1
|
Torres-Rodríguez J, Pérez-Camargo RA, Shi Y, Wang K, Jia YG, Zhu XX, Müller AJ. The Hidden Isodimorphic Crystallization of Poly(ε-Caprolactone- Ran-ω-Pentadecalactone) Copolymers. Biomacromolecules 2025. [PMID: 40373241 DOI: 10.1021/acs.biomac.5c00075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2025]
Abstract
Poly(ε-caprolactone-ran-ω-pentadecalactone) (PCLx-PPDLy) copolymers were synthesized by using ring-opening polymerization with Candida antarctica lipase B as a catalyst across various compositions. The aim was to study their crystallization behavior and ascertain whether they are isomorphic or isodimorphic. Differential scanning calorimetry, polarized light optical microscopy, in situ wide- and small-angle X-ray scattering, and Fourier-transform infrared spectroscopy were employed to assess the crystallization mode. Various crystallization conditions were used to investigate their influence on the comonomer inclusion/exclusion balance. The copolymers exhibited pseudoeutectic behavior across all compositions, crystallizing in either PPDL-type or PCL-type unit cells and conformations, independent of crystallization conditions. This indicates that they are isodimorphic, contrary to previous reports. Self-nucleation tests showed that the Domain II width decreases with increasing comonomer content, supporting isodimorphism. The pseudoeutectic point was observed at CL contents above 83%, which explains the previously unrecognized isodimorphic character of these copolyesters.
Collapse
Affiliation(s)
- Juan Torres-Rodríguez
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal, 3, Donostia-San Sebastián 20018, Spain
| | - Ricardo A Pérez-Camargo
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal, 3, Donostia-San Sebastián 20018, Spain
| | - Yunxiang Shi
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal, 3, Donostia-San Sebastián 20018, Spain
| | - Kaojin Wang
- Department of Chemistry, Beijing Normal University, Zhuhai, Guangdong 519085, China
| | - Yong-Guang Jia
- Department of Chemistry, Beijing Normal University, Zhuhai, Guangdong 519085, China
| | - X X Zhu
- Department of Chemistry, Beijing Normal University, Zhuhai, Guangdong 519085, China
| | - Alejandro J Müller
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal, 3, Donostia-San Sebastián 20018, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Spain
| |
Collapse
|
2
|
Zhang B, Jiang J, Li J, Lin S, Zhao L, Xi Z, Yuan W. Stress-Free Two-Way Shape Memory Polymers with Dual-Crystalline Phase Based on Poly(Tetramethylene Ether Glycol) and Poly(ε-Caprolactone). Macromol Rapid Commun 2025; 46:e2401102. [PMID: 39911009 DOI: 10.1002/marc.202401102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/16/2025] [Indexed: 02/07/2025]
Abstract
Two-way shape memory polymers (2W-SMPs) are a class of smart materials and can undergo spontaneously reversible deformation after specific stimuli. It is crucial to develop 2W-SMPs to achieve precise control of two-way shape memory behavior without external forces and reveal their structure-property relationships. In this study, dual-crystalline phase crosslinked polymer networks based on poly(tetramethylene ether glycol) (PTMEG) and poly(ε-caprolactone) (PCL) are fabricated via thiol-ene click reactions. The networks with two independent melting temperatures are gained by adjusting the ratio of the two segments and the two-way shape memory is enabled using the temperature difference between the two phases. The effects of network composition, pre-tensile strain, and actuation temperature on the two-way shape memory properties are investigated and the two-way shape memory mechanism of dual-crystalline phase polymers is further elucidated. Among the various compositions of networks, PTMEG8-PCL2 exhibits the optimal two-way shape memory properties, with the actuation strain of 24.25% and reversible strain of up to 10.35% at the actuation temperature and pre-stretch strain of 45 °C and 15%, respectively, which is potential for soft robotics applications. It is believed that this work guides the design of semicrystalline networks with two-way shape memory properties.
Collapse
Affiliation(s)
- Bingyan Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jie Jiang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jinjin Li
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Shaoliang Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ling Zhao
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhenhao Xi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Weikang Yuan
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
3
|
Liu Y, Yang Q, Liu Q, Hou JB, Zhao J, Zhang Y, Peng Q, Jiang ZC, Xiao YY, Zeng H. Tailoring Diels-Alder Cross-Linked Liquid Crystal Elastomers for Spatially Programmable Monolithic Actuators. ACS Macro Lett 2025; 14:495-501. [PMID: 40159081 DOI: 10.1021/acsmacrolett.5c00117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Liquid crystal elastomers with thermo-reversible Diels-Alder cross-links (DALCEs) offer exceptional reprocessability and mild-temperature reprogrammability, enabling repeated fabrication of diverse actuators. However, optimizing their molecular design and refabrication protocols remains crucial to further unlocking their potential. This work systematically investigates DALCEs synthesized via aza-Michael addition reactions between RM82, furfurylamine, and various chain extenders (phenylethylamine, ethylamine, butylamine, hexylamine, octylamine, and 6-amino-1-hexanol). The effects of cross-linking density and chain extender selection on phase behavior, thermomechanical properties, and actuation performance have been thoroughly examined. The results show that a PEA-based formulation with moderate cross-linking density achieves the most balanced performance. Based on this optimized formulation, a novel (re)fabrication strategy is introduced by harnessing DALCEs' intrinsic reprocessability, reprogrammability, and self-healing properties. This strategy employs multilevel fiber programming before monolithic actuator formation, enabling spatially controlled liquid crystal alignment and facilitating iterative actuator refinement through reconstruction. Consequently, complex morphing behaviors in disk films and stress-modulating functions in tubular actuators were demonstrated. This work establishes a versatile, easily synthesized material platform for spatially programmable, dynamic monolithic actuators, paving the way for advanced applications in soft robotics and adaptive devices.
Collapse
Affiliation(s)
- Yue Liu
- School of Mechanical Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Qing Yang
- School of Mechanical Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Qing Liu
- School of Mechanical Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Jun-Bo Hou
- School of Mechanical Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Jing Zhao
- School of Mechanical Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Ying Zhang
- School of Mechanical Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Qiongyao Peng
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton T6G 1H9, Canada
| | - Zhi-Chao Jiang
- School of Mechanical Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Yao-Yu Xiao
- School of Mechanical Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Hongbo Zeng
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton T6G 1H9, Canada
| |
Collapse
|
4
|
Yu C, Li S, Taleghani AD, Li G. Smart Polymeric Composite Thermal Switch for Geothermal Energy Harvesting. ACS APPLIED MATERIALS & INTERFACES 2025; 17:20248-20260. [PMID: 40114303 DOI: 10.1021/acsami.5c01117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Geothermal energy represents a promising sustainable power source that harnesses Earth's natural heat through water circulation systems. A critical challenge in geothermal power generation is controlling the water heating process through formation of cracks in hot zones. This requires an innovative thermal switch or reversible proppant that can regulate water flow and ensure optimal heat absorption before extraction for electricity generation. In this study, we designed and synthesized a composite thermal switch with a polymeric artificial muscle embedded in a fluoroelastomer matrix. In this design, the fluoroelastomer protects the artificial muscle from superhot water (200 °C or above) damage and also provides tensile stress to the muscle; the artificial muscle provides the desired reversible actuation. In this study, poly(vinylidene fluoride-co-bexafluoropropylene) (PVDF-HFP) was cross-linked by dicumyl peroxide (DCP) to form a fluoroelastomer PVDF-HFP/DCP. A Nylon fiber was twisted until it was used to coil as the artificial muscle. Under zero external loading, the composite thermal switch exhibited a maximum contraction upon heating (CUH) of about 10.76% and expansion upon cooling (EUC) of about 10.89% when the temperature cycled from 25 to 200 °C. Furthermore, the CUH and EUC were about 2.12 and 3.36%, respectively, when the temperature cycled from 150 to 200 °C. The composite thermal switch still exhibited excellent reversible actuation and chemical stability after soaking in 200 °C water within a pressure vessel for 4 weeks. A design-oriented structural mechanics model was also developed to evaluate the various design parameters on the reversible actuation of the smart thermal switch. To further highlight the performance of PVDF-HFP/DCP, we also prepared three other fluorinated rubbers as controls. This composite thermal switch shows promise as a smart proppant or valve for enhanced geothermal systems, offering the potential to improve heat extraction efficiency through controlled fracture conductivity.
