1
|
Sun M, Wang Y, Huang A, Wang H, Peng S, Gao F, Yang X, Song X, Feng C. Enhancing Biocatalysis through Chiral Supramolecular Scaffolds: Insights into the Structural Adaptability of Lipase. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48126-48138. [PMID: 39196803 DOI: 10.1021/acsami.4c10295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
How to maintain high catalytic activity and stability in the process of biocatalysis is crucial, inspiring strategies to construct an appropriate catalytic microenvironment. Considering the lipase's inherent chirality and the necessity for a delicate hydrophilic-hydrophobic equilibrium, we crafted a chiral, nonaqueous catalytic microenvironment via the in situ coassembly of Boc-FLFL-NHNH2 (Bfl) and lipase. Benefiting from the chirality and distinct Bfl-lipase interactions, the lipase@Bfl supramolecular hybrid amplifies biological functionalities and can serve as a versatile and highly efficient catalyst. Kinetic investigations and molecular docking simulations uncover the strong lipase-substrate affinity and lipase-Bfl interactions, explaining the enhanced biological effects, catalytic activity, and stability. Our study establishes a suitable microenvironment to address the chirality and hydrophobicity during catalysis and highlights the potential of artificial chiral scaffolds and catalytic medium for enhancing lipase activity.
Collapse
Affiliation(s)
- Meng Sun
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuyang Wang
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China
| | - Anni Huang
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China
| | - Hanlu Wang
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China
| | - Shiqiao Peng
- Department of Endocrinology and Metabolism, First Affiliated Hospital Zhejiang University, Hangzhou, 310003, China
| | - Fengli Gao
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xu Yang
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China
| | - Xinqiang Song
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China
| | - Chuanliang Feng
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
2
|
Zhou Y, Wang P, Wan F, Zhu L, Wang Z, Fan G, Wang P, Luo H, Liao S, Yang Y, Chen S, Zhang J. Further Improvement Based on Traditional Nanocapsule Preparation Methods: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:3125. [PMID: 38133022 PMCID: PMC10745493 DOI: 10.3390/nano13243125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
Nanocapsule preparation technology, as an emerging technology with great development prospects, has uniqueness and superiority in various industries. In this paper, the preparation technology of nanocapsules was systematically divided into three categories: physical methods, chemical methods, and physicochemical methods. The technological innovation of different methods in recent years was reviewed, and the mechanisms of nanocapsules prepared via emulsion polymerization, interface polymerization, layer-by-layer self-assembly technology, nanoprecipitation, supercritical fluid, and nano spray drying was summarized in detail. Different from previous reviews, the renewal iteration of core-shell structural materials was highlighted, and relevant illustrations of their representative and latest research results were reviewed. With the continuous progress of nanocapsule technology, especially the continuous development of new wall materials and catalysts, new preparation technology, and new production equipment, nanocapsule technology will be used more widely in medicine, food, cosmetics, pesticides, petroleum products, and many other fields.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Shangxing Chen
- National Forestry and Grassland Bureau Woody Spice (East China) Engineering Technology Research Center, The Institute of Plant Natural Products and Forest Products Chemical Engineering, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China; (Y.Z.); (P.W.); (F.W.); (L.Z.); (Z.W.); (G.F.); (P.W.); (H.L.); (S.L.); (Y.Y.)
| | - Ji Zhang
- National Forestry and Grassland Bureau Woody Spice (East China) Engineering Technology Research Center, The Institute of Plant Natural Products and Forest Products Chemical Engineering, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China; (Y.Z.); (P.W.); (F.W.); (L.Z.); (Z.W.); (G.F.); (P.W.); (H.L.); (S.L.); (Y.Y.)
| |
Collapse
|
3
|
Zhao Y, Zhang L, Zhang S, Zheng X, Zheng M, Liu J. Maleic anhydride-modified xylanase and its application to the clarification of fruits juices. Food Chem X 2023; 19:100830. [PMID: 37780259 PMCID: PMC10534184 DOI: 10.1016/j.fochx.2023.100830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 07/19/2023] [Accepted: 08/06/2023] [Indexed: 10/03/2023] Open
Abstract
At presently, the catalytic activity of xylanase is sub-optimal, and the required reaction conditions are harsh. To improve its catalytic activity and stability, xylanase (XY) was chemically modified with maleic anhydride (MA). The enzymatic properties of this maleic anhydride-modified xylanase (MA-XY) were then evaluated and analyzed spectroscopically. The results showed that the thermal stability, use of organic solvents, storage stability and the pH range of 3.0 to 9.0 for MA-XY were better than that for XY alone. The kinetic parameters of the enzyme (Km values) decreased from 40.63 to 30.23 mg/mL. Spectroscopic analysis showed that XY had been modified by the acylation reaction to become a tertiary structure. An assay based on clarifying fruit juices showed that the clarification capacity and reducing sugar content using MA-XY increased compared with those using XY. Overall, this study provides a theoretical basis for improving the application of XY in the food industry.
