1
|
Ospennikov AS, Chesnokov YM, Shibaev AV, Lokshin BV, Philippova OE. Nanostructured Hydrogels of Carboxylated Cellulose Nanocrystals Crosslinked by Calcium Ions. Gels 2024; 10:777. [PMID: 39727535 DOI: 10.3390/gels10120777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
Bio-based eco-friendly cellulose nanocrystals (CNCs) gain an increasing interest for diverse applications. We report the results of an investigation of hydrogels spontaneously formed by the self-assembly of carboxylated CNCs in the presence of CaCl2 using several complementary techniques: rheometry, isothermal titration calorimetry, FTIR-spectroscopy, cryo-electron microscopy, cryo-electron tomography, and polarized optical microscopy. Increasing CaCl2 concentration was shown to induce a strong increase in the storage modulus of CNC hydrogels accompanied by the growth of CNC aggregates included in the network. Comparison of the rheological data at the same ionic strength provided by NaCl and CaCl2 shows much higher dynamic moduli in the presence of CaCl2, which implies that calcium cations not only screen the repulsion between similarly charged nanocrystals favoring their self-assembly, but also crosslink the polyanionic nanocrystals. Crosslinking is endothermic and driven by increasing entropy, which is most likely due to the release of water molecules surrounding the interacting COO- and Ca2+ ions. The hydrogels can be easily destroyed by increasing the shear rate because of the alignment of rodlike nanocrystals along the direction of flow and then quickly recover up to 90% of their viscosity in 15 s, when the shear rate is decreased.
Collapse
Affiliation(s)
| | - Yuri M Chesnokov
- National Research Center "Kurchatov Institute", 123182 Moscow, Russia
| | - Andrey V Shibaev
- Physics Department, Lomonosov Moscow State University, 119991 Moscow, Russia
- Chemistry Department, Karaganda E.A. Buketov University, Karaganda 100028, Kazakhstan
| | - Boris V Lokshin
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Olga E Philippova
- Physics Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
2
|
Makarova AL, Kwiatkowski AL, Kuklin AI, Chesnokov YM, Philippova OE, Shibaev AV. Dual Semi-Interpenetrating Networks of Water-Soluble Macromolecules and Supramolecular Polymer-like Chains: The Role of Component Interactions. Polymers (Basel) 2024; 16:1430. [PMID: 38794623 PMCID: PMC11125886 DOI: 10.3390/polym16101430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/06/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Dual networks formed by entangled polymer chains and wormlike surfactant micelles have attracted increasing interest in their application as thickeners in various fields since they combine the advantages of both polymer- and surfactant-based fluids. In particular, such polymer-surfactant mixtures are of great interest as novel hydraulic fracturing fluids with enhanced properties. In this study, we demonstrated the effect of the chemical composition of an uncharged polymer poly(vinyl alcohol) (PVA) and pH on the rheological properties and structure of its mixtures with a cationic surfactant erucyl bis(hydroxyethyl)methylammonium chloride already exploited in fracturing operations. Using a combination of several complementary techniques (rheometry, cryo-transmission electron microscopy, small-angle neutron scattering, and nuclear magnetic resonance spectroscopy), we showed that a small number of residual acetate groups (2-12.7 mol%) in PVA could significantly reduce the viscosity of the mixed system. This result was attributed to the incorporation of acetate groups in the corona of the micellar aggregates, decreasing the molecular packing parameter and thereby inducing the shortening of worm-like micelles. When these groups are removed by hydrolysis at a pH higher than 7, viscosity increases by five orders of magnitude due to the growth of worm-like micelles in length. The findings of this study create pathways for the development of dual semi-interpenetrating polymer-micellar networks, which are highly desired by the petroleum industry.
Collapse
Affiliation(s)
- Anna L. Makarova
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.L.M.); (O.E.P.)
| | - Alexander L. Kwiatkowski
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.L.M.); (O.E.P.)
| | | | - Yuri M. Chesnokov
- National Research Center, Kurchatov Institute, 123182 Moscow, Russia;
| | - Olga E. Philippova
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.L.M.); (O.E.P.)
| | - Andrey V. Shibaev
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.L.M.); (O.E.P.)