Collapse
Affiliation(s)
- Chengbin Yu
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Sarah Li
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Arash Dahi Taleghani
- Department of Energy and Mineral Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Guoqiang Li
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
5
|
Tian G, Zhang X, Huang C, Tang X, Ma J, Liu Y, He X, Cui X. Programming a UV-Triggered In Situ Cospinning Fiber with Site-Specific and Anisotropic Deformation Behavior toward Light-Driven Soft Actuators. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409781. [PMID: 40018905 DOI: 10.1002/smll.202409781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/17/2025] [Indexed: 03/01/2025]
Abstract
Fabric and textile actuators capable of displaying light-controlled morphing behaviors are of essential significance in nature and wearable devices. Despite several studies on this system, the precise regulation for performing combined programmable site-specific and light-controlled deformation remains a challenging issue. In this work, a dual-layer-based fabric actuator is fabricated via UV-triggered in situ electrospinning of polycaprolactone/polyethylene glycol (denoted as PCL/PEG) matrix coated with polydopamine (PDA) nanospheres. The method affords the resultant fiber actuator capable of exhibiting stretchable characteristic in cold-drawing environment while maintaining relatively decent morphing properties. Additionally, upon site-specific irradiation with laser spot, the surface resonance absorption of the coated PDA allows for the formation of temperature gradient in the fiber's strained state, enabling the fabric actuators with programmable on-demand out-of-plane bending deformations due to anisotropic chain relaxation and the release of embedded internal stress. Uniquely, by designing macroscopic bilayer structures with orientated molecular chain segments and vector sum of shape recovery forces, the fabric actuator exhibited bending and chiral twisting deformations as determined by the orientation angles between the upper and lower layer. The results presented in this study clearly provide insight on fabricating light-driven programmable fabric actuators.
Collapse
Affiliation(s)
- Guangming Tian
- Department of Polymer Materials and Engineering, School of Materials Engineering, Xi'an Polytechnic University, Xi'an, 710048, China
| | - Xin Zhang
- Department of Polymer Materials and Engineering, School of Materials Engineering, Xi'an Polytechnic University, Xi'an, 710048, China
| | - Chengwang Huang
- Department of Polymer Materials and Engineering, School of Materials Engineering, Xi'an Polytechnic University, Xi'an, 710048, China
| | - Xianyong Tang
- Department of Polymer Materials and Engineering, School of Materials Engineering, Xi'an Polytechnic University, Xi'an, 710048, China
| | - Jianhua Ma
- Department of Polymer Materials and Engineering, School of Materials Engineering, Xi'an Polytechnic University, Xi'an, 710048, China
| | - Yi Liu
- Department of Polymer Materials and Engineering, School of Materials Engineering, Xi'an Polytechnic University, Xi'an, 710048, China
| | - Xinhai He
- Department of Polymer Materials and Engineering, School of Materials Engineering, Xi'an Polytechnic University, Xi'an, 710048, China
| | - Xiaoping Cui
- College of Equipment Management and Support, Engineering University of the Chinese People's Armed Police Force, Xi'an, 710086, China
| |
Collapse
|
6
|
Guo Q, Zhang Y, Ruan H, Sun H, Wang T, Wang Q, Wang C. Solvent Content Controlling Strategy for Cocrystallizable Polyesters Enables a Stress-Free Two-Way Shape Memory Effect with Wider Service Temperatures. Macromol Rapid Commun 2024; 45:e2300534. [PMID: 37840366 DOI: 10.1002/marc.202300534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/02/2023] [Indexed: 10/17/2023]
Abstract
It is challenging to enhance the stress-free two-way shape memory (stress-free TWSM) effect to obtain a wide range of response temperatures. Herein, a polycaprolactone (PCL)/poly(ω-pentadecalactone) (PPDL) is photocured under UV light irradiation in the solvent of 1,1,2-trichloroethane (TCA), to obtain a series of cross-linked polyesters (CPES). Controlling solvent content (SC) which is removed after the polymerization allows the yielded CPES to perform a regulatable thermodynamic and stress-free TWSM properties. High SC is beneficial to reduce the degree of chain overlap (C/C* ) of PPDL chain segments in the PCL-based CPES network, then causes the cocrystallization of PCL and PPDL and yielding an additional melting-transitions (Tm ). An enhanced stress-free TWSM is obtained in high SC samples (CPES-15-90), reflected in the attainment of a wide range of response temperature, which means a wider service temperature. The enhancement is reflected in higher reversible strain of high SC samples compared with the samples prepared with low SC when varying high trigger temperature (Thigh ). Even at high Thigh , the high SC sample still has reversible strain. Therefore, controlling SC strategy for photocuring copolyester not only provides a new preparation approach for high-performance shape memory (SM) polymers, but also offers new condensed polymer structure to explore.
Collapse
Affiliation(s)
- Qi Guo
- Key Laboratory of Science and Technology on Wear and protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P.R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yaoming Zhang
- Key Laboratory of Science and Technology on Wear and protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P.R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Hongwei Ruan
- Key Laboratory of Science and Technology on Wear and protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P.R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Huiting Sun
- Key Laboratory of Science and Technology on Wear and protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P.R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Tingmei Wang
- Key Laboratory of Science and Technology on Wear and protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P.R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Qihua Wang
- Key Laboratory of Science and Technology on Wear and protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P.R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Chao Wang
- Key Laboratory of Science and Technology on Wear and protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P.R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| |
Collapse
|
7
|
Wong JW, Yang X, Zhao Q, Xue Y, Lok TJ, Wang L, Fan X, Xiao X, Wong TW, Li T, Chen L, Ismail AF. Sustainable Approach for the Synthesis of a Semicrystalline Polymer with a Reversible Shape-Memory Effect. ACS Macro Lett 2023; 12:563-569. [PMID: 37052196 DOI: 10.1021/acsmacrolett.3c00017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Shape-memory polymers (SMPs) have demonstrated potential for use in automotive, biomedical, and aerospace industries. However, ensuring the sustainability of these materials remains a challenge. Herein, a sustainable approach to synthesize a semicrystalline polymer using biomass-derivable precursors via catalyst-free polyesterification is presented. The synthesized biodegradable polymer, poly(1,8-octanediol-co-1,12-dodecanedioate-co-citrate) (PODDC), exhibits excellent shape-memory properties, as evidenced by good shape fixity and shape recovery ratios of 98%, along with a large reversible actuation strain of 28%. Without the use of a catalyst, the mild polymerization enables the reconfiguration of the partially cured two-dimensional (2D) film to a three-dimensional (3D) geometric form in the middle process. This study appears to be a step forward in developing sustainable SMPs and a simple way for constructing a 3D structure of a permanent shape.
Collapse
Affiliation(s)
- Jie-Wei Wong
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Xuxu Yang
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, 310027, Hangzhou, China
| | - Qian Zhao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Yaoting Xue
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, 310027, Hangzhou, China
| | - Tow-Jie Lok
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
| | - Li Wang
- School of Big Health and Intelligent Engineering, Chengdu Medical College, 610500, Chengdu, China
| | - Xiulin Fan
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Xuezhang Xiao
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Tuck-Whye Wong
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, 310027, Hangzhou, China
- Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
| | - Tiefeng Li
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, 310027, Hangzhou, China
| | - Lixin Chen
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
| |
Collapse
|
8
|
Chi D, Gu H, Wang J, Wu C, Wang R, Cheng Z, Zhang D, Xie Z, Liu Y. Narrow response temperature range with excellent reversible shape memory effect for semi-crystalline networks as soft actuators. MATERIALS HORIZONS 2023. [PMID: 37039134 DOI: 10.1039/d3mh00270e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Complex and controlled reversible actuation inevitably relies on changing thermal fields (direct or indirect) for semi-crystalline reversible shape memory networks. Unfortunately, the non-tunability of thermal signals often brings potential limitations to actuators' applications. In practice, a wide response temperature range (T-range) formed by Thigh and Tlow in the remarkable reversible actuation is an obvious fact. Herein, we demonstrate the tunability of the transition temperatures while stably maintaining excellent actuation abilities. We further verified that the narrow T-range (24 °C) that had not been reported could present more than 17% reversible strain. Special parameter optimization provides opportunities for potential non-implantable biomedical applications. Therefore, based on target 2W-SMP, a vehicle concept with the drug release and vehicle recovery ability was proposed, proving our approach's feasibility.
