1
|
Eldridge BK, Baker DTA, Wang Y. PolyCrit: An Online Collaborative Platform for Polymer Characterization. J Chromatogr A 2025; 1748:465821. [PMID: 40073641 DOI: 10.1016/j.chroma.2025.465821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/23/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025]
Abstract
Polymer liquid chromatography at critical conditions (LCCC) is a chromatographic separation condition achieved by carefully balancing the interaction of a polymer with stationary and mobile phases to make the elution time of a polymer in chromatography independent of its molecular weight. By removing the dependence of elution time on polymer molecular weight, the LCCC then allows separation of polymer samples on the basis of secondary differences, such as topology, branching, and end-group functionality, that are otherwise difficult to resolve. Despite its potential, LCCC remains under-employed due to the complexity of its optimization and the scattered nature of existing data. To address these challenges, we developed PolyCrit, a database that organizes 428 critical chromatography conditions (characterized by 33 parameters) into a searchable and accessible online platform. PolyCrit centralizes decades of literature, providing detailed information on polymers, solvents, stationary phases, and chromatographic parameters. It features a quality scoring system to ensure data reliability and supports contributions from the research community through a validation process. By curating experimental critical conditions, PolyCrit reduces the need for extensive literature searches to utilize the powerful chromatographic technique. Additionally, PolyCrit invites current researchers to contribute to the database by submitting their own work. It can be found at https://lccc.ywangcomp.org.
Collapse
Affiliation(s)
| | - Dillon T A Baker
- Department of Chemistry, University of Memphis, Memphis, TN, 38152, USA.
| | - Yongmei Wang
- Department of Chemistry, University of Memphis, Memphis, TN, 38152, USA.
| |
Collapse
|
2
|
Blovský T, Šindelka K, Limpouchová Z, Procházka K. Self-Assembly of Symmetric Copolymers in Slits with Inert and Attractive Walls. Polymers (Basel) 2023; 15:4458. [PMID: 38006182 PMCID: PMC10675682 DOI: 10.3390/polym15224458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/01/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Although the behavior of the confined semi-dilute solutions of self-assembling copolymers represents an important topic of basic and applied research, it has eluded the interest of scientists. Extensive series of dissipative particle dynamics simulations have been performed on semi-dilute solutions of A5B5 chains in a selective solvent for A in slits using a DL-MESO simulation package. Simulations of corresponding bulk systems were performed for comparison. This study shows that the associates in the semi-dilute bulk solutions are partly structurally organized. Mild steric constraints in slits with non-attractive walls hardly affect the size of the associates, but they promote their structural arrangement in layers parallel to the slit walls. Attractive walls noticeably affect the association process. In slits with mildly attractive walls, the adsorption competes with the association process. At elevated concentrations, the associates start to form in wide slits when the walls are sparsely covered by separated associates, and the association process prevents the full coverage of the surface. In slits with strongly attractive walls, adsorption is the dominant behavior. The associates form in wide slits at elevated concentrations only after the walls are completely and continuously covered by the adsorbed chains.
Collapse
Affiliation(s)
- Tomáš Blovský
- The Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 128 40 Prague, Czech Republic;
| | - Karel Šindelka
- Department of Molecular and Mesoscopic Modelling, Institute of Chemical Process Fundamentals, Czech Academy of Sciences, Rozvojová 135, 165 02 Prague, Czech Republic;
| | - Zuzana Limpouchová
- The Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 128 40 Prague, Czech Republic;
| | - Karel Procházka
- The Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 128 40 Prague, Czech Republic;
| |
Collapse
|
3
|
Modeling the Phase Equilibria of Associating Polymers in Porous Media with Respect to Chromatographic Applications. Polymers (Basel) 2022; 14:polym14153182. [PMID: 35956697 PMCID: PMC9370872 DOI: 10.3390/polym14153182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/31/2022] [Accepted: 07/31/2022] [Indexed: 11/28/2022] Open
Abstract
Associating copolymers self-assemble during their passage through a liquid chromatography (LC) column, and the elution differs from that of common non-associating polymers. This computational study aims at elucidating the mechanism of their unique and intricate chromatographic behavior. We focused on amphiphilic diblock copolymers in selective solvents, performed the Monte Carlo (MC) simulations of their partitioning between a bulk solvent (mobile phase) and a cylindrical pore (stationary phase), and investigated the concentration dependences of the partition coefficient and of other functions describing the phase behavior. The observed abruptly changing concentration dependences of the effective partition coefficient demonstrate the significant impact of the association of copolymers with their partitioning between the two phases. The performed simulations reveal the intricate interplay of the entropy-driven and the enthalpy-driven processes, elucidate at the molecular level how the self-assembly affects the chromatographic behavior, and provide useful hints for the analysis of experimental elution curves of associating polymers.
