1
|
Nowitzke J, Bista S, Raman S, Dahal N, Stirnemann G, Popa I. Mechanical Unfolding of Network Nodes Drives the Stress Response of Protein-Based Materials. ACS NANO 2024; 18:31031-31043. [PMID: 39487800 DOI: 10.1021/acsnano.4c07352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
Biomaterials synthesized from cross-linked folded proteins have untapped potential for biocompatible, resilient, and responsive implementations, but face challenges due to costly molecular refinement and limited understanding of their mechanical response. Under a stress vector, these materials combine the gel-like response of cross-linked networks with the mechanical unfolding and extension of proteins from well-defined 3D structures to unstructured polypeptides. Yet the nanoscale dynamics governing their viscoelastic response remains poorly understood. This lack of understanding is further exacerbated by the fact that the mechanical stability of protein domains depends not only on their structure, but also on the direction of the force vector. To this end, here we propose a coarse-grained network model based on the physical characteristics of polyproteins and combine it with the mechanical unfolding response of protein domains, obtained from single molecule measurements and steered molecular dynamics simulations, to explain the macroscopic response of protein-based materials to a stress vector. We find that domains are about 10-fold more stable when force is applied along their end-to-end coordinate than along the other tethering geometries that are possible inside the biomaterial. As such, the macroscopic response of protein-based materials is mainly driven by the unfolding of the node-domains and rearrangement of these nodes inside the material. The predictions from our models are then confirmed experimentally using force-clamp rheometry. This model is a critical step toward developing protein-based materials with predictable response and that can enable applications for shape memory and energy storage and dissipation.
Collapse
Affiliation(s)
- Joel Nowitzke
- Department of Physics, University of Wisconsin-Milwaukee, 3135 N Maryland Avenue, Milwaukee, Wisconsin 53211, United States
| | - Sanam Bista
- Department of Physics, University of Wisconsin-Milwaukee, 3135 N Maryland Avenue, Milwaukee, Wisconsin 53211, United States
| | - Sadia Raman
- Department of Physics, University of Wisconsin-Milwaukee, 3135 N Maryland Avenue, Milwaukee, Wisconsin 53211, United States
| | - Narayan Dahal
- Department of Physics, University of Wisconsin-Milwaukee, 3135 N Maryland Avenue, Milwaukee, Wisconsin 53211, United States
| | - Guillaume Stirnemann
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne University, CNRS, Paris 75005, France
| | - Ionel Popa
- Department of Physics, University of Wisconsin-Milwaukee, 3135 N Maryland Avenue, Milwaukee, Wisconsin 53211, United States
| |
Collapse
|
2
|
Khairallah T, Khoury LR. Aided Porous Medium Emulsification for Functional Hydrogel Microparticles Synthesis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311841. [PMID: 39091048 DOI: 10.1002/adma.202311841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 06/05/2024] [Indexed: 08/04/2024]
Abstract
Despite the substantial advancement in developing various hydrogel microparticle (HMP) synthesis methods, emulsification through porous medium to synthesize functional hybrid protein-polymer HMPs has yet to be addressed. Here, the aided porous medium emulsification for hydrogel microparticle synthesis (APME-HMS) system, an innovative approach drawing inspiration from porous medium emulsification is introduced. This method capitalizes on emulsifying immiscible phases within a 3D porous structure for optimal HMP production. Using the APME-HMS system, synthesized responsive bovine serum albumin (BSA) and polyethylene glycol diacrylate (PEGDA) HMPs of various sizes are successfully synthesized. Preserving protein structural integrity and functionality enable the formation of cytochrome c (cyt c) - PEGDA HMPs for hydrogen peroxide (H2O2) detection at various concentrations. The flexibility of the APME-HMS system is demonstrated by its ability to efficiently synthesize HMPs using low volumes (≈50 µL) and concentrations (100 µm) of proteins within minutes while preserving proteins' structural and functional properties. Additionally, the capability of the APME-HMS method to produce a diverse array of HMP types enriches the palette of HMP fabrication techniques, presenting it as a cost-effective, biocompatible, and scalable alternative for various biomedical applications, such as controlled drug delivery, 3D printing bio-inks, biosensing devices, with potential implications even in culinary applications.