Collapse
Affiliation(s)
- Dequan Chi
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Haoyu Gu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Jingfeng Wang
- Northwest Institute for Nonferrous Metal Research, Xi'an 710016, China
| | - Chao Wu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Ruijie Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Zhongjun Cheng
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Dongjie Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Zhimin Xie
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Yuyan Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| |
Collapse
|
9
|
Xu Z, Liu YB, Wei DW, Bao RY, Wang Y, Ke K, Yang W. Configurational Entropy Regulation in Polyolefin Elastomer/Paraffin Wax Vitrimers by Thermally Responsive Liquid-Solid Transition for Force Storage. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12423-12433. [PMID: 36821339 DOI: 10.1021/acsami.2c22997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The work output of shape memory polymers during shape shifting is desired for practical application as actuators. Herein, a polyolefin elastomer (POE) and paraffin wax (PW) are co-cross-linked by dynamic boronic ester bonds to enhance the network elasticity and the stress transfer between the two phases, endowing high force storage capacity to the prepared vitrimers. Depending on the phase of PW, one-way force storage is realized by programming at a low temperature (25 °C), owing to which solid PW can promote the locking of POE chains in a low-entropy state, while reversible force storage can be realized by programming at a high temperature (75 °C), owing to which the relaxation of chains facilitated by liquid PW can promote the construction of a stable structure. Based on one-way force storage, a weight-lifting machine with a weight of 20 mg prestrained at 25 °C can lift a 100 g weight, showing a lifting ratio of no less than 5000, with a high work output of 0.98 J/g. A high-temperature alarm can be triggered at varied temperatures (43-56 °C) through controlled force release by adjusting the PW content and programmed prestrains. Based on the reversible force storage, crawling robots and artificial muscles with a work output of 0.025 J/g are demonstrated. The dynamic cross-linking network also confers mold-free self-healing capability to POE/PW vitrimers, and the repair efficiency is enhanced compared with the POE vitrimer due to the improved POE chain motion by liquid PW. The realized one-way and reversible force storage and self-healing by POE/PW vitrimers pave the way for the application of SMPs in the fields of soft robotic actuators.
Collapse
Affiliation(s)
- Zhao Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Yong-Bo Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Dun-Wen Wei
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China
| | - Rui-Ying Bao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Yu Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Kai Ke
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Wei Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| |
Collapse
|
10
|
Cai Z, Zeng J, Guo T, Wang J, Xie H, Reheman A. Dual responsive self-healing hydrogels with wide stability and excellent mechanical strength based on aliphatic polycarbonate. Heliyon 2023; 9:e15070. [PMID: 37151617 PMCID: PMC10161373 DOI: 10.1016/j.heliyon.2023.e15070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
The wide development of hydrogels had been used in many filed due to the high water-containing and tough three-dimensional structure, however, the poor mechanical and multi-functional properties of hydrogel can be limited in its applications deeply. Herein, the dual responsive self-healing hydrogels with tough mechanical properties were manufactured by dual-physical cross-linking based on biodegradable aliphatic polycarbonate. Choosing the soft and hard segments to design the polymeric hydrogel not only can facilitate the dual-dynamic bonding interactions but also the resilient hydrogels possess robust and controllable mechanical strength (6.51 MPa). Furthermore, the results of swelling and stability tests of the materials indicated that the swelling ability of the biodegradable hydrogels can be regulated by the hydrophilic group, and the maximal swelling ratio in water and the equilibrium water content is 66% and 40%, respectively. It is worth mentioning that the tough hydrogels embrace dual-responsive high efficiency of self-healing ability, and the self-healing time is 2 h at 50 °C or 10 h under pH = 5, suggesting that the obtained hydrogels can respond to temperature and pH value to drive the fracture interface for fast self-healing, which will offer new opportunities for stimuli-responsive materials and wound healing.
Collapse
|
11
|
Yin X, Liu H, Lin R, Liu X, Huang Z, Du J, Gu Y, Lin X, Lin W, Yi G. Synthesis and properties of semicrystalline non‐isocyanate polyurethane with tunable triple shape memory properties. J Appl Polym Sci 2023. [DOI: 10.1002/app.53705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Xingshan Yin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou People's Republic of China
| | - Huameng Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou People's Republic of China
| | - Ruijun Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou People's Republic of China
| | - Xiaochun Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou People's Republic of China
| | - Zhiyi Huang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou People's Republic of China
| | - Jiahao Du
- School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou People's Republic of China
| | - Yuxin Gu
- Kinte Material Technology Co., Ltd. Guangdong China
| | - Xiaofeng Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou People's Republic of China
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory) Jieyang China
| | - Wenjing Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou People's Republic of China
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory) Jieyang China
| | - Guobin Yi
- School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou People's Republic of China
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory) Jieyang China
| |
Collapse
|
12
|
A novel multi-triggered reversible shape memory thermoplastic polyurethane (TPU)/polycaprolactone (PCL) blend. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-022-03420-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
13
|
Qi X, Pan C, Zhang L, Yue D. Bio-Based, Self-Healing, Recyclable, Reconfigurable Multifunctional Polymers with Both One-Way and Two-Way Shape Memory Properties. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3497-3506. [PMID: 36598772 DOI: 10.1021/acsami.2c19782] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Shape memory polymers (SMPs) have attracted wide attention over the past few decades due to their fantastic applications in modern life. Nevertheless, excellent self-healing properties, recyclability, solid-state plasticity, and reversible shape-switching ability are necessary but can rarely be satisfied in one material. Herein, we report multifunctional SMPs by constructing a dynamic boronic ester bond cross-linking network using sustainable Eucommia ulmoides gum as a raw material. Thanks to the crystallization and wide melting temperature range, these kinds of SMPs have thermal-triggered one-way shape memory performance and show two-way shape memory properties, whether under constant stress or stress-free conditions. Owing to the dynamic nature of the boronic ester bond, it exhibits good self-healing properties (near 100% at 80 °C), shape reconfigurability, and chemical recyclability. In addition, by incorporating multiwalled carbon nanotubes, the formed composite is responsive to 808 nm near-infrared light. Its applications are further exploited, including photoresponsive actuators, vascular stents, and light-driven switches. This paper provides a simple way for fabricating multifunctional SMPs, and the as-prepared materials have potential applications in diverse fields, such as biomedicine, intelligent sensing, and soft robotics.
Collapse
Affiliation(s)
- Xin Qi
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing100029, PR China
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing100029, PR China
| | - Chaolun Pan
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing100029, PR China
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing100029, PR China
| | - Liqun Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing100029, PR China
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing100029, PR China
| | - Dongmei Yue
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing100029, PR China
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing100029, PR China
| |
Collapse
|
14
|
Sánchez CP, Jérôme C, Noels L, Vanderbemden P. Review of Thermoresponsive Electroactive and Magnetoactive Shape Memory Polymer Nanocomposites. ACS OMEGA 2022; 7:40701-40723. [PMID: 36406535 PMCID: PMC9670708 DOI: 10.1021/acsomega.2c05930] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Electroactive and magnetoactive shape memory polymer nanocomposites (SMCs) are multistimuli-responsive smart materials that are of great interest in many research and industrial fields. In addition to thermoresponsive shape memory polymers, SMCs include nanofillers with suitable electric and/or magnetic properties that allow for alternative and remote methods of shape memory activation. This review discusses the state of the art on these electro- and magnetoactive SMCs and summarizes recently published investigations, together with relevant applications in several fields. Special attention is paid to the shape memory characteristics (shape fixity and shape recovery or recovery force) of these materials, as well as to the magnitude of the electric and magnetic fields required to trigger the shape memory characteristics.