Collapse
|
4
|
Procházka K, Limpouchová Z, Štěpánek M, Šindelka K, Lísal M. DPD Modelling of the Self- and Co-Assembly of Polymers and Polyelectrolytes in Aqueous Media: Impact on Polymer Science. Polymers (Basel) 2022; 14:404. [PMID: 35160394 PMCID: PMC8838752 DOI: 10.3390/polym14030404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/04/2023] Open
Abstract
This review article is addressed to a broad community of polymer scientists. We outline and analyse the fundamentals of the dissipative particle dynamics (DPD) simulation method from the point of view of polymer physics and review the articles on polymer systems published in approximately the last two decades, focusing on their impact on macromolecular science. Special attention is devoted to polymer and polyelectrolyte self- and co-assembly and self-organisation and to the problems connected with the implementation of explicit electrostatics in DPD numerical machinery. Critical analysis of the results of a number of successful DPD studies of complex polymer systems published recently documents the importance and suitability of this coarse-grained method for studying polymer systems.
Collapse
Affiliation(s)
- Karel Procházka
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague, Czech Republic; (Z.L.); (M.Š.)
| | - Zuzana Limpouchová
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague, Czech Republic; (Z.L.); (M.Š.)
| | - Miroslav Štěpánek
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague, Czech Republic; (Z.L.); (M.Š.)
| | - Karel Šindelka
- Department of Molecular and Mesoscopic Modelling, Institute of Chemical Process Fundamentals, Czech Academy of Sciences, Rozvojová 135, 165 02 Prague, Czech Republic; (K.Š.); (M.L.)
| | - Martin Lísal
- Department of Molecular and Mesoscopic Modelling, Institute of Chemical Process Fundamentals, Czech Academy of Sciences, Rozvojová 135, 165 02 Prague, Czech Republic; (K.Š.); (M.L.)
- Department of Physics, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, Pasteurova 3632, 400 96 Ústí n. Labem, Czech Republic
| |
Collapse
|
5
|
Wang X, Limpouchová Z, Procházka K, Liu Y, Min Y. Phase equilibria and conformational behavior of dendrimers in porous media: Towards chromatographic analysis of dendrimers. J Colloid Interface Sci 2021; 608:830-839. [PMID: 34689112 DOI: 10.1016/j.jcis.2021.09.177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/16/2021] [Accepted: 09/27/2021] [Indexed: 02/08/2023]
Abstract
HYPOTHESIS The intricate entropy-enthalpy interplay of dendrimers confined in pores affects their conformation and retention in the porous stationary phase. This work aims at providing important insights into its impacts on partitioning and chromatographic separation in both size-exclusion chromatography (SEC) and interaction chromatography (IC) regimes. SIMULATIONS Using Monte Carlo (MC) simulations, we investigated the bulk-pore phase equilibria and the conformational behavior of flexible dendrimers differing in generation, in spacer length and in fraction of modified terminal groups interacting differently with pore walls than the majority building units. FINDINGS With increasing interaction strength, a distinct transition from a roughly spherical shape caused by simultaneous interactions with two walls to an ellipsoidal (or even disklike) conformation tenaciously adhering to only one wall was observed for moderately confined dendrimers. The strongly deformed dendrimers subjected to severe confinement gain high energy and the samples differing in the degree of modification become chromatographically discernable thanks to large energy differences. Consequently, our results suggest that the column fillings with fairly narrow pores which are ineffective in SEC, are highly efficient separation media for dendrimer studies by IC above the critical adsorption point (CAP). Overall, our simulations reveal useful information for advancing and optimizing experimental liquid chromatography studies of dendrimers.