Collapse
Affiliation(s)
- Tina Khairallah
- Department of Materials Science and Engineering, Technion Israel Institute of Technology, Haifa, 32000, Israel
| | - Luai R Khoury
- Department of Materials Science and Engineering, Technion Israel Institute of Technology, Haifa, 32000, Israel
| |
Collapse
|
3
|
Del Giudice F, Curtis DJ, Aufderhorst-Roberts A. A New Approach for On-Chip Production of Biological Microgels Using Photochemical Cross-Linking. Anal Chem 2024; 96:10140-10144. [PMID: 38862384 PMCID: PMC11209654 DOI: 10.1021/acs.analchem.4c01574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024]
Abstract
Photochemical cross-linking is a key step for manufacturing microgels in numerous applications, including drug delivery, tissue engineering, material production, and wound healing. Existing photochemical cross-linking techniques in microfluidic devices rely on UV curing, which can cause cell and DNA damage. We address this challenge by developing a microfluidic workflow for producing microgels using visible light-driven photochemical cross-linking of aqueous droplets dispersed in a continuous oil phase. We report a proof-of-concept to construct microgels from the protein Bovine Serum Albumin (BSA) with [Ru(bpy)3]2+ mediated cross-linking. By controlling the capillary number of the continuous and dispersed phases, the volumetric flow rate, and the photochemical reaction time within the microfluidic tubing, we demonstrate the construction of protein microgels with controllable and uniform dimensions. Our technique can, in principle, be applied to a wide range of different proteins with biological and responsive properties. This work therefore bridges the gap between hydrogel manufacturing using visible light and microfluidic microgel templating, facilitating numerous biomedical applications.
Collapse
Affiliation(s)
- Francesco Del Giudice
- Complex
Fluids Research Group, Department of Chemical Engineering, School
of Engineering and Applied Science, Faculty of Science and Engineering, Swansea University, Swansea SA1 8EN, United Kingdom
| | - Dan J. Curtis
- Complex
Fluids Research Group, Department of Chemical Engineering, School
of Engineering and Applied Science, Faculty of Science and Engineering, Swansea University, Swansea SA1 8EN, United Kingdom
| | | |
Collapse
|
4
|
Kaeek M, Khoury LR. Toward Tunable Protein-Driven Hydrogel Lens. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2306862. [PMID: 37991134 PMCID: PMC10754117 DOI: 10.1002/advs.202306862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/15/2023] [Indexed: 11/23/2023]
Abstract
Despite the significant progress in protein-based materials, creating a tunable protein-activated hydrogel lens remains an elusive goal. This study leverages the synergistic relationship between protein structural dynamics and polymer hydrogel engineering to introduce a highly transparent protein-polymer actuator. By incorporating bovine serum albumin into polyethyleneglycol diacrylate hydrogels, the authors achieved enhanced light transmittance and conferred actuating capabilities to the hydrogel. Taking advantage of these features, a bilayer protein-driven hydrogel lens that dynamically modifies its focal length in response to pH changes, mimicking the adaptability of the human lens, is fabricated. The lens demonstrates durability and reproducibility, highlighting its potential for repetitive applications. This integration of protein-diverse biochemistry, folding nanomechanics, and polymer engineering opens up new avenues for harnessing the wide range of proteins to potentially propel various fields such as diagnostics, lab-on-chip, and deep-tissue bio-optics, advancing the understanding of incorporating biomaterials in the optical field.
Collapse
Affiliation(s)
- Maria Kaeek
- Department of Materials Science and EngineeringTechnion Israel Institute of TechnologyHaifa32000Israel
| | - Luai R. Khoury
- Department of Materials Science and EngineeringTechnion Israel Institute of TechnologyHaifa32000Israel
| |
Collapse
|
5
|
Fu L, Li L, Bian Q, Xue B, Jin J, Li J, Cao Y, Jiang Q, Li H. Cartilage-like protein hydrogels engineered via entanglement. Nature 2023; 618:740-747. [PMID: 37344650 DOI: 10.1038/s41586-023-06037-0] [Citation(s) in RCA: 115] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 03/31/2023] [Indexed: 06/23/2023]
Abstract
Load-bearing tissues, such as muscle and cartilage, exhibit high elasticity, high toughness and fast recovery, but have different stiffness (with cartilage being significantly stiffer than muscle)1-8. Muscle achieves its toughness through finely controlled forced domain unfolding-refolding in the muscle protein titin, whereas articular cartilage achieves its high stiffness and toughness through an entangled network comprising collagen and proteoglycans. Advancements in protein mechanics and engineering have made it possible to engineer titin-mimetic elastomeric proteins and soft protein biomaterials thereof to mimic the passive elasticity of muscle9-11. However, it is more challenging to engineer highly stiff and tough protein biomaterials to mimic stiff tissues such as cartilage, or develop stiff synthetic matrices for cartilage stem and progenitor cell differentiation12. Here we report the use of chain entanglements to significantly stiffen protein-based hydrogels without compromising their toughness. By introducing chain entanglements13 into the hydrogel network made of folded elastomeric proteins, we are able to engineer highly stiff and tough protein hydrogels, which seamlessly combine mutually incompatible mechanical properties, including high stiffness, high toughness, fast recovery and ultrahigh compressive strength, effectively converting soft protein biomaterials into stiff and tough materials exhibiting mechanical properties close to those of cartilage. Our study provides a general route towards engineering protein-based, stiff and tough biomaterials, which will find applications in biomedical engineering, such as osteochondral defect repair, and material sciences and engineering.