Collapse
Affiliation(s)
- Yang Zhao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing Changchun, Jilin 130118, China
| | - Luyue Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing Changchun, Jilin 130118, China
| | - Shiyu Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing Changchun, Jilin 130118, China
| | - Xing Zheng
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing Changchun, Jilin 130118, China
| | - Mingzhu Zheng
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing Changchun, Jilin 130118, China
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing Changchun, Jilin 130118, China
| |
Collapse
|
4
|
Wang S, Lei H, Ji Z. Exploring Oxidoreductases from Extremophiles for Biosynthesis in a Non-Aqueous System. Int J Mol Sci 2023; 24:ijms24076396. [PMID: 37047370 PMCID: PMC10094897 DOI: 10.3390/ijms24076396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 03/19/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
Organic solvent tolerant oxidoreductases are significant for both scientific research and biomanufacturing. However, it is really challenging to obtain oxidoreductases due to the shortages of natural resources and the difficulty to obtained it via protein modification. This review summarizes the recent advances in gene mining and structure-functional study of oxidoreductases from extremophiles for non-aqueous reaction systems. First, new strategies combining genome mining with bioinformatics provide new insights to the discovery and identification of novel extreme oxidoreductases. Second, analysis from the perspectives of amino acid interaction networks explain the organic solvent tolerant mechanism, which regulate the discrete structure-functional properties of extreme oxidoreductases. Third, further study by conservation and co-evolution analysis of extreme oxidoreductases provides new perspectives and strategies for designing robust enzymes for an organic media reaction system. Furthermore, the challenges and opportunities in designing biocatalysis non-aqueous systems are highlighted.
Collapse
Affiliation(s)
- Shizhen Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Xiamen Key Laboratory of Synthetic Biotechnology, Xiamen University, Xiamen 361005, China
| | - Hangbin Lei
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhehui Ji
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
5
|
In situ encapsulation of biologically active ingredients into polymer particles by polymerization in dispersed media. Prog Polym Sci 2023. [DOI: 10.1016/j.progpolymsci.2022.101637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
Tang C, Chai Y, Wang C, Wang Z, Min J, Wang Y, Qi W, Su R, He Z. Pickering Emulsions Stabilized by Lignin/Chitosan Nanoparticles for Biphasic Enzyme Catalysis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12849-12858. [PMID: 36215031 DOI: 10.1021/acs.langmuir.2c01819] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this study, we construct a green and high-performance platform using Pickering emulsions for biphasic catalysis. The oil-in-water Pickering emulsions stabilized by the lignin/chitosan nanoparticles (Lig/Chi NPs) have great stability and alkali resistance, showing pH-responsive reversible emulsification and demulsification which can be recycled at least three times. The Pickering emulsion also has fluorescence and wide availability to different oil-to-water volume ratios, types of oil, storage times, temperatures, and ion concentrations. When this system is applied to the lipase-catalyzed reaction for the hydrolysis of p-nitrophenol palmitate, it will provide stable and large oil-water reaction interface areas, and the negatively charged lipase will enrich at the emulsion interface by electrostatic adsorption of the positively charged Lig/Chi NPs to achieve immobilization (lipase-Lig/Chi NPs). The reaction conversion rate can reach nearly 100% in 30 min, which is nearly three times higher than that of the conventional two-phase system. Moreover, the lipases in Pickering emulsion stabilized by Lig/Chi NPs exhibit great recyclability because of the protection of Lig/Chi NPs.
Collapse
Affiliation(s)
- Chuanmei Tang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Yingying Chai
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Chaoxuan Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Zixuan Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Jiwei Min
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Yuefei Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, P. R. China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, P. R. China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, P. R. China
| | - Zhimin He
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
7
|
Liu T, Yin Y, Yang Y, Russell TP, Shi S. Layer-by-Layer Engineered All-Liquid Microfluidic Chips for Enzyme Immobilization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2105386. [PMID: 34796557 DOI: 10.1002/adma.202105386] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/17/2021] [Indexed: 05/19/2023]
Abstract
Enzyme immobilization in the confines of microfluidic chips, that promote enzyme activity and stability, has become a powerful strategy to enhance biocatalysis and biomass conversion. Here, based on a newly developed all-liquid microfluidic chip, fabricated by the interfacial assembly of nanoparticle surfactants (NPSs) in a biphasic system, a layer-by-layer assembly strategy to generate polysaccharide multilayers on the surface of a microchannel, greatly enhancing the mechanical properties of the microchannel and offering a biocompatible microenvironment for enzyme immobilization, is presented. Using horseradish peroxidase and glucose oxidase as model enzymes, all-liquid microfluidic enzymatic and cascade reactors have been constructed and the crucial role of polysaccharide multilayers on enhancing the enzyme loading and catalytic efficiency is demonstrated.