- Chemistry Department, Karaganda E.A. Buketov University, University Street 28, Karaganda 100028, Kazakhstan
| |
Collapse
|
3
|
Vishnevetskii DV, Mekhtiev AR, Averkin DV, Polyakova EE. Cysteine-Silver-Polymer Systems for the Preparation of Hydrogels and Films with Potential Applications in Regenerative Medicine. Gels 2023; 9:924. [PMID: 38131910 PMCID: PMC10742544 DOI: 10.3390/gels9120924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023] Open
Abstract
Herein, the problem concerning the poorer mechanical properties of gels based on low molecular weight gelators (LMWGs)-L-cysteine and silver nitrate-was solved by the addition of various polymers-polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP) and polyethylene glycol (PEG)-to the initial cysteine-silver sol (CSS). The physicochemical methods of analysis-viscosimetry, UV spectroscopy, DLS, and SEM-identified that cysteine-silver hydrogels (CSG) based on PVA possess the best rheological properties and porous microstructure (the average pore size is 2-10 µm) compared to gels without the polymer or with PVP or PEG. Such gels are able to form cysteine-silver cryogels (CSC) and then porous cysteine-silver films (CSF) with an average pore size of 10-20 µm and good mechanical, swelling, and adhesion to skin characteristics as long as the structure of CSS particles remains stable. In vitro experiments have shown that hydrogels are non-toxic to normal human fibroblast cells. The obtained materials could potentially be applied to regenerative medicine.
Collapse
Affiliation(s)
- Dmitry V. Vishnevetskii
- Department of Physical Chemistry, Tver State University, Building 33, Zhelyabova Str., Tver 170100, Russia;
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Str., Moscow 191121, Russia
| | - Arif R. Mekhtiev
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Str., Moscow 191121, Russia
| | - Dmitry V. Averkin
- Russian Metrological Institute of Technical Physics and Radio Engineering, Worker’s Settlement Mendeleevo, Building 11, Moscow 141570, Russia;
| | - Elizaveta E. Polyakova
- Department of Physical Chemistry, Tver State University, Building 33, Zhelyabova Str., Tver 170100, Russia;
| |
Collapse
|
4
|
Gradzielski M. Polymer-Surfactant Interaction for Controlling the Rheological Properties of Aqueous Surfactant Solutions. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Kwiatkowski AL, Molchanov VS, Kuklin AI, Orekhov AS, Arkharova NA, Philippova OE. Structural transformations of charged spherical surfactant micelles upon solubilization of water-insoluble polymer chains in salt-free aqueous solutions. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118326] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Shibaev AV, Osiptsov AA, Philippova OE. Novel Trends in the Development of Surfactant-Based Hydraulic Fracturing Fluids: A Review. Gels 2021; 7:258. [PMID: 34940318 PMCID: PMC8701209 DOI: 10.3390/gels7040258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 12/04/2022] Open
Abstract
Viscoelastic surfactants (VES) are amphiphilic molecules which self-assemble into long polymer-like aggregates-wormlike micelles. Such micellar chains form an entangled network, imparting high viscosity and viscoelasticity to aqueous solutions. VES are currently attracting great attention as the main components of clean hydraulic fracturing fluids used for enhanced oil recovery (EOR). Fracturing fluids consist of proppant particles suspended in a viscoelastic medium. They are pumped into a wellbore under high pressure to create fractures, through which the oil can flow into the well. Polymer gels have been used most often for fracturing operations; however, VES solutions are advantageous as they usually require no breakers other than reservoir hydrocarbons to be cleaned from the well. Many attempts have recently been made to improve the viscoelastic properties, temperature, and salt resistance of VES fluids to make them a cost-effective alternative to polymer gels. This review aims at describing the novel concepts and advancements in the fundamental science of VES-based fracturing fluids reported in the last few years, which have not yet been widely industrially implemented, but are significant for prospective future applications. Recent achievements, reviewed in this paper, include the use of oligomeric surfactants, surfactant mixtures, hybrid nanoparticle/VES, or polymer/VES fluids. The advantages and limitations of the different VES fluids are discussed. The fundamental reasons for the different ways of improvement of VES performance for fracturing are described.