Collapse
Affiliation(s)
- Linglan Fu
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Lan Li
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Branch of National Clinical Research Center for Orthopedics, Drum Tower Hospital affiliated to Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Qingyuan Bian
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Bin Xue
- National Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing, People's Republic of China
| | - Jing Jin
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Branch of National Clinical Research Center for Orthopedics, Drum Tower Hospital affiliated to Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Jiayu Li
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Yi Cao
- National Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing, People's Republic of China
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Branch of National Clinical Research Center for Orthopedics, Drum Tower Hospital affiliated to Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Hongbin Li
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
6
|
Brown CP, Hughes MDG, Mahmoudi N, Brockwell DJ, Coletta PL, Peyman S, Evans SD, Dougan L. Structural and mechanical properties of folded protein hydrogels with embedded microbubbles. Biomater Sci 2023; 11:2726-2737. [PMID: 36815670 PMCID: PMC10088474 DOI: 10.1039/d2bm01918c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/02/2023] [Indexed: 02/11/2023]
Abstract
Globular folded proteins are powerful building blocks to create biomaterials with mechanical robustness and inherent biological functionality. Here we explore their potential as advanced drug delivery scaffolds, by embedding microbubbles (MBs) within a photo-activated, chemically cross-linked bovine serum albumin (BSA) protein network. Using a combination of circular dichroism (CD), rheology, small angle neutron scattering (SANS) and microscopy we determine the nanoscale and mesoscale structure and mechanics of this novel multi-composite system. Optical and confocal microscopy confirms the presence of MBs within the protein hydrogel, their reduced diffusion and their effective rupture using ultrasound, a requirement for burst drug release. CD confirms that the inclusion of MBs does not impact the proportion of folded proteins within the cross-linked protein network. Rheological characterisation demonstrates that the mechanics of the BSA hydrogels is reduced in the presence of MBs. Furthermore, SANS reveals that embedding MBs in the protein hydrogel network results in a smaller number of clusters that are larger in size (∼16.6% reduction in number of clusters, 17.4% increase in cluster size). Taken together, we show that MBs can be successfully embedded within a folded protein network and ruptured upon application of ultrasound. The fundamental insight into the impact of embedded MBs in protein scaffolds at the nanoscale and mesoscale is important in the development of future platforms for targeted and controlled drug delivery applications.
Collapse
Affiliation(s)
- Christa P Brown
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, UK.
| | - Matt D G Hughes
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, UK.
| | - Najet Mahmoudi
- ISIS Neutron and Muon Spallation Source, STFC Rutherford Appleton Laboratory, Oxfordshire, UK
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, UK
| | - P Louise Coletta
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, St James's University Hospital, Leeds, UK
| | - Sally Peyman
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, UK.
| | - Stephen D Evans
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, UK.
| | - Lorna Dougan
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, UK.
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| |
Collapse
|
7
|
Mechanical Properties of Protein-Based Hydrogels Derived from Binary Protein Mixtures-A Feasibility Study. Polymers (Basel) 2023; 15:polym15040964. [PMID: 36850249 PMCID: PMC9964579 DOI: 10.3390/polym15040964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/08/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023] Open
Abstract
Hydrogels based on natural polymers such as proteins are considered biocompatible and, therefore, represent an interesting class of materials for application in the field of biomedicine and high-performance materials. However, there is a lack of understanding of the proteins which are able to form hydrogel networks by photoinduced dityrosine crosslinking as well as a profound knowledge of the formed network itself and the mechanisms which are responsible for the resulting mechanical properties of such protein-based hydrogels. In this study, casein, bovine serum albumin, α-amylase, and a hydrophobic elastin-like protein were used to prepare binary protein mixtures with defined concentration ratios. After polymerization, the mechanical properties of the resulting homopolymeric and copolymeric hydrogels were determined using rheological methods depending on the protein shares used. In additional uniaxial compression tests, the fracture strain was shown to be independent of the protein shares, while hydrogel toughness and compressive strength were increased for protein-based hydrogels containing casein.
Collapse
|
8
|
Injectable redox albumin-based hydrogel with in-situ loaded dihydromyricetin. Colloids Surf B Biointerfaces 2022; 220:112871. [PMID: 36174492 DOI: 10.1016/j.colsurfb.2022.112871] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 09/15/2022] [Accepted: 09/21/2022] [Indexed: 12/12/2022]
Abstract
Albumin is widely used in clinics due to its demonstrated biological safety and functional flexibility. Hydrogels derived from natural albumin possess high moisture retention ability and good biodegradability, making albumin ideal biomaterials compared with synthetic polymers. Herein, by reducing disulfide bonds in bovine serum albumin molecules with glutathione and re-oxidizing the free thiols using dimethyl sulfoxide (DMSO) as additional oxidant, three-dimensional network was assembled, leading to the formation of hydrogel. Meanwhile, DMSO is also an excellent solvent for many drugs, and the hydrophobic drug dihydromyricetin (DMY) can be well dissolved in DMSO. During the crosslinking reaction, DMSO participated in fabricating a porous albumin hydrogel network. At the same time, increased loading of DMY and sustained release of DMY were achieved, improving bioavailability of hydrophobic drug DMY. Rheological test and cytotoxicity assay proved excellent elasticity and biocompatibility of the hydrogel. Self-healing property and narrow-needle injection provided potential application of the hydrogel as biomedical materials. This method for formation hydrogels and in situ loading of drugs may expand to preparing other drug loaded hydrogels and find wide applications.