Collapse
Affiliation(s)
- Tan Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yixuan Yin
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yang Yang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Thomas P Russell
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA, 01003, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Shaowei Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
8
|
Zhang J, Jin N, Ji N, Chen X, Shen Y, Pan T, Li L, Li S, Zhang W, Huo F. The Encounter of Biomolecules in Metal-Organic Framework Micro/Nano Reactors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52215-52233. [PMID: 34369162 DOI: 10.1021/acsami.1c09660] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In nature, biochemical reactions often take place in confined spaces, as typically exemplified by cells. As numerous cellular reactors can be integrated to maintain the living system, researchers have made constant efforts to construct cell-like structures for achieving similar transformations in vitro. Micro/nano reactors engineered by polymers and colloids are becoming popular and being applied in many fields, especially there has been an increasing trend toward constructing metal-organic framework (MOF) micro/nano reactors with the thriving of MOF nanotechnologies. Because of the uniform pores of MOFs, the transmission of substances can be regulated more accurately. Along with properties of large specific surface area, functional diversity and precise control of the particle size, MOFs are also ideal platforms for building distinct microenvironments for biological substances. Compared with traditional polymersomes and colloidosomes, the unique characteristics of MOFs render them potent micro/nano reactor shell materials, mimicking cells for applications in enzymatic catalysis, sensing, nanotherapy, vaccine, biodegradation, etc. This review highlights recent signs of progress on the design of MOF micro/nano reactors and their applications in biology, discusses the existing problems, and prospects their promising properties for smarter multifunctional applications.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Na Jin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Ning Ji
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Xinyi Chen
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Yu Shen
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Ting Pan
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Sheng Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Weina Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Fengwei Huo
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| |
Collapse
|
9
|
Wang Y, Milewska M, Foster H, Chapman R, Stenzel MH. The Core-Shell Structure, Not Sugar, Drives the Thermal Stabilization of Single-Enzyme Nanoparticles. Biomacromolecules 2021; 22:4569-4581. [PMID: 34617439 DOI: 10.1021/acs.biomac.1c00871] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Trehalose is widely assumed to be the most effective sugar for protein stabilization, but exactly how unique the structure is and the mechanism by which it works are still debated. Herein, we use a polyion complex micelle approach to control the position of trehalose relative to the surface of glucose oxidase within cross-linked and non-cross-linked single-enzyme nanoparticles (SENs). The distribution and density of trehalose molecules in the shell can be tuned by changing the structure of the underlying polymer, poly(N-[3-(dimethylamino)propyl] acrylamide (PDMAPA). SENs in which the trehalose is replaced with sucrose and acrylamide are prepared as well for comparison. Isothermal titration calorimetry, dynamic light scattering, and asymmetric flow field-flow fraction in combination with multiangle light scattering reveal that two to six polymers bind to the enzyme. Binding either trehalose or sucrose close to the enzyme surface has very little effect on the thermal stability of the enzyme. By contrast, encapsulation of the enzyme within a cross-linked polymer shell significantly enhances its thermal stability and increases the unfolding temperature from 70.3 °C to 84.8 °C. Further improvements (up to 92.8 °C) can be seen when trehalose is built into this shell. Our data indicate that the structural confinement of the enzyme is a far more important driver in its thermal stability than the location of any sugar.