Collapse
Affiliation(s)
- Clara Pereira Sánchez
- Department
of Electrical Engineering and Computer Science, University of Liège, Liège 4000, Belgium
| | | | - Ludovic Noels
- Department
of Aerospace and Mechanical Engineering, University of Liège, Liège 4000, Belgium
| | - Philippe Vanderbemden
- Department
of Electrical Engineering and Computer Science, University of Liège, Liège 4000, Belgium
| |
Collapse
|
15
|
Wang J, Zhang H, Lei J, Wu M, Liu W, Qu JP. Stress-Free Two-Way Shape-Memory Mechanism of a Semicrystalline Network with a Broad Melting Transition. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jin Wang
- National Engineering Research Center of Novel Equipment for Polymer Processing, South China University of Technology, Guangzhou510641, China
- Key Laboratory of Polymer Processing Engineering, Ministry of Education, South China University of Technology, Guangzhou510641, China
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou510641, China
| | - He Zhang
- National Engineering Research Center of Novel Equipment for Polymer Processing, South China University of Technology, Guangzhou510641, China
- Key Laboratory of Polymer Processing Engineering, Ministry of Education, South China University of Technology, Guangzhou510641, China
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou510641, China
| | - Junjie Lei
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou510640, China
| | - Mengxuan Wu
- National Engineering Research Center of Novel Equipment for Polymer Processing, South China University of Technology, Guangzhou510641, China
- Key Laboratory of Polymer Processing Engineering, Ministry of Education, South China University of Technology, Guangzhou510641, China
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou510641, China
| | - Weifeng Liu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou510640, China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou510640, China
| | - Jin-Ping Qu
- National Engineering Research Center of Novel Equipment for Polymer Processing, South China University of Technology, Guangzhou510641, China
- Key Laboratory of Polymer Processing Engineering, Ministry of Education, South China University of Technology, Guangzhou510641, China
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou510641, China
| |
Collapse
|
16
|
Yang Y, Wang C, Zhou W, Xiao Y, Wang L, Liu X, Zhou S, Li D, Liu Y, Zhou C. Recyclable shape memory polymers with independent honeycomb crosslinked polymer actuators and temperature response switches inspired by bow principle. J Appl Polym Sci 2022. [DOI: 10.1002/app.53166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ying Yang
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials China Three Gorges University Yichang China
| | - Chune Wang
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials China Three Gorges University Yichang China
| | - Wenyan Zhou
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials China Three Gorges University Yichang China
| | - Yu Xiao
- Department of Civil Engineering, College of Mechanics and Engineering Science Shanghai University Shanghai China
| | - Lei Wang
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials China Three Gorges University Yichang China
| | - Xiang Liu
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials China Three Gorges University Yichang China
| | - Shiyi Zhou
- College of Materials and Chemistry & Chemical Engineering Chengdu University of Technology Chengdu People's Republic of China
| | - Dejiang Li
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials China Three Gorges University Yichang China
| | - Yang Liu
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials China Three Gorges University Yichang China
| | - Changlin Zhou
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials China Three Gorges University Yichang China
- Department of Research and Development Hubei Three Gorges Laboratory Yichang China
| |
Collapse
|
17
|
Inverardi N, Toselli M, Scalet G, Messori M, Auricchio F, Pandini S. Stress-Free Two-Way Shape Memory Effect of Poly(ethylene glycol)/Poly(ε-caprolactone) Semicrystalline Networks. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nicoletta Inverardi
- Department of Mechanical and Industrial Engineering, University of Brescia, via Branze 38, 25133 Brescia, Italy
- INSTM, National Interuniversity Consortium of Materials Science and Technology, Via Giuseppe Giusti 9, 50121 Firenze, Italy
| | - Maurizio Toselli
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
- INSTM, National Interuniversity Consortium of Materials Science and Technology, Via Giuseppe Giusti 9, 50121 Firenze, Italy
| | - Giulia Scalet
- Department of Civil Engineering and Architecture, University of Pavia, via Ferrata 3, 27100 Pavia, Italy
- INSTM, National Interuniversity Consortium of Materials Science and Technology, Via Giuseppe Giusti 9, 50121 Firenze, Italy
| | - Massimo Messori
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy
- INSTM, National Interuniversity Consortium of Materials Science and Technology, Via Giuseppe Giusti 9, 50121 Firenze, Italy
| | - Ferdinando Auricchio
- Department of Civil Engineering and Architecture, University of Pavia, via Ferrata 3, 27100 Pavia, Italy
- INSTM, National Interuniversity Consortium of Materials Science and Technology, Via Giuseppe Giusti 9, 50121 Firenze, Italy
| | - Stefano Pandini
- Department of Mechanical and Industrial Engineering, University of Brescia, via Branze 38, 25133 Brescia, Italy
- INSTM, National Interuniversity Consortium of Materials Science and Technology, Via Giuseppe Giusti 9, 50121 Firenze, Italy
| |
Collapse
|
18
|
Hao C, Yue H, Zhou J, He S, Liu H, Huang M, Liu W. Stress‐free two‐way shape memory property and microstructure evolution of single‐phase polymer networks. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chaobo Hao
- School of Materials Science and Engineering Zhengzhou University Zhengzhou China
| | - Huimin Yue
- School of Materials Science and Engineering Zhengzhou University Zhengzhou China
| | - Junjie Zhou
- School of Materials Science and Engineering Zhengzhou University Zhengzhou China
| | - Suqin He
- School of Materials Science and Engineering Zhengzhou University Zhengzhou China
- Henan Key Laboratory of Advanced Nylon Materials and Application Zhengzhou University Zhengzhou China
| | - Hao Liu
- School of Materials Science and Engineering Zhengzhou University Zhengzhou China
| | - Miaoming Huang
- School of Materials Science and Engineering Zhengzhou University Zhengzhou China
| | - Wentao Liu
- School of Materials Science and Engineering Zhengzhou University Zhengzhou China
| |
Collapse
|
19
|
Xu ZY, Li L, Shi LY, Yang KK, Wang YZ. Effect of Self-Nucleation and Stress-Induced Crystallization on the Tunable Two-Way Shape-Memory Effect of a Semicrystalline Network. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00575] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhi-Yuan Xu
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Lu Li
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Ling-Ying Shi
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610064, China
| | - Ke-Ke Yang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yu-Zhong Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
20
|
Wang J, Tu Z, Zhang H, Wang MM, Liu W, Qu JP. Actuation Mechanisms of a Semicrystalline Elastomer-Based Polymer Artificial Muscle with High Actuation Strain. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00549] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jin Wang
- National Engineering Research Center of Novel Equipment for Polymer Processing, South China University of Technology, Guangzhou 510641, China
- Key Laboratory of Polymer Processing Engineering, Ministry of Education, South China University of Technology, Guangzhou 510641, China
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, China
| | - Zhikai Tu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, China
| | - Huanhuan Zhang
- National Engineering Research Center of Novel Equipment for Polymer Processing, South China University of Technology, Guangzhou 510641, China
- Key Laboratory of Polymer Processing Engineering, Ministry of Education, South China University of Technology, Guangzhou 510641, China
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, China
| | - Meng-Meng Wang
- National Engineering Research Center of Novel Equipment for Polymer Processing, South China University of Technology, Guangzhou 510641, China
- Key Laboratory of Polymer Processing Engineering, Ministry of Education, South China University of Technology, Guangzhou 510641, China
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, China
| | - Weifeng Liu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jin-Ping Qu
- National Engineering Research Center of Novel Equipment for Polymer Processing, South China University of Technology, Guangzhou 510641, China
- Key Laboratory of Polymer Processing Engineering, Ministry of Education, South China University of Technology, Guangzhou 510641, China
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
21
|
Pisani S, Genta I, Modena T, Dorati R, Benazzo M, Conti B. Shape-Memory Polymers Hallmarks and Their Biomedical Applications in the Form of Nanofibers. Int J Mol Sci 2022; 23:1290. [PMID: 35163218 PMCID: PMC8835830 DOI: 10.3390/ijms23031290] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 12/28/2022] Open
Abstract
Shape-Memory Polymers (SMPs) are considered a kind of smart material able to modify size, shape, stiffness and strain in response to different external (heat, electric and magnetic field, water or light) stimuli including the physiologic ones such as pH, body temperature and ions concentration. The ability of SMPs is to memorize their original shape before triggered exposure and after deformation, in the absence of the stimulus, and to recover their original shape without any help. SMPs nanofibers (SMPNs) have been increasingly investigated for biomedical applications due to nanofiber's favorable properties such as high surface area per volume unit, high porosity, small diameter, low density, desirable fiber orientation and nanoarchitecture mimicking native Extra Cellular Matrix (ECM). This review focuses on the main properties of SMPs, their classification and shape-memory effects. Moreover, advantages in the use of SMPNs and different biomedical application fields are reported and discussed.