Collapse
|
9
|
Slawinski M, Kaeek M, Rajmiel Y, Khoury LR. Acetic Acid Enables Precise Tailoring of the Mechanical Behavior of Protein-Based Hydrogels. NANO LETTERS 2022; 22:6942-6950. [PMID: 36018622 PMCID: PMC9479135 DOI: 10.1021/acs.nanolett.2c01558] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Engineering viscoelastic and biocompatible materials with tailored mechanical and microstructure properties capable of mimicking the biological stiffness (<17 kPa) or serving as bioimplants will bring protein-based hydrogels to the forefront in the biomaterials field. Here, we introduce a method that uses different concentrations of acetic acid (AA) to control the covalent tyrosine-tyrosine cross-linking interactions at the nanoscale level during protein-based hydrogel synthesis and manipulates their mechanical and microstructure properties without affecting protein concentration and (un)folding nanomechanics. We demonstrated this approach by adding AA as a precursor to the preparation buffer of a photoactivated protein-based hydrogel mixture. This strategy allowed us to synthesize hydrogels made from bovine serum albumin (BSA) and eight repeats protein L structure, with a fine-tailored wide range of stiffness (2-35 kPa). Together with protein engineering technologies, this method will open new routes in developing and investigating tunable protein-based hydrogels and extend their application toward new horizons.
Collapse
Affiliation(s)
- Marina Slawinski
- Department
of Physics, University of Wisconsin—Milwaukee, 3135 N. Maryland Ave, Milwaukee, Wisconsin 53211, United States
| | - Maria Kaeek
- Department
of Materials Science and Engineering, Technion
Israel Institute of Technology, Haifa 32000, Israel
| | - Yair Rajmiel
- Department
of Materials Science and Engineering, Technion
Israel Institute of Technology, Haifa 32000, Israel
| | - Luai R. Khoury
- Department
of Materials Science and Engineering, Technion
Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
10
|
Haas S, Körner S, Zintel L, Hubbuch J. Changing mechanical properties of photopolymerized, dityrosine-crosslinked protein-based hydrogels. Front Bioeng Biotechnol 2022; 10:1006438. [PMID: 36172024 PMCID: PMC9512244 DOI: 10.3389/fbioe.2022.1006438] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Hydrogels based on renewable resources are a promising class of materials for future applications in pharmaceutics, drug delivery and personalized medicine. Thus, optional adjustments of mechanical properties such as swelling behavior, elasticity and network strength are desired. In this context, hydrogels based on the biological raw materials bovine serum albumin and casein were prepared by dityrosine-crosslinking of their tyrosine residues through visible light-induced photopolymerization. Changing the tyrosine accessibility by urea addition before photopolymerization increased the storage modulus of the hydrogels by 650% while simultaneously being more elastic. Furthermore, contributions of the buffer system composition, variation of protein concentration and storage medium towards mechanical properties of the hydrogel such as storage moduli, elasticity, fracture strain, compressive strength and relative weight swelling ratio are discussed. It could be shown, that changes in precursor solution and storage medium characteristics are crucial parameters towards tuning the mechanical properties of protein-based hydrogels.
Collapse
Affiliation(s)
| | | | | | - Jürgen Hubbuch
- Institute of Process Engineering in Life Sciences, Section IV: Molecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
11
|
Nowitzke J, Popa I. What Is the Force-per-Molecule Inside a Biomaterial Having Randomly Oriented Units? J Phys Chem Lett 2022; 13:7139-7146. [PMID: 35901371 DOI: 10.1021/acs.jpclett.2c01720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Both synthetic and natural protein-based materials are made of randomly oriented cross-linked molecules. Here we introduce a coarse-grained approach to estimate the average force-per-molecule for materials made from globular proteins. Our approach has three steps: placement of molecules inside a unit volume, cross-linking, and trimming to remove the protein domains that do not participate to the force response. Following this procedure, we estimate the number of active domains per cross-section area, that allows for a direct calculation of the force-per-domain. Among the variables considered, we found that concentration was the most sensitive parameter. We then synthesized protein hydrogels made from BSA and polyprotein L and measured the stresses that these materials can withstand. We found that forces-per-molecules of up to 17 pN per domain can be obtained experimentally using protein hydrogels. Our approach represents an important step toward understanding the scaling of tension in biomaterials.