Collapse
Affiliation(s)
- Yiping Wang
- Centre for Advanced Macromolecular Design (CAMD), School of Chemistry, UNSW Sydney, Kensington, New South Wales 2052, Australia
| | - Malgorzata Milewska
- Department of Organic Chemistry, Bioorganic Chemistry, and Biotechnology, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 4, Gliwice 44 100, Poland
| | - Henry Foster
- Centre for Advanced Macromolecular Design (CAMD), School of Chemistry, UNSW Sydney, Kensington, New South Wales 2052, Australia
| | - Robert Chapman
- Centre for Advanced Macromolecular Design (CAMD), School of Chemistry, UNSW Sydney, Kensington, New South Wales 2052, Australia.,School of Environmental and Life Sciences, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Martina H Stenzel
- Centre for Advanced Macromolecular Design (CAMD), School of Chemistry, UNSW Sydney, Kensington, New South Wales 2052, Australia
| |
Collapse
|
10
|
Torraga MGF, Colmán MME, Giudici R. Mathematical Modeling of Inverse Miniemulsion Polymerization of Acrylamide with an Oil-Soluble Initiator. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Maria G. F. Torraga
- Universidade de São Paulo-Escola Politécnica, Department of Chemical Engineering, Av. Prof. Luciano Gualberto travessa 3, no. 380, Cidade Universitária, 05508-010 São Paulo, SP Brazil
| | - Maria M. E. Colmán
- Bio & Materials Laboratory, Polytechnic School, National University of Asuncion, 111421 San Lorenzo, P.O. Box 2111, SL Paraguay
| | - Reinaldo Giudici
- Universidade de São Paulo-Escola Politécnica, Department of Chemical Engineering, Av. Prof. Luciano Gualberto travessa 3, no. 380, Cidade Universitária, 05508-010 São Paulo, SP Brazil
| |
Collapse
|
11
|
Burridge KM, De Alwis Watuthanthrige N, Payne C, Page RC, Konkolewicz D. Simple polymerization through oxygen at reduced volumes using oil and water. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kevin M. Burridge
- Department of Chemistry and Biochemistry Miami University Oxford Ohio USA
| | | | - Camryn Payne
- Department of Chemistry and Biochemistry Miami University Oxford Ohio USA
| | - Richard C. Page
- Department of Chemistry and Biochemistry Miami University Oxford Ohio USA
| | | |
Collapse
|
12
|
Bialas F, Reichinger D, Becker CF. Biomimetic and biopolymer-based enzyme encapsulation. Enzyme Microb Technol 2021; 150:109864. [DOI: 10.1016/j.enzmictec.2021.109864] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/02/2021] [Accepted: 06/29/2021] [Indexed: 12/25/2022]
|
13
|
Lima AL, Gratieri T, Cunha-Filho M, Gelfuso GM. Polymeric nanocapsules: A review on design and production methods for pharmaceutical purpose. METHODS (SAN DIEGO, CALIF.) 2021; 199:54-66. [PMID: 34333117 DOI: 10.1016/j.ymeth.2021.07.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/07/2021] [Accepted: 07/27/2021] [Indexed: 11/17/2022]
Abstract
Polymeric nanocapsules have extensive application potential in medical, biological, and pharmaceutical fields, and, therefore, much research has been dedicated to their production. Indeed, production protocols and the materials used are decisive for obtaining the desired nanocapsules characteristics and biological performance. In addition to that, several technological strategies have been developed in the last decade to improve processing techniques and form more valuable nanocapsules. This review provides a guide to current methods for developing polymeric nanocapsules, reporting aspects to be considered when choosing appropriate materials, and discussing different ways to produce nanocapsules for superior performances.
Collapse
Affiliation(s)
- Ana Luiza Lima
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia, 70910-900, Brasilia, DF, Brazil
| | - Tais Gratieri
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia, 70910-900, Brasilia, DF, Brazil
| | - Marcilio Cunha-Filho
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia, 70910-900, Brasilia, DF, Brazil
| | - Guilherme M Gelfuso
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia, 70910-900, Brasilia, DF, Brazil.
| |
Collapse
|
14
|
Li RY, An ZS. Photoenzymatic RAFT Emulsion Polymerization with Oxygen Tolerance. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2556-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Luo Y, Zhao J, Zhang X, Wang C, Wang T, Jiang M, Zhu Q, Xie T, Chen D. Size controlled fabrication of enzyme encapsulated amorphous calcium phosphate nanoparticle and its intracellular biosensing application. Colloids Surf B Biointerfaces 2021; 201:111638. [PMID: 33639505 DOI: 10.1016/j.colsurfb.2021.111638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/18/2020] [Accepted: 02/13/2021] [Indexed: 02/07/2023]
Abstract
Inorganic-enzyme composites have been widely used for applications in catalysis and analytical science. Amorphous calcium phosphate, as a biocompatible material, can form open hydrated structure to encapsulate and protect enzymes. So far, there have been few progress on size-adjustable amorphous calcium phosphate nanoparticles since the diameter controllability is limited by its natural aggregation characteristics. By co-precipitation and nano-channel extrusion, we developed enzyme-loaded amorphous calcium phosphate nanoparticles with adjustable diameters. These enzyme-loaded particles showed high thermal and chemical stability as well as biocompatibility. The nano-sized enzyme-loaded particles can further expand their application fields and be used as intracellular enzyme probes. Delivering glucose oxidase enzyme by amorphous calcium phosphate nanoparticles enables fluorescent monitoring of glucose levels in living cells, which can be used to study the metabolism rates of cancer cells and normal cells. The nano-channel extrusion method can also be used as a template to encapsulate different kinds of enzymes to expand catalysis and biosensing applications.