Collapse
Affiliation(s)
- Silvia Pisani
- Otorhinolaryngology Unit, Department of Surgical Sciences, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy or (S.P.); (M.B.)
| | - Ida Genta
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (I.G.); (T.M.); (R.D.)
| | - Tiziana Modena
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (I.G.); (T.M.); (R.D.)
| | - Rossella Dorati
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (I.G.); (T.M.); (R.D.)
| | - Marco Benazzo
- Otorhinolaryngology Unit, Department of Surgical Sciences, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy or (S.P.); (M.B.)
| | - Bice Conti
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (I.G.); (T.M.); (R.D.)
| |
Collapse
|
22
|
Xiang T, Wang J, Jia L, Wang P, Zhou S. Semicrystalline polymer networks with a swelling-enhanced water-triggered two-way shape-memory effect for programmable deformation and smart actuation. Polym Chem 2022. [DOI: 10.1039/d2py01347a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A simple, effective and universal strategy is proposed to fabricate a water-triggered two-way shape-memory polymer with the highest angle reversibility of 45.2%, which can be applied as a soft gripper and water level monitor.
Collapse
Affiliation(s)
- Tao Xiang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P.R. China
| | - Jiao Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P.R. China
| | - Lianghao Jia
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P.R. China
| | - Pan Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P.R. China
| | - Shaobing Zhou
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P.R. China
| |
Collapse
|
23
|
Lashkari R, Tabatabaei-Nezhad SA, Husein MM. Shape memory polyurethane as a wellbore strengthening material. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2021.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
24
|
Abstract
In contrast to conventional hard actuators, soft actuators offer many vivid advantages, such as improved flexibility, adaptability, and reconfigurability, which are intrinsic to living systems. These properties make them particularly promising for different applications, including soft electronics, surgery, drug delivery, artificial organs, or prosthesis. The additional degree of freedom for soft actuatoric devices can be provided through the use of intelligent materials, which are able to change their structure, macroscopic properties, and shape under the influence of external signals. The use of such intelligent materials allows a substantial reduction of a device's size, which enables a number of applications that cannot be realized by externally powered systems. This review aims to provide an overview of the properties of intelligent synthetic and living/natural materials used for the fabrication of soft robotic devices. We discuss basic physical/chemical properties of the main kinds of materials (elastomers, gels, shape memory polymers and gels, liquid crystalline elastomers, semicrystalline ferroelectric polymers, gels and hydrogels, other swelling polymers, materials with volume change during melting/crystallization, materials with tunable mechanical properties, and living and naturally derived materials), how they are related to actuation and soft robotic application, and effects of micro/macro structures on shape transformation, fabrication methods, and we highlight selected applications.
Collapse
Affiliation(s)
- Indra Apsite
- Faculty of Engineering Science, Department of Biofabrication, University of Bayreuth, Ludwig Thoma Str. 36A, 95447 Bayreuth, Germany
| | - Sahar Salehi
- Department of Biomaterials, Center of Energy Technology und Materials Science, University of Bayreuth, Prof.-Rüdiger-Bormann-Straße 1, 95447 Bayreuth, Germany
| | - Leonid Ionov
- Faculty of Engineering Science, Department of Biofabrication, University of Bayreuth, Ludwig Thoma Str. 36A, 95447 Bayreuth, Germany.,Bavarian Polymer Institute, University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany
| |
Collapse
|
25
|
Experimental and computational analysis of a pharmaceutical-grade shape memory polymer applied to the development of gastroretentive drug delivery systems. J Mech Behav Biomed Mater 2021; 124:104814. [PMID: 34534845 DOI: 10.1016/j.jmbbm.2021.104814] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 08/10/2021] [Accepted: 09/03/2021] [Indexed: 11/23/2022]
Abstract
The present paper aims at developing an integrated experimental/computational approach towards the design of shape memory devices fabricated by hot-processing with potential for use as gastroretentive drug delivery systems (DDSs) and for personalized therapy if 4D printing is involved. The approach was tested on a plasticized poly(vinyl alcohol) (PVA) of pharmaceutical grade, with a glass transition temperature close to that of the human body (i.e., 37 °C). A comprehensive experimental analysis was conducted in order to fully characterize the PVA thermo-mechanical response as well as to provide the necessary data to calibrate and validate the numerical predictions, based on a thermo-viscoelastic constitutive model, implemented within a finite element framework. Particularly, a thorough thermal, mechanical, and shape memory characterization under different testing conditions and on different sample geometries was first performed. Then, a prototype consisting of an S-shaped device was fabricated, deformed in a temporary compact configuration and tested. Simulation results were compared with the results obtained from shape memory experiments carried out on the prototype. The proposed approach provided useful results and recommendations for the design of PVA-based shape memory DDSs.
Collapse
|
26
|
Zhou J, Yue H, Huang M, Hao C, He S, Liu H, Liu W, Zhu C, Dong X, Wang D. Arbitrarily Reconfigurable and Thermadapt Reversible Two-Way Shape Memory Poly(thiourethane) Accomplished by Multiple Dynamic Covalent Bonds. ACS APPLIED MATERIALS & INTERFACES 2021; 13:43426-43437. [PMID: 34491715 DOI: 10.1021/acsami.1c13057] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The fabrication of a single polymer network that exhibits a good reversible two-way shape memory effect (2W-SME), can be formed into arbitrarily complex three-dimensional (3D) shapes, and is recyclable remains a challenge. Herein, we design and fabricate poly(thiourethane) (PTU) networks with an excellent thermadapt reversible 2W-SME, arbitrary reconfigurability, and good recyclability via the synergistic effects of multiple dynamic covalent bonds (i.e., ester, urethane, and thiourethane bonds). The PTU samples with good mechanical performance simultaneously demonstrate a maximum tensile stress of 29.7 ± 1.1 MPa and a high strain of 474.8 ± 7.5%. In addition, the fraction of reversible strain of the PTU with 20 wt % hard segment reaches 22.4% during the reversible 2W-SME, where the fraction of reversible strain is enhanced by self-nucleated crystallization of the PTU. A sample with arbitrarily complex permanent 3D shapes can be realized via the solid-state plasticity, and that sample also exhibits excellent reversible 2W-SME. A smart light-responsive actuator with a double control switch is fabricated using a reversible two-way shape memory PTU/MXene film. In addition, the PTU networks are de-cross-linked by alcohol solvolysis, enabling the recovery of monomers and the realization of recyclability. Therefore, the present study involving the design and fabrication of a PTU network for potential applications in intelligent actuators and multifunctional shape-shifting devices provides a new strategy for the development of thermadapt reversible two-way shape memory polymers.
Collapse
Affiliation(s)
- Junjie Zhou
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Huimin Yue
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Miaoming Huang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Chaobo Hao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Suqin He
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Hao Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Wentao Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Chengshen Zhu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xia Dong
- CAS Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Dujin Wang
- CAS Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
27
|
Yang L, Lou J, Yuan J, Deng J. A review of shape memory polymers based on the intrinsic structures of their responsive switches. RSC Adv 2021; 11:28838-28850. [PMID: 35478574 PMCID: PMC9038180 DOI: 10.1039/d1ra04434f] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/23/2021] [Indexed: 12/30/2022] Open
Abstract
Shape memory polymers (SMPs), as stimuli-responsive materials, have attracted worldwide attention. Based on the history and development of SMPs, a variety of reports about SMPs in recent years are summarized in this paper. The responsive switches are analyzed and divided into two kinds according to their intrinsic structures: physical switch and chemical one. Then, detailed classification and comprehensive discussion of SMPs are further elaborated, based on the intrinsic structures of responsive switches and stimulation types. Finally, the development and prospect of SMPs are objectively predicted and forecasted.