Collapse
Affiliation(s)
- Joel Nowitzke
- Department of Physics, University of Wisconsin-Milwaukee, 3135 N. Maryland Avenue, Milwaukee, Wisconsin 53211, United States
| | - Ionel Popa
- Department of Physics, University of Wisconsin-Milwaukee, 3135 N. Maryland Avenue, Milwaukee, Wisconsin 53211, United States
| |
Collapse
|
12
|
Jia H, Flommersfeld J, Heymann M, Vogel SK, Franquelim HG, Brückner DB, Eto H, Broedersz CP, Schwille P. 3D printed protein-based robotic structures actuated by molecular motor assemblies. NATURE MATERIALS 2022; 21:703-709. [PMID: 35618822 PMCID: PMC9156402 DOI: 10.1038/s41563-022-01258-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 04/13/2022] [Indexed: 06/10/2023]
Abstract
Upscaling motor protein activity to perform work in man-made devices has long been an ambitious goal in bionanotechnology. The use of hierarchical motor assemblies, as realized in sarcomeres, has so far been complicated by the challenges of arranging sufficiently high numbers of motor proteins with nanoscopic precision. Here, we describe an alternative approach based on actomyosin cortex-like force production, allowing low complexity motor arrangements in a contractile meshwork that can be coated onto soft objects and locally activated by ATP. The design is reminiscent of a motorized exoskeleton actuating protein-based robotic structures from the outside. It readily supports the connection and assembly of micro-three-dimensional printed modules into larger structures, thereby scaling up mechanical work. We provide an analytical model of force production in these systems and demonstrate the design flexibility by three-dimensional printed units performing complex mechanical tasks, such as microhands and microarms that can grasp and wave following light activation.
Collapse
Affiliation(s)
- Haiyang Jia
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Johannes Flommersfeld
- Arnold Sommerfeld Center for Theoretical Physics, Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Michael Heymann
- Max Planck Institute of Biochemistry, Martinsried, Germany
- Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| | - Sven K Vogel
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | - David B Brückner
- Arnold Sommerfeld Center for Theoretical Physics, Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Hiromune Eto
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Chase P Broedersz
- Arnold Sommerfeld Center for Theoretical Physics, Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany.
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | - Petra Schwille
- Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
13
|
Slawinski M, Khoury LR, Sharma S, Nowitzke J, Gutzman JH, Popa I. Kinetic Method of Producing Pores Inside Protein-Based Biomaterials without Compromising Their Structural Integrity. ACS Biomater Sci Eng 2022; 8:1132-1142. [PMID: 35188361 DOI: 10.1021/acsbiomaterials.1c01534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hydrogels made from globular proteins cross-linked covalently into a stable network are becoming an important type of biomaterial, with applications in artificial tissue design and cell culture scaffolds, and represent a promising system to study the mechanical and biochemical unfolding of proteins in crowded environments. Due to the small size of the globular protein domains, typically 2-5 nm, the primary network allows for a limited transfer of protein molecules and prevents the passing of particles and aggregates with dimensions over 100 nm. Here, we demonstrate a method to produce protein materials with micrometer-sized pores and increased permeability. Our approach relies on forming two competing networks: a covalent network made from cross-linked bovine serum albumin (BSA) proteins via a light-activated reaction and a physical network triggered by the aggregation of a polysaccharide, alginate, in the presence of Ca2+ ions. By fine-tuning the reaction times, we produce porous-protein hydrogels that retain the mechanical characteristics of their less-porous counterparts. We further describe a simple model to investigate the kinetic balance between the nucleation of alginate and cross-linking of BSA molecules and find the upper rate of the alginate aggregation reaction driving pore formation. By enabling a more significant permeability for protein-based materials without compromising their mechanical response, our method opens new vistas into studying protein-protein interactions and cell growth and designing novel affinity methods.