Collapse
Affiliation(s)
- Ying Luo
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, China; College of Pharmacy, School of Medicine, Hangzhou Normal University, China
| | - Jiaqian Zhao
- College of Pharmacy, School of Medicine, Hangzhou Normal University, China
| | - Xinran Zhang
- College of Pharmacy, School of Medicine, Hangzhou Normal University, China
| | - Chengcheng Wang
- College of Pharmacy, School of Medicine, Hangzhou Normal University, China
| | - Tongyu Wang
- College of Pharmacy, School of Medicine, Hangzhou Normal University, China
| | - Min Jiang
- College of Pharmacy, School of Medicine, Hangzhou Normal University, China
| | - Qin Zhu
- College of Pharmacy, School of Medicine, Hangzhou Normal University, China
| | - Tian Xie
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, China; College of Pharmacy, School of Medicine, Hangzhou Normal University, China.
| | - Dajing Chen
- College of Pharmacy, School of Medicine, Hangzhou Normal University, China.
| |
Collapse
|
16
|
Li Y, Zhang R, Xu Y. Structure-based mechanisms: On the way to apply alcohol dehydrogenases/reductases to organic-aqueous systems. Int J Biol Macromol 2020; 168:412-427. [PMID: 33316337 DOI: 10.1016/j.ijbiomac.2020.12.068] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 12/20/2022]
Abstract
Alcohol dehydrogenases/reductases catalyze enantioselective syntheses of versatile chiral compounds relying on direct hydride transfer from cofactor to substrates, or to an intermediate and then to substrates. Since most of the substrates catalyzed by alcohol dehydrogenases/reductases are insoluble in aqueous solutions, increasing interest has been turning to organic-aqueous systems. However, alcohol dehydrogenases/reductases are normally instable in organic solvents, leading to the unsatisfied enantioselective synthesis efficiency. The behaviors of these enzymes in organic solvents at an atomic level are unclear, thus it is of great importance to understand its structure-based mechanisms in organic-aqueous systems to improve their relative stability. Here, we summarized the accessible structures of alcohol dehydrogenases/reductases in Protein Data Bank crystallized in organic-aqueous systems, and compared the structures of alcohol dehydrogenases/reductases which have different tolerance towards organic solvents. By understanding the catalytic behaviors and mechanisms of these enzymes in organic-aqueous systems, the efficient enantioselective syntheses mediated by alcohol dehydrogenases/reductases and further challenges are also discussed through solvent engineering and enzyme-immobilization in the last decade.
Collapse
Affiliation(s)
- Yaohui Li
- Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; Department of Biological Science, Columbia University, New York, NY 10025, United States
| | - Rongzhen Zhang
- Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, Wuxi 214122, PR China.
| | - Yan Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
17
|
Steier A, Schmieg B, Irtel von Brenndorff Y, Meier M, Nirschl H, Franzreb M, Lahann J. Enzyme Scaffolds with Hierarchically Defined Properties via 3D Jet Writing. Macromol Biosci 2020; 20:e2000154. [PMID: 32639110 DOI: 10.1002/mabi.202000154] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/15/2020] [Indexed: 01/24/2023]
Abstract
The immobilization of enzymes into polymer hydrogels is a versatile approach to improve their stability and utility in biotechnological and biomedical applications. However, these systems typically show limited enzyme activity, due to unfavorable pore dimensions and low enzyme accessibility. Here, 3D jet writing of water-based bioinks, which contain preloaded enzymes, is used to prepare hydrogel scaffolds with well-defined, tessellated micropores. After 3D jet writing, the scaffolds are chemically modified via photopolymerization to ensure mechanical stability. Enzyme loading and activity in the hydrogel scaffolds is fully retained over 3 d. Important structural parameters of the scaffolds such as pore size, pore geometry, and wall diameter are controlled with micrometer resolution to avoid mass-transport limitations. It is demonstrated that scaffold pore sizes between 120 µm and 1 mm can be created by 3D jet writing approaching the length scales of free diffusion in the hydrogels substrates and resulting in high levels of enzyme activity (21.2% activity relative to free enzyme). With further work, a broad range of applications for enzyme-laden hydrogel scaffolds including diagnostics and enzymatic cascade reactions is anticipated.