Collapse
Affiliation(s)
- Lide Yang
- College of Materials Science and Engineering, Hunan University Changsha 410082 P. R. China
| | - Jiankun Lou
- College of Materials Science and Engineering, Hunan University Changsha 410082 P. R. China
| | - Jianmin Yuan
- College of Materials Science and Engineering, Hunan University Changsha 410082 P. R. China
| | - Jianru Deng
- College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China
| |
Collapse
|
28
|
Basak S, Bandyopadhyay A. Solvent Responsive Shape Memory Polymers‐ Evolution, Current Status, and Future Outlook. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100195] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sayan Basak
- Department of Polymer Science and Technology University of Calcutta 92, A.P.C Road Kolkata West Bengal 700 009 India
| | - Abhijit Bandyopadhyay
- Department of Polymer Science and Technology University of Calcutta 92, A.P.C Road Kolkata West Bengal 700 009 India
| |
Collapse
|
29
|
Separate crystallization and melting of polymer blocks and hydrogen bonding units in double-crystalline supramolecular polymers. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
30
|
Shape Memory Alloys and Polymers for MEMS/NEMS Applications: Review on Recent Findings and Challenges in Design, Preparation, and Characterization. METALS 2021. [DOI: 10.3390/met11030415] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Rapid progress in material science and nanotechnology has led to the development of the shape memory alloys (SMA) and the shape memory polymers (SMP) based functional multilayered structures that, due to their capability to achieve the properties not feasible by most natural materials, have attracted a significant attention from the scientific community. These shape memory materials can sustain large deformations, which can be recovered once the appropriate value of an external stimulus is applied. Moreover, the SMAs and SMPs can be reprogrammed to meet several desired functional properties. As a result, SMAs and SMPs multilayered structures benefit from the unprecedented physical and material properties such as the shape memory effect, superelasticity, large displacement actuation, changeable mechanical properties, and the high energy density. They hold promises in the design of advanced functional micro- and nano-electro-mechanical systems (MEMS/NEMS). In this review, we discuss the recent understanding and progress in the fields of the SMAs and SMPs. Particular attention will be given to the existing challenges, critical issues, limitations, and achievements in the preparation and characterization of the SMPs and NiTi-based SMAs thin films, and their heterostructures for MEMS/NEMS applications including both experimental and computational approaches. Examples of the recent MEMS/NEMS devices utilizing the unique properties of SMAs and SMPs such as micropumps, microsensors or tunable metamaterial resonators are highlighted. In addition, we also introduce the prospective future research directions in the fields of SMAs and SMPs for the nanotechnology applications.
Collapse
|
31
|
Yang Q, Wang X, Wang B, Liu Y, Sun Y, Na L, Wang F, Zhang C, Liu H, Zhang X. Toward Sustainable and Strong ABA‐Type Thermoplastic Elastomers with Poly(ε‐Caprolactone‐
co
‐4‐Methyl‐ε‐Caprolactone) Soft Midblock and Polystyrene Hard End Blocks. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202000385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Qi Yang
- Key Laboratory of Rubber‐Plastics Ministry of Education/Shandong Provincial Key Laboratory of Rubber‐plastics School of Polymer Science and Engineering Qingdao University of Science and Technology Qingdao 266042 China
| | - Xiaohua Wang
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei 230026 China
| | - Beibei Wang
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei 230026 China
| | - Yingjun Liu
- Key Laboratory of Rubber‐Plastics Ministry of Education/Shandong Provincial Key Laboratory of Rubber‐plastics School of Polymer Science and Engineering Qingdao University of Science and Technology Qingdao 266042 China
| | - Yu Sun
- Key Laboratory of Rubber‐Plastics Ministry of Education/Shandong Provincial Key Laboratory of Rubber‐plastics School of Polymer Science and Engineering Qingdao University of Science and Technology Qingdao 266042 China
| | - Lihua Na
- Key Laboratory of Rubber‐Plastics Ministry of Education/Shandong Provincial Key Laboratory of Rubber‐plastics School of Polymer Science and Engineering Qingdao University of Science and Technology Qingdao 266042 China
| | - Feng Wang
- Key Laboratory of Rubber‐Plastics Ministry of Education/Shandong Provincial Key Laboratory of Rubber‐plastics School of Polymer Science and Engineering Qingdao University of Science and Technology Qingdao 266042 China
- Changchun University of Technology Changchun 130012 China
| | - Chunyu Zhang
- Key Laboratory of Rubber‐Plastics Ministry of Education/Shandong Provincial Key Laboratory of Rubber‐plastics School of Polymer Science and Engineering Qingdao University of Science and Technology Qingdao 266042 China
| | - Heng Liu
- Key Laboratory of Rubber‐Plastics Ministry of Education/Shandong Provincial Key Laboratory of Rubber‐plastics School of Polymer Science and Engineering Qingdao University of Science and Technology Qingdao 266042 China
| | - Xuequan Zhang
- Key Laboratory of Rubber‐Plastics Ministry of Education/Shandong Provincial Key Laboratory of Rubber‐plastics School of Polymer Science and Engineering Qingdao University of Science and Technology Qingdao 266042 China
| |
Collapse
|
32
|
Chen C, Duan N, Chen S, Guo Z, Hu J, Guo J, Chen Z, Yang L. Synthesis mechanical properties and self-healing behavior of aliphatic polycarbonate hydrogels based on cooperation hydrogen bonds. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
33
|
Li C, Xu W, Lu Y, Gross RA. Lipase-Catalyzed Reactive Extrusion: Copolymerization of ε-Caprolactone and ω-Pentadecalactone. Macromol Rapid Commun 2020; 41:e2000417. [PMID: 33047442 DOI: 10.1002/marc.202000417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/30/2020] [Indexed: 12/28/2022]
Abstract
This study assesses the use of immobilized lipase catalyst N435 during reactive extrusion (REX) versus magnetically stirred bulk and solution reaction conditions for the copolymerization of ε-caprolactone with ω-pentadecalactone (CL/PDL 1:1 molar). N435-catalyzed REX for reaction times from 1 to 3 h results in total %-monomer conversion, Mn , and Đ values increase from 92.7% to 98.8%, 36.1 to 51.3 kDa, and 1.85 to 1.96, respectively. Diad fraction analysis by quantitative 13 C NMR reveals that, after just 1 h, rapid N435-catalyzed transesterification reactions occur that give random copolyesters. In contrast, for bulk polymerization with magnetic stirring in round bottom flasks, reaction times from 1 to 3 h result in the following: Mn increases from 12.4 to 25.6 kDa, Đ decreases from 2.98 to 1.87, and the randomness index increases from 0.74 and 0.86 as PDL*-PDL diads are dominant. These results highlight that REX avoids problems associated with internal batch mixing that are encountered in bulk polymerizations. In sharp contrast to a previous study of 1:1 molar PDL/δ-valerolactone (VL) copolymerizations by N435-catalyzed REX, VL %-conversion increases to just 40.1% in 1 h whereas CL reaches 94.7%.