Collapse
Affiliation(s)
- Marina Slawinski
- Department of Physics, University of Wisconsin-Milwaukee, 3135 N. Maryland Ave, Milwaukee, Wisconsin 53211, United States
| | - Luai R Khoury
- Department of Physics, University of Wisconsin-Milwaukee, 3135 N. Maryland Ave, Milwaukee, Wisconsin 53211, United States.,Department of Materials Science and Engineering, Technion Israel Institute of Technology, Haifa 32000, Israel
| | - Sabita Sharma
- Department of Physics, University of Wisconsin-Milwaukee, 3135 N. Maryland Ave, Milwaukee, Wisconsin 53211, United States
| | - Joel Nowitzke
- Department of Physics, University of Wisconsin-Milwaukee, 3135 N. Maryland Ave, Milwaukee, Wisconsin 53211, United States
| | - Jennifer H Gutzman
- Department of Biological Sciences, University of Wisconsin-Milwaukee, 3209 N. Maryland Ave, Milwaukee, Wisconsin 53211, United States
| | - Ionel Popa
- Department of Physics, University of Wisconsin-Milwaukee, 3135 N. Maryland Ave, Milwaukee, Wisconsin 53211, United States
| |
Collapse
|
14
|
Mu X, Yuen JSK, Choi J, Zhang Y, Cebe P, Jiang X, Zhang YS, Kaplan DL. Conformation-driven strategy for resilient and functional protein materials. Proc Natl Acad Sci U S A 2022; 119:e2115523119. [PMID: 35074913 PMCID: PMC8795527 DOI: 10.1073/pnas.2115523119] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/17/2021] [Indexed: 01/08/2023] Open
Abstract
The exceptional elastic resilience of some protein materials underlies essential biomechanical functions with broad interest in biomedical fields. However, molecular design of elastic resilience is restricted to amino acid sequences of a handful of naturally occurring resilient proteins such as resilin and elastin. Here, we exploit non-resilin/elastin sequences that adopt kinetically stabilized, random coil-dominated conformations to achieve near-perfect resilience comparable with that of resilin and elastin. We also show a direct correlation between resilience and Raman-characterized protein conformations. Furthermore, we demonstrate that metastable conformation of proteins enables the construction of mechanically graded protein materials that exhibit spatially controlled conformations and resilience. These results offer insights into molecular mechanisms of protein elastomers and outline a general conformation-driven strategy for developing resilient and functional protein materials.
Collapse
Affiliation(s)
- Xuan Mu
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139
| | - John S K Yuen
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155
| | - Jaewon Choi
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155
| | - Yixin Zhang
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155
| | - Peggy Cebe
- Department of Physics and Astronomy, Tufts University, Medford, MA 02155
| | - Xiaocheng Jiang
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139;
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155;
| |
Collapse
|
15
|
Xia T, Jiang X, Deng L, Yang M, Chen X. Albumin-based dynamic double cross-linked hydrogel with self-healing property for antimicrobial application. Colloids Surf B Biointerfaces 2021; 208:112042. [PMID: 34425530 DOI: 10.1016/j.colsurfb.2021.112042] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/26/2021] [Accepted: 08/12/2021] [Indexed: 02/06/2023]
Abstract
Hydrogels as ideal material are widely used in biomedical field against bacterial infection. Hydrogels synthesized from natural protein possess better biocompatibility than that synthesized from synthetic polymers. In this work, we designed bovine serum albumin (BSA) based hydrogel via double dynamic crosslinking. The cleavage and rearrangement of disulfide bonds of BSA triggered by glutathione (GSH) forms a disulfide bridge network, and tetrakis (hydroxymethyl) phosphonium sulfate (THPS) grafts the amino groups of BSA by a Mannich-type reaction to form a second network. Integrating THPS into the BSA/GSH system enables gel formation and endows excellent antimicrobial properties. Rheological tests showed the hydrogel featuring elasticity, good mechanical strength and self-healing properties. Antibacterial and cytotoxicity tests proved the hydrogel excellent bacteriostatic ability and low cytotoxicity. This albumin-based hydrogel with low cost is expected to realize wide biomedical applications.
Collapse
Affiliation(s)
- Tiantian Xia
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Xingxing Jiang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Lei Deng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Minghui Yang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
16
|
Huerta-López C, Alegre-Cebollada J. Protein Hydrogels: The Swiss Army Knife for Enhanced Mechanical and Bioactive Properties of Biomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1656. [PMID: 34202469 PMCID: PMC8307158 DOI: 10.3390/nano11071656] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 12/31/2022]
Abstract
Biomaterials are dynamic tools with many applications: from the primitive use of bone and wood in the replacement of lost limbs and body parts, to the refined involvement of smart and responsive biomaterials in modern medicine and biomedical sciences. Hydrogels constitute a subtype of biomaterials built from water-swollen polymer networks. Their large water content and soft mechanical properties are highly similar to most biological tissues, making them ideal for tissue engineering and biomedical applications. The mechanical properties of hydrogels and their modulation have attracted a lot of attention from the field of mechanobiology. Protein-based hydrogels are becoming increasingly attractive due to their endless design options and array of functionalities, as well as their responsiveness to stimuli. Furthermore, just like the extracellular matrix, they are inherently viscoelastic in part due to mechanical unfolding/refolding transitions of folded protein domains. This review summarizes different natural and engineered protein hydrogels focusing on different strategies followed to modulate their mechanical properties. Applications of mechanically tunable protein-based hydrogels in drug delivery, tissue engineering and mechanobiology are discussed.