Collapse
Affiliation(s)
| | - Andrei A. Osiptsov
- Skolkovo Institute of Science and Technology (Skoltech), 121205 Moscow, Russia;
| | | |
Collapse
|
7
|
Dual Transient Networks of Polymer and Micellar Chains: Structure and Viscoelastic Synergy. Polymers (Basel) 2021; 13:polym13234255. [PMID: 34883758 PMCID: PMC8659570 DOI: 10.3390/polym13234255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 11/30/2021] [Indexed: 02/04/2023] Open
Abstract
Dual transient networks were prepared by mixing highly charged long wormlike micelles of surfactants with polysaccharide chains of hydroxypropyl guar above the entanglement concentration for each of the components. The wormlike micelles were composed of two oppositely charged surfactants potassium oleate and n-octyltrimethylammonium bromide with a large excess of anionic surfactant. The system is macroscopically homogeneous over a wide range of polymer and surfactant concentrations, which is attributed to a stabilizing effect of surfactants counterions that try to occupy as much volume as possible in order to gain in translational entropy. At the same time, by small-angle neutron scattering (SANS) combined with ultrasmall-angle neutron scattering (USANS), a microphase separation with the formation of polymer-rich and surfactant-rich domains was detected. Rheological studies in the linear viscoelastic regime revealed a synergistic 180-fold enhancement of viscosity and 65-fold increase of the longest relaxation time in comparison with the individual components. This effect was attributed to the local increase in concentration of both components trying to avoid contact with each other, which makes the micelles longer and increases the number of intermicellar and interpolymer entanglements. The enhanced rheological properties of this novel system based on industrially important polymer hold great potential for applications in personal care products, oil recovery and many other fields.
Collapse
|
8
|
Double dynamic hydrogels formed by wormlike surfactant micelles and cross-linked polymer. J Colloid Interface Sci 2021; 611:46-60. [PMID: 34929438 DOI: 10.1016/j.jcis.2021.11.198] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 01/16/2023]
Abstract
HYPOTHESIS Interpenetrating networks consisting of a polymer network with dynamic cross-links and a supramolecular network allow obtaining hydrogels with significantly enhanced mechanical properties. EXPERIMENTS Binary hydrogels composed of a dynamically cross-linked poly(vinyl alcohol) (PVA) network and a transient network of entangled highly charged mixed wormlike micelles (WLMs) of surfactants (potassium oleate and n-octyltrimethylammonium bromide) were prepared and studied by rheometry, SANS, USANS, cryo-TEM, and NMR spectroscopy. FINDINGS Binary hydrogels show significantly enhanced rheological properties (a 3400-fold higher viscosity and 27-fold higher plateau modulus) as compared to their components taken separately. This is due to the microphase separation leading to local concentrating of PVA and WLMs providing larger number of polymer-polymer contacts for cross-linking and longer WLMs with more entanglements. Such materials are very promising for the application in many areas, ranging from enhanced oil recovery to biomedical uses.
Collapse
|
9
|
Temporally persistent networks of long-lived mixed wormlike micelles of zwitterionic and anionic surfactants. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Wang T, Kang W, Yang H, Li Z, Zhu T, Sarsenbekuly B, Gabdullin M. An Advanced Material with Synergistic Viscoelasticity Enhancement of Hydrophobically Associated Water-Soluble Polymer and Surfactant. Macromol Rapid Commun 2021; 42:e2100033. [PMID: 33904224 DOI: 10.1002/marc.202100033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/31/2021] [Indexed: 11/11/2022]
Abstract
In order to prepare materials with controllable properties, changeable microstructure, and high viscoelasticity solution with low polymer and surfactant concentration, a composite is constituted by adding surfactant (sodium dodecyl sulfate, SDS) to hydrophobically associated water-soluble polymer (abbreviated as PAAC) solution. The viscoelasticity, aggregate microstructure, and interaction mechanism of the composite are investigated by rheometery, Cryo-transmission electron microscopy (Cryo-TEM), and fluorescence spectrum. The results show that when the mass ratio of polymer to surfactant is 15:1, the viscosity of the composite reaches the maximum. The viscosity of the composite system increases hundredfold. The viscosity plateau under dynamic shear is generated. The composite has the properties of high viscoelasticity, strong shear thinning behavior, and good salt tolerance, and temperature resistance. The maximum viscosity of the composite is shown at the salinity of 20000 mg L-1 . In addition, there is no phase separation in the composite with the increase of polymer and surfactant concentration, which indicates the good stability of the system. It is proposed a method to obtain a high viscoelasticity solution by adding surfactants without wormlike micelles to a hydrophobically associated water-soluble polymer solution.