Collapse
Affiliation(s)
- Xiu Wang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, Guangdong, China.
| | - Zuzana Limpouchová
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, Prague 2 128 43, Czech Republic.
| | - Karel Procházka
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, Prague 2 128 43, Czech Republic.
| | - Yidong Liu
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, Guangdong, China.
| | - Yonggang Min
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, Guangdong, China.
| |
Collapse
|
6
|
Netopilík M. Plate-model applied on concentration effects in size exclusion chromatography. J LIQ CHROMATOGR R T 2020. [DOI: 10.1080/10826076.2019.1703116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Miloš Netopilík
- Academy of Sciences of the Czech Republic, Institute of Macromolecular Chemistry, Prague, Czech Republic
| |
Collapse
|
7
|
Wang X, Procházka K, Limpouchová Z. Partitioning of polymers between bulk and porous media: Monte Carlo study of the effect of pore size distribution. J Colloid Interface Sci 2020; 567:103-112. [DOI: 10.1016/j.jcis.2020.01.119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 02/04/2023]
|
8
|
Yang J, Zheng T, Umair A, Li L. “Dead-End” Ultrafiltration: A Powerful Technique Utilizing “Coil-to-Stretch” Transition for Polymer Separation/Fractionation. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02753] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Jinxian Yang
- Food Science and Processing Research Center, Shenzhen University, Shenzhen 518060, China
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Tao Zheng
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ahmad Umair
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lianwei Li
- Food Science and Processing Research Center, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
9
|
Wang X, Procházka K, Limpouchová Z. Pore size effect on the separation of polymers by interaction chromatography. A Monte Carlo study. Anal Chim Acta 2019; 1064:126-137. [DOI: 10.1016/j.aca.2019.03.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/02/2019] [Accepted: 03/09/2019] [Indexed: 12/16/2022]
|
10
|
Wang X, Limpouchová Z, Procházka K. Separation of polymers differing in their chain architecture by interaction chromatography: Phase equilibria and conformational behavior of polymers in strongly adsorbing porous media. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
11
|
Poly(propylene ether carbonate)-Based Di- and Tri-Block Copolymers: Synthesis and Chromatographic Characterization. Macromol Res 2019. [DOI: 10.1007/s13233-019-7128-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Žuvela P, Skoczylas M, Jay Liu J, Ba Czek T, Kaliszan R, Wong MW, Buszewski B, Héberger K. Column Characterization and Selection Systems in Reversed-Phase High-Performance Liquid Chromatography. Chem Rev 2019; 119:3674-3729. [PMID: 30604951 DOI: 10.1021/acs.chemrev.8b00246] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Reversed-phase high-performance liquid chromatography (RP-HPLC) is the most popular chromatographic mode, accounting for more than 90% of all separations. HPLC itself owes its immense popularity to it being relatively simple and inexpensive, with the equipment being reliable and easy to operate. Due to extensive automation, it can be run virtually unattended with multiple samples at various separation conditions, even by relatively low-skilled personnel. Currently, there are >600 RP-HPLC columns available to end users for purchase, some of which exhibit very large differences in selectivity and production quality. Often, two similar RP-HPLC columns are not equally suitable for the requisite separation, and to date, there is no universal RP-HPLC column covering a variety of analytes. This forces analytical laboratories to keep a multitude of diverse columns. Therefore, column selection is a crucial segment of RP-HPLC method development, especially since sample complexity is constantly increasing. Rationally choosing an appropriate column is complicated. In addition to the differences in the primary intermolecular interactions with analytes of the dispersive (London) type, individual columns can also exhibit a unique character owing to specific polar, hydrogen bond, and electron pair donor-acceptor interactions. They can also vary depending on the type of packing, amount and type of residual silanols, "end-capping", bonding density of ligands, and pore size, among others. Consequently, the chromatographic performance of RP-HPLC systems is often considerably altered depending on the selected column. Although a wide spectrum of knowledge is available on this important subject, there is still a lack of a comprehensive review for an objective comparison and/or selection of chromatographic columns. We aim for this review to be a comprehensive, authoritative, critical, and easily readable monograph of the most relevant publications regarding column selection and characterization in RP-HPLC covering the past four decades. Future perspectives, which involve the integration of state-of-the-art molecular simulations (molecular dynamics or Monte Carlo) with minimal experiments, aimed at nearly "experiment-free" column selection methodology, are proposed.