Collapse
Affiliation(s)
- Carla Huerta-López
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | | |
Collapse
|
17
|
Hanson BS, Dougan L. Network Growth and Structural Characteristics of Globular Protein Hydrogels. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00890] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Benjamin S. Hanson
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U.K
| | - Lorna Dougan
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U.K
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K
| |
Collapse
|
18
|
Fu L, Li H. Toward Quantitative Prediction of the Mechanical Properties of Tandem Modular Elastomeric Protein-Based Hydrogels. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00664] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Linglan Fu
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Hongbin Li
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|
19
|
Khoury LR, Slawinski M, Collison DR, Popa I. Cation-induced shape programming and morphing in protein-based hydrogels. SCIENCE ADVANCES 2020; 6:eaba6112. [PMID: 32494690 PMCID: PMC7190360 DOI: 10.1126/sciadv.aba6112] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/07/2020] [Indexed: 05/10/2023]
Abstract
Smart materials that are capable of memorizing a temporary shape, and morph in response to a stimulus, have the potential to revolutionize medicine and robotics. Here, we introduce an innovative method to program protein hydrogels and to induce shape changes in aqueous solutions at room temperature. We demonstrate our approach using hydrogels made from serum albumin, the most abundant protein in the blood plasma, which are synthesized in a cylindrical or flower shape. These gels are then programmed into a spring or a ring shape, respectively. The programming is performed through a marked change in stiffness (of up to 17-fold), induced by adsorption of Zn2+ or Cu2+ cations. We show that these programmed biomaterials can then morph back into their original shape, as the cations diffuse outside the hydrogel material. The approach demonstrated here represents an innovative strategy to program protein-based hydrogels to behave as actuators.
Collapse
Affiliation(s)
- Luai R. Khoury
- Department of Physics, University of Wisconsin-Milwaukee (UWM), 3135 North Maryland Ave., Milwaukee, WI 53211, USA
| | - Marina Slawinski
- Department of Physics, University of Wisconsin-Milwaukee (UWM), 3135 North Maryland Ave., Milwaukee, WI 53211, USA
| | - Daniel R. Collison
- Department of Physics, University of Wisconsin-Milwaukee (UWM), 3135 North Maryland Ave., Milwaukee, WI 53211, USA
| | | |
Collapse
|
20
|
Li Y, Xue B, Cao Y. 100th Anniversary of Macromolecular Science Viewpoint: Synthetic Protein Hydrogels. ACS Macro Lett 2020; 9:512-524. [PMID: 35648497 DOI: 10.1021/acsmacrolett.0c00109] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Our bodies are composed of soft tissues made of various proteins. In contrast, most hydrogels designed for biological applications are made of synthetic polymers. Recently, it is increasingly recognized that genetically synthesized proteins can be tailored as building blocks of hydrogels with biological, chemical, and mechanical properties similar to native soft tissues. In this Viewpoint, we summarize recent progress in synthetic protein hydrogels. We compare the structural and mechanical properties of different protein building blocks. We discuss various biocompatible cross-linking strategies based on covalent chemical reactions and noncovalent physical interactions. We introduce how stimulus-responsive conformational changes or intermolecular interactions at the molecular level can be used to engineer responsive hydrogels. We highlight that hydrogel network structures are as important as the protein sequences for the properties and functions of protein hydrogels and should be carefully designed. Despite great progress and potentials of synthetic protein hydrogels, there are still quite a few unsettled challenges and unexploited opportunities, providing abundant room for future investigation and development, particularly as this field is quickly expanding beyond its initial stage. We discuss a number of possible directions, including optimizing protein production and reducing cost, engineering anisotropic hydrogels to better mimic native tissues, rationally designing hydrogel mechanical properties, investigating interplays of hydrogels and residing cells for 3D cell culture and organoid construction, and evaluating long-term cytotoxicity and immune response.
Collapse
Affiliation(s)
- Ying Li
- School of Chemistry and Materials Science, Nanjing University of Information Science and Technology (NUIST), Nanjing, China 210044
| | - Bin Xue
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, China 210093
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, China 210093
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China, 210023
- Institute of Brain Science, Nanjing University, Nanjing, China, 210023
| |
Collapse
|
21
|
Khoury LR, Popa I. Chemical unfolding of protein domains induces shape change in programmed protein hydrogels. Nat Commun 2019; 10:5439. [PMID: 31784506 PMCID: PMC6884551 DOI: 10.1038/s41467-019-13312-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 10/30/2019] [Indexed: 12/31/2022] Open
Abstract
Programmable behavior combined with tailored stiffness and tunable biomechanical response are key requirements for developing successful materials. However, these properties are still an elusive goal for protein-based biomaterials. Here, we use protein-polymer interactions to manipulate the stiffness of protein-based hydrogels made from bovine serum albumin (BSA) by using polyelectrolytes such as polyethyleneimine (PEI) and poly-L-lysine (PLL) at various concentrations. This approach confers protein-hydrogels with tunable wide-range stiffness, from ~10-64 kPa, without affecting the protein mechanics and nanostructure. We use the 6-fold increase in stiffness induced by PEI to program BSA hydrogels in various shapes. By utilizing the characteristic protein unfolding we can induce reversible shape-memory behavior of these composite materials using chemical denaturing solutions. The approach demonstrated here, based on protein engineering and polymer reinforcing, may enable the development and investigation of smart biomaterials and extend protein hydrogel capabilities beyond their conventional applications.