Collapse
Affiliation(s)
- Changcun Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Institute of Polymer Science and Engineering, Hunan University, Changsha, 410082, China.,Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.,Baling Petrochemical Company, SINOPEC Asset Management Corporation, Yueyang, 414014, China
| | - Weijian Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Institute of Polymer Science and Engineering, Hunan University, Changsha, 410082, China
| | - Yanbing Lu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Institute of Polymer Science and Engineering, Hunan University, Changsha, 410082, China
| | - Richard A Gross
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| |
Collapse
|
34
|
Zheng Y, Pan P. Crystallization of biodegradable and biobased polyesters: Polymorphism, cocrystallization, and structure-property relationship. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2020.101291] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
35
|
Chen Y, Chen C, Rehman HU, Zheng X, Li H, Liu H, Hedenqvist MS. Shape-Memory Polymeric Artificial Muscles: Mechanisms, Applications and Challenges. Molecules 2020; 25:E4246. [PMID: 32947872 PMCID: PMC7570610 DOI: 10.3390/molecules25184246] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/27/2020] [Accepted: 09/03/2020] [Indexed: 11/16/2022] Open
Abstract
Shape-memory materials are smart materials that can remember an original shape and return to their unique state from a deformed secondary shape in the presence of an appropriate stimulus. This property allows these materials to be used as shape-memory artificial muscles, which form a subclass of artificial muscles. The shape-memory artificial muscles are fabricated from shape-memory polymers (SMPs) by twist insertion, shape fixation via Tm or Tg, or by liquid crystal elastomers (LCEs). The prepared SMP artificial muscles can be used in a wide range of applications, from biomimetic and soft robotics to actuators, because they can be operated without sophisticated linkage design and can achieve complex final shapes. Recently, significant achievements have been made in fabrication, modelling, and manipulation of SMP-based artificial muscles. This paper presents a review of the recent progress in shape-memory polymer-based artificial muscles. Here we focus on the mechanisms of SMPs, applications of SMPs as artificial muscles, and the challenges they face concerning actuation. While shape-memory behavior has been demonstrated in several stimulated environments, our focus is on thermal-, photo-, and electrical-actuated SMP artificial muscles.
Collapse
Affiliation(s)
- Yujie Chen
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.C.); (C.C.); (X.Z.)
| | - Chi Chen
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.C.); (C.C.); (X.Z.)
| | - Hafeez Ur Rehman
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.C.); (C.C.); (X.Z.)
| | - Xu Zheng
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.C.); (C.C.); (X.Z.)
| | - Hua Li
- Collaborative Innovation Centre for Advanced Ship and Dee-Sea Exploration, Shanghai Jiao Tong University, Shanghai 200240, China; (H.L.); (H.L.)
| | - Hezhou Liu
- Collaborative Innovation Centre for Advanced Ship and Dee-Sea Exploration, Shanghai Jiao Tong University, Shanghai 200240, China; (H.L.); (H.L.)
| | - Mikael S. Hedenqvist
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| |
Collapse
|
36
|
Yuan W, Liu K, Zhou J, Ni L, Shan G, Bao Y, Pan P. Stress-Free Two-Way Shape Memory Effects of Semicrystalline Polymer Networks Enhanced by Self-Nucleated Crystallization. ACS Macro Lett 2020; 9:1325-1331. [PMID: 35638620 DOI: 10.1021/acsmacrolett.0c00571] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Stress-free two-way shape memory polymers (2W-SMPs) capable of reversible shifting between two distinct shapes are versatile platforms for the development of future smart devices. However, it is challenging to prepare stress-free 2W-SMPs with good actuation performance and shape programmability from single-component semicrystalline polymers. Herein, we demonstrate a straightforward and universal strategy for preparing 2W-SMPs through self-nucleated crystallization (SNC) of semicrystalline polymers. SNC enables the formation of two types of crystals in the 2W-SMPs, annealed and primary crystals, which function as the skeleton phase and actuation phase, respectively. We achieved a high reversible actuation strain of 17.6% and a good reprogrammability of the SNC-treated polymer networks. Complex shape transformations were obtained, and smart devices were fabricated from the SNC-treated networks by using a locally designed folding and kirigami structure. The SNC strategy provides a generalized approach to improve the 2W-shape memory behavior of semicrystalline polymers.
Collapse
Affiliation(s)
- Wenhua Yuan
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, China
| | - Kangkang Liu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, China
| | - Jian Zhou
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, China
| | - Lingling Ni
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, China
| | - Guorong Shan
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, China
| | - Yongzhong Bao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, China
| | - Pengju Pan
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, China
| |
Collapse
|
37
|
Safari M, Leon Boigues L, Shi G, Maiz J, Liu G, Wang D, Mijangos C, Müller AJ. Effect of Nanoconfinement on the Isodimorphic Crystallization of Poly(butylene succinate-ran-caprolactone) Random Copolymers. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01081] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Maryam Safari
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain
| | - Laia Leon Boigues
- Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas, ICTP-CSIC, Juan de la Cierva 3, Madrid 28006, Spain
| | - Guangyu Shi
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jon Maiz
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain
| | - Guoming Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dujin Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Carmen Mijangos
- Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas, ICTP-CSIC, Juan de la Cierva 3, Madrid 28006, Spain
- Departamento de Física de Materiales, University of the Basque Country UPV/EHU and Centro de Física de Materiales (CFM) (CSIC-UPV/EHU)—Materials Physics Center (MPC), Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
| | - Alejandro J. Müller
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
38
|
Yuan W, Zhou J, Liu K, Li X, Xu W, Song H, Shan G, Bao Y, Zhao Q, Pan P. Sequence-Rearranged Cocrystalline Polymer Network with Shape Reconfigurability and Tunable Switching Temperature. ACS Macro Lett 2020; 9:588-594. [PMID: 35648491 DOI: 10.1021/acsmacrolett.0c00075] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Switching temperature (Tsw) is a key parameter governing the service condition of shape memory polymers (SMPs). However, tuning Tsw of SMPs often requires sophisticated synthesis or intricate processing. Herein, we report a simple yet effective strategy to prepare the SMPs with tunable Tsw and good reconfigurability by using the cocrystalline polyesters as the reversible phase. The cocrystallizable copolyesters with rearranged sequences were prepared by the transesterification of mixed polyester diols and then photo-cross-linked to achieve the SMP networks. Cocrystallization of copolymer blocks endows the SMP networks tunable melting point and relatively high crystallinity, affording the network good shape fixing and recovery ability at body temperature. Besides, the dynamic nature of transesterification, that enables the network to have good shape reconfigurability, allows for the easy processing of SMPs with complicated shapes. The reconfigurable SMPs capable of actuating at the body temperature show great potential for use as biomedical devices.
Collapse
Affiliation(s)
- Wenhua Yuan
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, China
| | - Jian Zhou
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, China
| | - Kangkang Liu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, China
| | - Xing Li
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, China
| | - Wenqing Xu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, China
| | - Huijie Song
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, China
| | - Guorong Shan
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, China
| | - Yongzhong Bao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, China
| | - Qian Zhao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, China
| | - Pengju Pan
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, China
| |
Collapse
|
39
|
Gong X, Tan K, Deng Q, Shen S. Athermal Shape Memory Effect in Magnetoactive Elastomers. ACS APPLIED MATERIALS & INTERFACES 2020; 12:16930-16936. [PMID: 32181641 DOI: 10.1021/acsami.0c01453] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Shape memory materials (SMMs) are usually referred to as materials with the ability to recover the original shape via certain thermal stimulations, such as temperature increase. Such shape memory behaviors achieved thermally usually exhibit slow response due to the constraint of thermal conductivity, leaving a big challenge for situations with temperature and speed requirements. In this work, different from previous shape memory mechanisms, an athermal fast-response shape memory effect (SME) based on the manipulation of magnetization profiles is introduced both experimentally and theoretically. Through the new mechanism, the shape information of a hard magnetic-particle-embedded magnetoactive elastomer (H-MAE) can be accurately converted into the distribution of magnetic domains and recorded/memorized in the material. Then, upon the application of an external magnetic field, due to the interactions between magnetic domains and the magnetic field, the recorded shape information can be immediately displayed. To exploit this mechanism, the magnetic actuating properties are analyzed and a new way for information writing and repeatable reading is also realized.
Collapse
Affiliation(s)
- Xun Gong
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Kai Tan
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Qian Deng
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Shengping Shen
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|
40
|
Two-Way and Multiple-Way Shape Memory Polymers for Soft Robotics: An Overview. ACTUATORS 2020. [DOI: 10.3390/act9010010] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Shape memory polymers (SMPs) are smart materials capable of changing their shapes in a predefined manner under a proper applied stimulus and have gained considerable interest in several application fields. Particularly, two-way and multiple-way SMPs offer unique opportunities to realize untethered soft robots with programmable morphology and/or properties, repeatable actuation, and advanced multi-functionalities. This review presents the recent progress of soft robots based on two-way and multiple-way thermo-responsive SMPs. All the building blocks important for the design of such robots, i.e., the base materials, manufacturing processes, working mechanisms, and modeling and simulation tools, are covered. Moreover, examples of real-world applications of soft robots and related actuators, challenges, and future directions are discussed.