Collapse
Affiliation(s)
- Tongyu Wang
- Key Laboratory of Unconventional Oil & Gas Development, Ministry of Education, China University of Petroleum (East China), Qingdao, 266580, P. R. China.,School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Wanli Kang
- Key Laboratory of Unconventional Oil & Gas Development, Ministry of Education, China University of Petroleum (East China), Qingdao, 266580, P. R. China.,School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Hongbin Yang
- Key Laboratory of Unconventional Oil & Gas Development, Ministry of Education, China University of Petroleum (East China), Qingdao, 266580, P. R. China.,School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Zhe Li
- Key Laboratory of Unconventional Oil & Gas Development, Ministry of Education, China University of Petroleum (East China), Qingdao, 266580, P. R. China.,School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Tongyu Zhu
- Key Laboratory of Unconventional Oil & Gas Development, Ministry of Education, China University of Petroleum (East China), Qingdao, 266580, P. R. China.,School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Bauyrzhan Sarsenbekuly
- Key Laboratory of Unconventional Oil & Gas Development, Ministry of Education, China University of Petroleum (East China), Qingdao, 266580, P. R. China.,School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China.,Kazakh-British Technical University, Almaty, 050000, Kazakhstan
| | - Maratbek Gabdullin
- Key Laboratory of Unconventional Oil & Gas Development, Ministry of Education, China University of Petroleum (East China), Qingdao, 266580, P. R. China.,School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China.,Kazakh-British Technical University, Almaty, 050000, Kazakhstan
| |
Collapse
|
11
|
Shibaev AV, Doroganov AP, Larin DE, Smirnova ME, Cherkaev GV, Kabaeva NM, Kitaeva DK, Buyanovskaya AG, Philippova OE. Hydrogels of Polysaccharide Carboxymethyl Hydroxypropyl Guar Crosslinked by Multivalent Metal Ions. POLYMER SCIENCE SERIES A 2021. [DOI: 10.1134/s0965545x21010089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Abstract
Hydrogels of polysaccharide carboxymethyl hydroxypropyl guar crosslinked by chromium(III) ions are synthesized. The effect of crosslinker concentration on the mechanical behavior of the gels is studied, and the amount of chromium compounds able to interact with polymer chains and the amount of carboxyl groups of the polymer involved in crosslinking are compared. It is shown that the elastic modulus of the gels attains a constant value when not all but only about 10% functional groups interact with chromium compounds. At high concentrations, crosslinker molecules basically bind to one functional group; as a result, the gel recharges. This binding proceeds until all carboxyl groups are filled.
Collapse
|
12
|
Shibaev AV, Aleshina AL, Arkharova NA, Orekhov AS, Kuklin AI, Philippova OE. Disruption of Cationic/Anionic Viscoelastic Surfactant Micellar Networks by Hydrocarbon as a Basis of Enhanced Fracturing Fluids Clean-Up. NANOMATERIALS 2020; 10:nano10122353. [PMID: 33260867 PMCID: PMC7761115 DOI: 10.3390/nano10122353] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/21/2020] [Accepted: 11/25/2020] [Indexed: 11/16/2022]
Abstract
Studies of the effects produced by the solubilization of hydrophobic substances by micellar aggregates in water medium are quite important for applications of viscoelastic surfactant solutions for enhanced oil recovery (EOR), especially in hydraulic fracturing technology. The present paper aims at the investigation of the structural transformations produced by the absorption of an aliphatic hydrocarbon (n-decane) by mixed wormlike micelles of cationic (n-octyltrimethylammonium bromide, C8TAB) and anionic (potassium oleate) surfactants enriched by C8TAB. As a result of contact with a small amount (0.5 wt%) of oil, a highly viscoelastic fluid is transformed to a water-like liquid. By small-angle neutron scattering (SANS) combined with cryo-TEM, it was shown that this is due to the transition of long wormlike micelles with elliptical cross-sections to ellipsoidal microemulsion droplets. The non-spherical shape was attributed to partial segregation of longer- and shorter-tail surfactant molecules inside the surfactant monolayer, providing an optimum curvature for both of them. As a result, the long-chain surfactant could preferably be located in the flatter part of the aggregates and the short-chain surfactant—at the ellipsoid edges with higher curvature. It is proven that the transition proceeds via a co-existence of microemulsion droplets and wormlike micelles, and upon the increase of hydrocarbon content, the size and volume fraction of ellipsoidal microemulsion droplets increase. The internal structure of the droplets was revealed by contrast variation SANS, and it was shown that, despite the excess of the cationic surfactant, the radius of surfactant shell is controlled by the anionic surfactant with longer tail. These findings open a way for optimizing the performance of viscoelastic surfactant fluids by regulating both the mechanical properties of the fluids and their clean-up from the fracture induced by contact with hydrocarbons.
