1
|
Gou F, Wang Q, Yang Z, Chang W, Shen J, Zeng H. Artificial Lithium Channels Built from Polymers with Intrinsic Microporosity. Angew Chem Int Ed Engl 2025; 64:e202418304. [PMID: 39352859 DOI: 10.1002/anie.202418304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 10/04/2024]
Abstract
In sharp contrast to numerous artificial potassium channels developed over the past decade, the study of artificial lithium-transporting channels has remained limited. We demonstrate here the use of an interesting class of polymers with intrinsic microporosity (PIM) for constructing artificial lithium channels. These PIM-derived lithium channels show exceptionally efficient (γLi +>40 pS) and highly selective transport of Li+ ions, with selectivity factors of>10 against both Na+ and K+. By simply adjusting the initial reaction temperature, we can tune the transport property in a way that PIMs synthesized at initial reaction temperatures of 60 °C and 80 °C exhibit improved transport efficiency and selectivity, respectively, in the dioleoyl phosphatidylcholine membrane.
Collapse
Affiliation(s)
- Fei Gou
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Qiuting Wang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Zihong Yang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Wenju Chang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Jie Shen
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Huaqiang Zeng
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| |
Collapse
|
2
|
Guo S, Yeo JY, Benedetti FM, Syar D, Swager TM, Smith ZP. A Microporous Poly(Arylene Ether) Platform for Membrane-Based Gas Separation. Angew Chem Int Ed Engl 2024; 63:e202315611. [PMID: 38084884 DOI: 10.1002/anie.202315611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Indexed: 01/18/2024]
Abstract
Membrane-based gas separations are crucial for an energy-efficient future. However, it is difficult to develop membrane materials that are high-performing, scalable, and processable. Microporous organic polymers (MOPs) combine benefits for gas sieving and solution processability. Herein, we report membrane performance for a new family of microporous poly(arylene ether)s (PAEs) synthesized via Pd-catalyzed C-O coupling reactions. The scaffold of these microporous polymers consists of rigid three-dimensional triptycene and stereocontorted spirobifluorene, endowing these polymers with micropore dimensions attractive for gas separations. This robust PAE synthesis method allows for the facile incorporation of functionalities and branched linkers for control of permeation and mechanical properties. A solution-processable branched polymer was formed into a submicron film and characterized for permeance and selectivity, revealing lab data that rivals property sets of commercially available membranes already optimized for much thinner configurations. Moreover, the branching motif endows these materials with outstanding plasticization resistance, and their microporous structure and stability enables benefits from competitive sorption, increasing CO2 /CH4 and (H2 S+CO2 )/CH4 selectivity in mixture tests as predicted by the dual-mode sorption model. The structural tunability, stability, and ease-of-processing suggest that this new platform of microporous polymers provides generalizable design strategies to form MOPs at scale for demanding gas separations in industry.
Collapse
Affiliation(s)
- Sheng Guo
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Jing Ying Yeo
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Francesco M Benedetti
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Duha Syar
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Timothy M Swager
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Zachary P Smith
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
3
|
Astorino C, De Nardo E, Lettieri S, Ferraro G, Pirri CF, Bocchini S. Advancements in Gas Separation for Energy Applications: Exploring the Potential of Polymer Membranes with Intrinsic Microporosity (PIM). MEMBRANES 2023; 13:903. [PMID: 38132907 PMCID: PMC10744731 DOI: 10.3390/membranes13120903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
Membrane-based Polymers of Intrinsic Microporosity (PIMs) are promising candidates for energy-efficient industrial gas separations, especially for the separation of carbon dioxide over methane (CO2/CH4) and carbon dioxide over nitrogen (CO2/N2) for natural gas/biogas upgrading and carbon capture from flue gases, respectively. Compared to other separation techniques, membrane separations offer potential energy and cost savings. Ultra-permeable PIM-based polymers are currently leading the trade-off between permeability and selectivity for gas separations, particularly in CO2/CH4 and CO2/N2. These membranes show a significant improvement in performance and fall within a linear correlation on benchmark Robeson plots, which are parallel to, but significantly above, the CO2/CH4 and CO2/N2 Robeson upper bounds. This improvement is expected to enhance the credibility of polymer membranes for CO2 separations and stimulate further research in polymer science and applied engineering to develop membrane systems for these CO2 separations, which are critical to energy and environmental sustainability. This review aims to highlight the state-of-the-art strategies employed to enhance gas separation performances in PIM-based membranes while also mitigating aging effects. These strategies include chemical post-modification, crosslinking, UV and thermal treatment of PIM, as well as the incorporation of nanofillers in the polymeric matrix.