Collapse
Affiliation(s)
- Petar Žuvela
- Department of Chemistry , National University of Singapore , Singapore 117543 , Singapore
| | - Magdalena Skoczylas
- Department of Environmental Chemistry and Bioanalytics, Center for Modern Interdisciplinary Technologies , Nicolaus Copernicus University , Wileńska 4 , 87-100 Toruń , Poland
| | - J Jay Liu
- Department of Chemical Engineering , Pukyong National University , 365 Sinseon-ro , Nam-gu, 48-513 Busan , Korea
| | | | | | - Ming Wah Wong
- Department of Chemistry , National University of Singapore , Singapore 117543 , Singapore
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Center for Modern Interdisciplinary Technologies , Nicolaus Copernicus University , Wileńska 4 , 87-100 Toruń , Poland
| | | |
Collapse
|
13
|
|
14
|
Apel N, Uliyanchenko E, Moyses S, Rommens S, Wold C, Macko T, Brüll R. Separation of Branched Poly(bisphenol A carbonate) Structures by Solvent Gradient at Near-Critical Conditions and Two-Dimensional Liquid Chromatography. Anal Chem 2018; 90:5422-5429. [PMID: 29600700 DOI: 10.1021/acs.analchem.8b00618] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Branching is a molecular metric that strongly influences the application properties of polymers. Consequently, detailed information on the microstructure is required to gain a deeper understanding of structure-property relationships. In the present case, we employ high-performance liquid chromatography to characterize the branching in a poly(bisphenol A carbonate) (PC). To this end, a method was developed based on a mobile phase gradient in a very narrow range (±1.4 vol %) around the point of adsorption (98.9/1.1 vol % chloroform/methyl tert-butyl ether), which we refer to as solvent gradient at near-critical conditions. Application of such gentle gradient enabled separation of PC according to end-groups. The separation mechanism was confirmed by collecting fractions of a separated sample and subsequently analyzing these by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Hyphenating the developed gradient method with size-exclusion chromatography as the second dimension (2D-LC) enabled separation of linear and branched PC chains and determination of the molar mass distribution of the fractions. A reversed elution order was observed for branched species in 2D-LC, meaning that low molar mass chains exhibited higher elution volumes in the first dimension than higher molar masses. This finding was explained by influences of end-groups as well as the architecture of the branched polymer chains.
Collapse
Affiliation(s)
- Nico Apel
- Division Plastics, Group Material Analytics , Fraunhofer Institute for Structural Durability and System Reliability (LBF) , Schlossgartenstrasse 6 , 64289 Darmstadt , Germany
| | - Elena Uliyanchenko
- Analytical Technology, SABIC, Plasticslaan 1 , 4612 PX Bergen op Zoom , The Netherlands
| | - Stephan Moyses
- SABIC, 1600 Industrial Boulevard , Sugar Land , Texas 77478 , United States
| | - Stijn Rommens
- Analytical Technology, SABIC, Plasticslaan 1 , 4612 PX Bergen op Zoom , The Netherlands
| | - Christian Wold
- Analytical Technology, SABIC, Plasticslaan 1 , 4612 PX Bergen op Zoom , The Netherlands
| | - Tibor Macko
- Division Plastics, Group Material Analytics , Fraunhofer Institute for Structural Durability and System Reliability (LBF) , Schlossgartenstrasse 6 , 64289 Darmstadt , Germany
| | - Robert Brüll
- Division Plastics, Group Material Analytics , Fraunhofer Institute for Structural Durability and System Reliability (LBF) , Schlossgartenstrasse 6 , 64289 Darmstadt , Germany
| |
Collapse
|