Collapse
Affiliation(s)
- Andrey V. Shibaev
- Physics Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.L.A.); (O.E.P.)
- Correspondence: ; Tel.: +7-495-939-1464
| | - Anna L. Aleshina
- Physics Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.L.A.); (O.E.P.)
| | | | - Anton S. Orekhov
- National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia;
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia;
| | - Alexander I. Kuklin
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia;
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 141980 Dubna, Russia
| | - Olga E. Philippova
- Physics Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.L.A.); (O.E.P.)
| |
Collapse
|
13
|
Vishnevetskii DV, Adamyan AN, Ivanova AI, Khizhnyak SD, Pakhomov PM. Influence of polyvinyl alcohol on the rheology and morphology of an l-cysteine-AgNO3 supramolecular system. Russ Chem Bull 2020. [DOI: 10.1007/s11172-020-2921-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Molchanov V, Efremova M, Orekhov A, Arkharova N, Rogachev A, Philippova O. Soft nanocomposites based on nanoclay particles and mixed wormlike micelles of surfactants. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
15
|
Opposite effect of salt on branched wormlike surfactant micelles with and without embedded polymer. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113301] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Artykulnyi O, Shibaev A, Avdeev M, Ivankov O, Bulavin L, Petrenko V, Philippova O. Structural investigations of poly(ethylene glycol)-dodecylbenzenesulfonic acid complexes in aqueous solutions. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113045] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Structure, rheological and responsive properties of a new mixed viscoelastic surfactant system. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124284] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Shibaev AV, Mityuk DY, Muravlev DA, Philippova OE. Viscoelastic Solutions of Wormlike Micelles of a Cationic Surfactant and a Stiff-Chain Anionic Polyelectrolyte. POLYMER SCIENCE SERIES A 2020. [DOI: 10.1134/s0965545x19060099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Liu D, Li Y, Liu F, Zhou W, Sun A, Liu X, Chen F, Xu BB, Wei J. Interfacial Interaction Enhanced Rheological Behavior in PAM/CTAC/Salt Aqueous Solution-A Coarse-Grained Molecular Dynamics Study. Polymers (Basel) 2020; 12:polym12020265. [PMID: 31991789 PMCID: PMC7077399 DOI: 10.3390/polym12020265] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/19/2020] [Accepted: 01/21/2020] [Indexed: 11/16/2022] Open
Abstract
Interfacial interactions within a multi-phase polymer solution play critical roles in processing control and mass transportation in chemical engineering. However, the understandings of these roles remain unexplored due to the complexity of the system. In this study, we used an efficient analytical method-a nonequilibrium molecular dynamics (NEMD) simulation-to unveil the molecular interactions and rheology of a multiphase solution containing cetyltrimethyl ammonium chloride (CTAC), polyacrylamide (PAM), and sodium salicylate (NaSal). The associated macroscopic rheological characteristics and shear viscosity of the polymer/surfactant solution were investigated, where the computational results agreed well with the experimental data. The relation between the characteristic time and shear rate was consistent with the power law. By simulating the shear viscosity of the polymer/surfactant solution, we found that the phase transition of micelles within the mixture led to a non-monotonic increase in the viscosity of the mixed solution with the increase in concentration of CTAC or PAM. We expect this optimized molecular dynamic approach to advance the current understanding on chemical-physical interactions within polymer/surfactant mixtures at the molecular level and enable emerging engineering solutions.