Collapse
Affiliation(s)
- Anke Steier
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| | - Barbara Schmieg
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| | - Yannic Irtel von Brenndorff
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| | - Manuel Meier
- Institute of Mechanical Process Engineering and Mechanics (MVM), Karlsruhe Institute of Technology (KIT), Straße am Forum 8, Karlsruhe, 76131, Germany
| | - Hermann Nirschl
- Institute of Mechanical Process Engineering and Mechanics (MVM), Karlsruhe Institute of Technology (KIT), Straße am Forum 8, Karlsruhe, 76131, Germany
| | - Matthias Franzreb
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| | - Joerg Lahann
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany.,Biointerfaces Institute and Departments of Chemical Engineering, Materials Science and Engineering, Macromolecular Science and Engineering and Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
18
|
Wang Y, Cheng YT, Cao C, Oliver JD, Stenzel MH, Chapman R. Polyion Complex-Templated Synthesis of Cross-Linked Single-Enzyme Nanoparticles. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00528] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yiping Wang
- Centre for Advanced Macromolecular Design (CAMD), School of Chemistry, UNSW Sydney, Kensington, New South Wales 2052, Australia
| | - Yen Theng Cheng
- Centre for Advanced Macromolecular Design (CAMD), School of Chemistry, UNSW Sydney, Kensington, New South Wales 2052, Australia
- Australian Centre for Nanotechnology (ACN), UNSW Sydney, Kensington, New South Wales 2052, Australia
| | - Cheng Cao
- Centre for Advanced Macromolecular Design (CAMD), School of Chemistry, UNSW Sydney, Kensington, New South Wales 2052, Australia
| | - James D. Oliver
- Australian Centre for Research on Separation Science (ACROSS), School of Science, WSU, Parramatta, New South Wales 2150, Australia
| | - Martina H. Stenzel
- Centre for Advanced Macromolecular Design (CAMD), School of Chemistry, UNSW Sydney, Kensington, New South Wales 2052, Australia
| | - Robert Chapman
- Centre for Advanced Macromolecular Design (CAMD), School of Chemistry, UNSW Sydney, Kensington, New South Wales 2052, Australia
- Australian Centre for Nanotechnology (ACN), UNSW Sydney, Kensington, New South Wales 2052, Australia
| |
Collapse
|
19
|
Feng X, Guo J, Zhang R, Liu W, Cao Y, Xian M, Liu H. An Aminotransferase from Enhydrobacter aerosaccus to Obtain Optically Pure β-Phenylalanine. ACS OMEGA 2020; 5:7745-7750. [PMID: 32309682 PMCID: PMC7160847 DOI: 10.1021/acsomega.9b03416] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 03/12/2020] [Indexed: 05/14/2023]
Abstract
An aminotransferase ω-TAEn was identified from Enhydrobacter aerosaccus. The ω-TAEn was successfully expressed in Escherichia coli and the obtained enzyme showed activity toward β-phenylalanine (β-phe) at optimal conditions. For optically pure (R)-β-phe, 50% yield was observed by kinetic resolution of racemic amino with pyruvate as the amino acceptor. To obtain (S)-β-phe, the lipase/ω-TAEn catalytic system was adopted. The ω-TAEn showed strict stereoselectivity to the amino donor. The formation of (S)-β-phe was observed using 3-aminobutyric acid as the amino donor, and (S)-β-phe was obtained by asymmetric synthesis with a yield of 82%.
