory of Rubber-Plastics (Ministry of Education), School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Aihua He
- Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization, Key Laboratory of Rubber-Plastics (Ministry of Education), School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| |
Collapse
|