Collapse
Affiliation(s)
- Dongjie Liu
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (D.L.); (W.Z.)
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China;
| | - Yong Li
- Drilling and Production Engineering Research Institute, Chuanqing Drilling and Exploration Engineering Company Ltd., CNPC, Xi’an 710018, China;
| | - Fei Liu
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China;
| | - Wenjing Zhou
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (D.L.); (W.Z.)
| | - Ansu Sun
- Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK; (A.S.); (X.L.)
| | - Xiaoteng Liu
- Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK; (A.S.); (X.L.)
| | - Fei Chen
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (D.L.); (W.Z.)
- Correspondence: (F.C.); (B.B.X.); (J.W.); Tel.: +86-029-82664375 (J.W.)
| | - Ben Bin Xu
- Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK; (A.S.); (X.L.)
- Correspondence: (F.C.); (B.B.X.); (J.W.); Tel.: +86-029-82664375 (J.W.)
| | - Jinjia Wei
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (D.L.); (W.Z.)
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China;
- Correspondence: (F.C.); (B.B.X.); (J.W.); Tel.: +86-029-82664375 (J.W.)
| |
Collapse
|
20
|
Philippova OE, Molchanov VS. Enhanced rheological properties and performance of viscoelastic surfactant fluids with embedded nanoparticles. Curr Opin Colloid Interface Sci 2019. [DOI: 10.1016/j.cocis.2019.02.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Kwiatkowski AL, Molchanov VS, Philippova OE. Polymer-like Wormlike Micelles of Ionic Surfactants: Structure and Rheological Properties. POLYMER SCIENCE SERIES A 2019. [DOI: 10.1134/s0965545x19020081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Vishnevetskii DV, Adamyan AN, Laguseva VS, Ivanova AI, Khizhnyak SD, Pakhomov PM. Self-Organization Processes in Aqueous Solution of Polyvinyl Alcohol, L-Cysteine, and Silver Nitrate. POLYMER SCIENCE SERIES A 2019. [DOI: 10.1134/s0965545x19010103] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Different responsiveness to hydrocarbons of linear and branched anionic/cationic-mixed wormlike surfactant micelles. Colloid Polym Sci 2018. [DOI: 10.1007/s00396-018-4428-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
24
|
Kwiatkowski AL, Molchanov VS, Sharma H, Kuklin AI, Dormidontova EE, Philippova OE. Growth of wormlike micelles of surfactant induced by embedded polymer: role of polymer chain length. SOFT MATTER 2018; 14:4792-4804. [PMID: 29808227 DOI: 10.1039/c8sm00776d] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Incorporation of polymer chains into wormlike surfactant micelles, which find a large range of applications, offers the opportunity to modify their structure and properties. In this paper, using spectroscopic, scattering and rheological techniques and computer simulations, we study the incorporation of poly(4-vinylpyridine) of two different molecular weights (MWs) into entangled networks of wormlike surfactant micelles of potassium oleate. Using NMR-spectroscopy we show that, independent of its MW, the polymer incorporates into the core-corona interface of the surfactant micelles. According to SANS data, the polymer does not alter the micelle structure or the micelle radius, but diminishes the packing density of the surfactant. At the same time, rheology reveals a stark difference between the surfactant networks with embedded polymers of different MWs. Networks with the higher-MW polymer possess larger viscosity and a longer relaxation time, which we attribute to the larger length of the hybrid micelles. Moreover, we demonstrate that in an intermediate concentration range the higher-MW polymer is able to link neighbouring surfactant micelles together, which has never been previously observed. However, with a further increase in polymer content the micelles become smaller due to the high breaking susceptibility of the boundaries of polymer-containing sections, leading to the stabilization of micellar end-caps by the embedded macromolecules. This process is more prominent in the case of the shorter polymer. Our finding that an increased MW of macromolecules permits the formation of longer hybrid micelles and enhances their rheological properties is of obvious importance for the fundamental understanding of polymer-surfactant interactions and the development of new industrial formulations based on hybrid polymer-wormlike surfactant micelles.
Collapse
|