Collapse
Affiliation(s)
- Xinming Feng
- CAS
Key Laboratory of Biobased Materials, Qingdao
Institute of Bioenergy and Bioprocess Technology, Chinese Academy
of Sciences, Qingdao 266101, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Guo
- CAS
Key Laboratory of Biobased Materials, Qingdao
Institute of Bioenergy and Bioprocess Technology, Chinese Academy
of Sciences, Qingdao 266101, China
| | - Rubing Zhang
- CAS
Key Laboratory of Biobased Materials, Qingdao
Institute of Bioenergy and Bioprocess Technology, Chinese Academy
of Sciences, Qingdao 266101, China
| | - Wei Liu
- CAS
Key Laboratory of Biobased Materials, Qingdao
Institute of Bioenergy and Bioprocess Technology, Chinese Academy
of Sciences, Qingdao 266101, China
| | - Yujin Cao
- CAS
Key Laboratory of Biobased Materials, Qingdao
Institute of Bioenergy and Bioprocess Technology, Chinese Academy
of Sciences, Qingdao 266101, China
| | - Mo Xian
- CAS
Key Laboratory of Biobased Materials, Qingdao
Institute of Bioenergy and Bioprocess Technology, Chinese Academy
of Sciences, Qingdao 266101, China
| | - Huizhou Liu
- CAS
Key Laboratory of Biobased Materials, Qingdao
Institute of Bioenergy and Bioprocess Technology, Chinese Academy
of Sciences, Qingdao 266101, China
| |
Collapse
|
20
|
Dhanjai, Lu X, Wu L, Chen J, Lu Y. Robust Single-Molecule Enzyme Nanocapsules for Biosensing with Significantly Improved Biosensor Stability. Anal Chem 2020; 92:5830-5837. [DOI: 10.1021/acs.analchem.9b05466] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Dhanjai
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Xianbo Lu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Lingxia Wu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Jiping Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Yunfeng Lu
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
21
|
Enzyme immobilization on functionalized monolithic CNTs-Ni foam composite for highly active and stable biocatalysis in organic solvent. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2019.110714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Iriarte-Mesa C, López YC, Matos-Peralta Y, de la Vega-Hernández K, Antuch M. Gold, Silver and Iron Oxide Nanoparticles: Synthesis and Bionanoconjugation Strategies Aimed at Electrochemical Applications. Top Curr Chem (Cham) 2020; 378:12. [PMID: 31907672 DOI: 10.1007/s41061-019-0275-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/13/2019] [Indexed: 12/22/2022]
Abstract
Nanomaterials have revolutionized the sensing and biosensing fields, with the development of more sensitive and selective devices for multiple applications. Gold, silver and iron oxide nanoparticles have played a particularly major role in this development. In this review, we provide a general overview of the synthesis and characteristics of gold, silver and iron oxide nanoparticles, along with the main strategies for their surface functionalization with ligands and biomolecules. Finally, different architectures suitable for electrochemical applications are reviewed, as well as their main fabrication procedures. We conclude with some considerations from the authors' perspective regarding the promising use of these materials and the challenges to be faced in the near future.
Collapse
Affiliation(s)
- Claudia Iriarte-Mesa
- Laboratorio de Química Bioinorgánica, Departamento de Química General e Inorgánica, Facultad de Química, Universidad de La Habana, Zapata y G, Vedado, Plaza de la Revolución, 10 400, La Habana, Cuba
| | - Yeisy C López
- Laboratorio de Química Bioinorgánica, Departamento de Química General e Inorgánica, Facultad de Química, Universidad de La Habana, Zapata y G, Vedado, Plaza de la Revolución, 10 400, La Habana, Cuba.,Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Calzada Legaria 694, Col. Irrigación, 11 500, Ciudad de México, Mexico
| | - Yasser Matos-Peralta
- Laboratorio de Química Bioinorgánica, Departamento de Química General e Inorgánica, Facultad de Química, Universidad de La Habana, Zapata y G, Vedado, Plaza de la Revolución, 10 400, La Habana, Cuba
| | | | - Manuel Antuch
- Unité de Chimie et Procédés, École Nationale Supérieure de Techniques Avancées (ENSTA), Institut Polytechnique de Paris, 828 Boulevard des Maréchaux, 91120, Palaiseau, France.
| |
Collapse
|
23
|
Cederholm L, Olsén P, Hakkarainen M, Odelius K. Turning natural δ-lactones to thermodynamically stable polymers with triggered recyclability. Polym Chem 2020. [DOI: 10.1039/d0py00270d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Extending the use of natural δ-lactones in circular materials via a synthetic strategy yielding thermodynamically stable polyesters with triggered recyclability.