Collapse
|
41
|
Classification of Shape-Memory Polymers, Polymer Blends, and Composites. ADVANCED STRUCTURED MATERIALS 2020. [DOI: 10.1007/978-981-13-8574-2_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
42
|
|
43
|
Zhang H, Ma C, Sun R, Liao X, Wu J, Xie M. Sustainable elastomer of triazolinedione-modified Eucommia ulmoides gum with enhanced elasticity and shape memory capability. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121904] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Qi X, Yang W, Yu L, Wang W, Lu H, Wu Y, Zhu S, Zhu Y, Liu X, Dong Y, Fu Y. Design of Ethylene-Vinyl Acetate Copolymer Fiber with Two-Way Shape Memory Effect. Polymers (Basel) 2019; 11:E1599. [PMID: 31574960 PMCID: PMC6835960 DOI: 10.3390/polym11101599] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/17/2019] [Accepted: 09/27/2019] [Indexed: 12/22/2022] Open
Abstract
One-dimensional shape memory polymer fibers (SMPFs) have obvious advantages in mechanical properties, dispersion properties, and weavability. In this work, a method for fabricating semi-crystallization ethylene-vinyl acetate copolymer (EVA) fiber with two-way shape memory effect by melt spinning and ultraviolet (UV) curing was developed. Here, the effect of crosslink density on its performance was systematically analyzed by gel fraction measurement, tensile tests, DSC, and TMA analysis. The results showed that the crosslink density and shape memory properties of EVA fiber could be facilely adjusted by controlling UV curing time. The resulting EVA fiber with cylindrical structure had a diameter of 261.86 ± 13.07 μm, and its mechanical strength and elongation at break were 64.46 MPa and 114.33%, respectively. The critical impact of the crosslink density and applied constant stress on the two-way shape memory effect were analyzed. Moreover, the single EVA fiber could lift more than 143 times its own weight and achieve 9% reversible actuation strain. The reversible actuation capability was significantly enhanced by a simple winding design of the single EVA fiber, which provided great potential applications in smart textiles, flexible actuators, and artificial muscles.
Collapse
Affiliation(s)
- Xiaoming Qi
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Wentong Yang
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Laiming Yu
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Wenjun Wang
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Haohao Lu
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Yanglong Wu
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Shanwen Zhu
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Yaofeng Zhu
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Xiangdong Liu
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Yubing Dong
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Yaqin Fu
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
45
|
Fan LF, Huang YN, Rong MZ, Zhang MQ, Chen X. Imparting External Stress-Free Two-Way Shape Memory Effect to Commodity Polyolefins by Manipulation of Their Hierarchical Structures. ACS Macro Lett 2019; 8:1141-1146. [PMID: 35619451 DOI: 10.1021/acsmacrolett.9b00467] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Two simple methods are proposed to respectively impart external force-free reversible shape memory effect to commercial polyolefins: ultrahigh molecular weight polyethylene (UHMWPE) and polypropylene (PP). The key issues lie in the utilization of the partially entangled molecular chains of UHMWPE and the medium crystalline phases of PP as the reversible internal stress providers. The acquired reversible shape memory effect further proves to be applicable for assisting repeatedly self-healing of wider cracks. Compared to the conventional approaches, which used to introduce cross-linkages into the target materials, the present ones only need physical treatment, so that the valuable thermoplasticity of polyolefins is retained. This work can be regarded as an example of the concept "physically converting instead of chemically modifying" for the preparation of functional polymeric materials based on market available plastics.
Collapse
Affiliation(s)
- Long Fei Fan
- School of Textile Materials and Engineering, Wuyi University, Jiangmen, Guangdong 529020, People’s Republic of China
| | - Ya Nan Huang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD HPPC Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, People’s Republic of China
| | - Min Zhi Rong
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD HPPC Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, People’s Republic of China
| | - Ming Qiu Zhang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD HPPC Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, People’s Republic of China
| | - Xudong Chen
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD HPPC Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, People’s Republic of China
| |
Collapse
|
46
|
|
47
|
Cui H, Zhao Q, Wang Y, Du X. Bioinspired Actuators Based on Stimuli-Responsive Polymers. Chem Asian J 2019; 14:2369-2387. [PMID: 30924277 DOI: 10.1002/asia.201900292] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Indexed: 12/21/2022]
Abstract
Organisms exhibit strong environmental adaptability by controllably adjusting their morphologies or fast locomotion; thus providing constant inspiration for scientists to develop artificial actuators that not only have diverse and sophisticated shape-morphing capabilities, but can also further transfer dynamic and reversible shape deformations into macroscopic motion under the following principles: asymmetric friction, the Marangoni effect, and counteracting forces of the surrounding conditions. Among numerous available materials for fabricating bioinspired artificial actuators, stimuli-responsive polymers are superior in their flexible features and the ability to change their physicochemical properties dynamically under external stimuli, such as temperature, pH, light, and ionic strength. Herein, different mechanisms, working principles, and applications of stimuli-responsive polymeric actuators are comprehensively introduced. Furthermore, perspectives on existing challenges and future directions of this field are provided.
Collapse
Affiliation(s)
- Huanqing Cui
- Institute of Biomedical & Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Qilong Zhao
- Institute of Biomedical & Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Yunlong Wang
- Institute of Biomedical & Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Xuemin Du
- Institute of Biomedical & Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| |
Collapse
|
48
|
Wilson JA, Ates Z, Pflughaupt RL, Dove AP, Heise A. Polymers from macrolactones: From pheromones to functional materials. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2019.02.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
49
|
Yang Q, Zheng W, Zhao W, Peng C, Ren J, Yu Q, Hu Y, Zhang X. One-way and two-way shape memory effects of a high-strain cis-1,4-polybutadiene–polyethylene copolymer based dynamic network via self-complementary quadruple hydrogen bonding. Polym Chem 2019. [DOI: 10.1039/c8py01614c] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A polymer network based on a cis-1,4-polybutadiene–polyethylene copolymer exhibits multi- and two-way shape memory effects as well as a high-strain capacity.
Collapse
Affiliation(s)
- Qi Yang
- Key Laboratory of Synthetic Rubber
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Wenjie Zheng
- Key Laboratory of Synthetic Rubber
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Wenpeng Zhao
- Key Laboratory of Synthetic Rubber
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Chuang Peng
- Key Laboratory of Synthetic Rubber
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Juntao Ren
- Key Laboratory of Synthetic Rubber
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Qizhou Yu
- Key Laboratory of Synthetic Rubber
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Yanming Hu
- Key Laboratory of Synthetic Rubber
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Xuequan Zhang
- Key Laboratory of Synthetic Rubber
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| |
Collapse
|
50
|
Mo F, Ban J, Pan L, Shi B, Lu S. Liquid crystalline polyurethane composites based on supramolecular structure with reversible bidirectional shape memory and multi-shape memory effects. NEW J CHEM 2019. [DOI: 10.1039/c8nj05451g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, a novel series of supramolecular liquid crystalline (LC) polyurethane composites, named SMPU–#HOBA (# represents the molar ratio of HOBA/BINA), were successfully prepared by incorporating hexadecyloxybenzoic acid (HOBA) into pyridine-containing polyurethane (PU).
Collapse
Affiliation(s)
- Funian Mo
- Department of Materials Science and Engineering
- City University of Hong Kong
- Kowloon
- China
| | - Jianfeng Ban
- College of Chemical Engineering
- Guangdong University of Petrochemical Technology
- Guangdong
- China
| | - Lulu Pan
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials
- Ministry of Education
- School of Material Science and Engineering
- Guilin University of Technology
- Guilin
| | - Bo Shi
- College of Chemical Engineering
- Guangdong University of Petrochemical Technology
- Guangdong
- China
| | - Shaorong Lu
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials
- Ministry of Education
- School of Material Science and Engineering
- Guilin University of Technology
- Guilin
| |
Collapse
|