Collapse
Affiliation(s)
- Luai R Khoury
- Department of Physics, University of Wisconsin-Milwaukee, 3135 North Maryland Ave., Milwaukee, WI, 53211, USA.
| | - Ionel Popa
- Department of Physics, University of Wisconsin-Milwaukee, 3135 North Maryland Ave., Milwaukee, WI, 53211, USA.
| |
Collapse
|
22
|
Bai Y, Li S, Li X, Han X, Li Y, Zhao J, Zhang J, Hou X, Yuan X. An injectable robust denatured albumin hydrogel formed via double equilibrium reactions. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:662-678. [PMID: 30947639 DOI: 10.1080/09205063.2019.1600821] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Yu Bai
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, China
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
| | - Sidi Li
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, China
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
| | - Xueping Li
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, China
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
| | - Xing Han
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, China
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
| | - Yang Li
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, China
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
| | - Jin Zhao
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, China
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
| | - Juntao Zhang
- First Teaching Hospital of Tianjin, University of Traditional Chinese Medicine, Tianjin, China
| | - Xin Hou
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, China
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
| | - Xubo Yuan
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, China
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
| |
Collapse
|
23
|
Probing Globular Protein Self-Assembling Dynamics by Heterodyne Transient Grating Experiments. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9030405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this work, we studied the propagation of ultrasonic waves of lysozyme solutions characterized by different degrees of aggregation and networking. The experimental investigation was performed by means of the transient grating (TG) spectroscopy as a function of temperature, which enabled measurement of the ultrasonic acoustic proprieties over a wide time window, ranging from nanoseconds to milliseconds. The fitting of the measured TG signal allowed the extraction of several dynamic properties, here we focused on the speed and the damping rate of sound. The temperature variation induced a series of processes in the lysozyme solutions: Protein folding-unfolding, aggregation and sol–gel transition. Our TG investigation showed how these self-assembling phenomena modulate the sound propagation, affecting both the velocity and the damping rate of the ultrasonic waves. In particular, the damping of ultrasonic acoustic waves proved to be a dynamic property very sensitive to the protein conformational rearrangements and aggregation processes.
Collapse
|
24
|
The extracellular matrix-myosin pathway in mechanotransduction: from molecule to tissue. Emerg Top Life Sci 2018; 2:727-737. [PMID: 33530663 PMCID: PMC7289002 DOI: 10.1042/etls20180043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/26/2018] [Accepted: 09/28/2018] [Indexed: 12/23/2022]
Abstract
Mechanotransduction via the extracellular matrix (ECM)–myosin pathway is involved in determining cell morphology during development and in coupling external transient mechanical stimuli to the reorganization of the cytoskeleton. Here, we present a review on the molecular mechanisms involved in this pathway and how they influence cellular development and organization. We investigate key proteins involved in the ECM–myosin pathway and discuss how specific binding events and conformational changes under force are related to mechanical signaling. We connect these molecular mechanisms with observed morphological changes at the cellular and organism level. Finally, we propose a model encompassing the biomechanical signals along the ECM–myosin pathway and how it could be involved in cell adhesion, cell migration, and tissue architecture.
Collapse
|
25
|
Shmilovich K, Popa I. Modeling Protein-Based Hydrogels under Force. PHYSICAL REVIEW LETTERS 2018; 121:168101. [PMID: 30387621 DOI: 10.1103/physrevlett.121.168101] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/07/2018] [Indexed: 06/08/2023]
Abstract
Hydrogels made from structured polyprotein domains combine the properties of cross-linked polymers with the unfolding phase transition. The use of protein hydrogels as an ensemble approach to study the physics of domain unfolding is limited by the lack of scaling tools and by the complexity of the system. Here we propose a model to describe the biomechanical response of protein hydrogels based on the unfolding and extension of protein domains under force. Our model considers the contributions of the network dynamics of the molecules inside the gels, which have random cross-linking points and random topology. This model reproduces reported macroscopic viscoelastic effects and constitutes an important step toward using rheometry on protein hydrogels to scale down to the average mechanical response of protein molecules.
Collapse
Affiliation(s)
- Kirill Shmilovich
- Department of Physics, University of Wisconsin-Milwaukee, 3135 North Maryland Ave., Milwaukee, Wisconsin 53211, USA
| | - Ionel Popa
- Department of Physics, University of Wisconsin-Milwaukee, 3135 North Maryland Ave., Milwaukee, Wisconsin 53211, USA
| |
Collapse
|