Collapse
Affiliation(s)
- Linnea Cederholm
- Wallenberg Wood Science Center
- WWSC
- Department of Fibre and Polymer Technology
- KTH Royal Institute of Technology
- 100 44 Stockholm
| | - Peter Olsén
- Wallenberg Wood Science Center
- WWSC
- Department of Fibre and Polymer Technology
- KTH Royal Institute of Technology
- 100 44 Stockholm
| | - Minna Hakkarainen
- Wallenberg Wood Science Center
- WWSC
- Department of Fibre and Polymer Technology
- KTH Royal Institute of Technology
- 100 44 Stockholm
| | - Karin Odelius
- Wallenberg Wood Science Center
- WWSC
- Department of Fibre and Polymer Technology
- KTH Royal Institute of Technology
- 100 44 Stockholm
| |
Collapse
|
24
|
Wu Y, Chen Y, Wei N. Biocatalytic properties of cell surface display laccase for degradation of emerging contaminant acetaminophen in water reclamation. Biotechnol Bioeng 2019; 117:342-353. [DOI: 10.1002/bit.27214] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/18/2019] [Accepted: 10/20/2019] [Indexed: 01/20/2023]
Affiliation(s)
- Ying Wu
- Department of Civil and Environmental Engineering and Earth Sciences University of Notre Dame Notre Dame Indiana
| | - Yingying Chen
- Department of Civil and Environmental Engineering and Earth Sciences University of Notre Dame Notre Dame Indiana
| | - Na Wei
- Department of Civil and Environmental Engineering and Earth Sciences University of Notre Dame Notre Dame Indiana
| |
Collapse
|
25
|
Chapman R, Stenzel MH. All Wrapped up: Stabilization of Enzymes within Single Enzyme Nanoparticles. J Am Chem Soc 2019; 141:2754-2769. [PMID: 30621398 DOI: 10.1021/jacs.8b10338] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Enzymes are extremely useful in many industrial and pharmaceutical areas due to their ability to catalyze reactions with high selectivity. In order to extend their lifetime, significant efforts have been made to increase their stability using protein- or medium engineering as well as by chemical modification. Many researchers have explored the immobilization of enzymes onto carriers, or entrapment within a matrix, framework or nanoparticle with the hope of constricting the movement of the enzyme and shielding it from aggressive environments, thus delaying the denaturation. These strategies often balance three competing interests: (i) maintaining high enzymatic activity, (ii) ensuring good long-term stability against temperature, dehydration, organic solvents, and or aggressive pH, and (iii) enabling a tuning or reversible switching of enzyme activity. In most cases, multiple enzymes will be contained within a single nanoparticle or matrix, but in recent years researchers have begun to wrap up individual enzymes within single enzyme nanoparticles (SENs). In these nanoparticles the enzyme is stabilized by a thin shell, typically a polymer, prepared either by in situ polymerization from the enzyme surface or by assembling a preformed polymer around it. Because of the increased control over the environment directly around the enzyme, and the possibility of more directly controlling substrate diffusion, many SENs show remarkable stability while retaining high initial activities even for quite fragile enzymes. Moreover, the activity of the enzyme can often be more easily fine-tuned by adjusting the layer properties. We postulate that this emerging field will offer exciting and elegant opportunities to both extend the catalytic lifetime of enzymes in aggressive solvents, temperatures and pH, and enable their activity to be switched on and off on demand by modulation of the outer material layer.
Collapse
Affiliation(s)
- Robert Chapman
- Centre for Advanced Macromolecular Design (CAMD), School of Chemistry , University of New South Wales , Sydney , New South Wales 2052 , Australia
| | - Martina H Stenzel
- Centre for Advanced Macromolecular Design (CAMD), School of Chemistry , University of New South Wales , Sydney , New South Wales 2052 , Australia
| |
Collapse
|
26
|
|
27
|
Wang Y, Dadashi-Silab S, Matyjaszewski K. Photoinduced Miniemulsion Atom Transfer Radical Polymerization. ACS Macro Lett 2018; 7:720-725. [PMID: 35632954 DOI: 10.1021/acsmacrolett.8b00371] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photomediated atom transfer radical polymerization (photoATRP) of (meth)acrylic monomers was conducted in miniemulsion media. The polymerization procedures took advantage of an ion-pair catalyst formed by interaction of Cu/TPMA2 (TPMA = tris(2-pyridylmethyl)amine) and an anionic surfactant, sodium dodecyl sulfate (SDS). The ion-pair catalyst was efficient in controlling ATRP reactions with catalyst loadings as low as 100 ppm. The effect of different polymerization parameters, such as the size of the reaction vial, amount of surfactant, and solids content influencing the photoATRP in miniemulsion, was studied. The polymerization was conducted with solids content ranging from 5 to 50 vol % under a moderate surfactant loading (<5 wt % relative to monomer). Excellent temporal control was achieved upon switching the UV light on and off multiple times, and the polymer was successfully chain extended, indicating high retention of chain-end fidelity.
Collapse
Affiliation(s)
- Yi Wang
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Sajjad Dadashi-Silab
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
28
|
Ishizuka F, Stenzel MH, Zetterlund PB. Microcapsule synthesis via RAFT photopolymerization in vegetable Oil as a green solvent. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/pola.28958] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Fumi Ishizuka
- School of Chemical Engineering, Centre for Advanced Macromolecular Design, The University of New South Wales; Sydney New South Wales 2052 Australia
| | - Martina H. Stenzel
- School of Chemistry, Centre for Advanced Macromolecular Design; The University of New South Wales; Sydney New South Wales 2052 Australia
| | - Per B. Zetterlund
- School of Chemical Engineering, Centre for Advanced Macromolecular Design, The University of New South Wales; Sydney New South Wales 2052 Australia
| |
Collapse
|