Collapse
Affiliation(s)
- Carmela Astorino
- Center for Sustainable Future Technologies (CSFT), Istituto Italiano di Tecnologia (IIT), Via Livorno, 60, 10144 Torino, Italy; (C.A.); (E.D.N.); (C.F.P.)
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi, 24, 10129 Torino, Italy;
| | - Eugenio De Nardo
- Center for Sustainable Future Technologies (CSFT), Istituto Italiano di Tecnologia (IIT), Via Livorno, 60, 10144 Torino, Italy; (C.A.); (E.D.N.); (C.F.P.)
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi, 24, 10129 Torino, Italy;
| | - Stefania Lettieri
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi, 24, 10129 Torino, Italy;
| | - Giuseppe Ferraro
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi, 24, 10129 Torino, Italy;
| | - Candido Fabrizio Pirri
- Center for Sustainable Future Technologies (CSFT), Istituto Italiano di Tecnologia (IIT), Via Livorno, 60, 10144 Torino, Italy; (C.A.); (E.D.N.); (C.F.P.)
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi, 24, 10129 Torino, Italy;
| | - Sergio Bocchini
- Center for Sustainable Future Technologies (CSFT), Istituto Italiano di Tecnologia (IIT), Via Livorno, 60, 10144 Torino, Italy; (C.A.); (E.D.N.); (C.F.P.)
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi, 24, 10129 Torino, Italy;
| |
Collapse
|
4
|
Wang S, Wang Z, Zhu S, Liu S, Zhang F, Jin J. Highly porous ultrathin polyamide membranes for fast separation of small molecules from organic solvents. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
5
|
Lee TH, Balçık M, Lee BK, Ghanem BS, Pinnau I, Park HB. Hyperaging-induced H2-selective thin-film composite membranes with enhanced submicroporosity toward green hydrogen supply. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
6
|
Xiao Y, Lei X, Liu Y, Zhang Y, Ma X, Zhang Q. Double-Decker-Shaped Phenyl-Substituted Silsesquioxane (DDSQ)-Based Nanocomposite Polyimide Membranes with Tunable Gas Permeability and Good Aging Resistance. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
7
|
Chen J, Longo M, Fuoco A, Esposito E, Monteleone M, Comesaña Gándara B, Carolus Jansen J, McKeown NB. Dibenzomethanopentacene-Based Polymers of Intrinsic Microporosity for Use in Gas-Separation Membranes. Angew Chem Int Ed Engl 2023; 62:e202215250. [PMID: 36511357 PMCID: PMC10107563 DOI: 10.1002/anie.202215250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Dibenzomethanopentacene (DBMP) is shown to be a useful structural component for making Polymers of Intrinsic Microporosity (PIMs) with promise for making efficient membranes for gas separations. DBMP-based monomers for PIMs are readily prepared using a Diels-Alder reaction between 2,3-dimethoxyanthracene and norbornadiene as the key synthetic step. Compared to date for the archetypal PIM-1, the incorporation of DBMP simultaneously enhances both gas permeability and the ideal selectivity for one gas over another. Hence, both ideal and mixed gas permeability data for DBMP-rich co-polymers and an amidoxime modified PIM are close to the current Robeson upper bounds, which define the state-of-the-art for the trade-off between permeability and selectivity, for several important gas pairs. Furthermore, long-term studies (over ≈3 years) reveal that the reduction in gas permeabilities on ageing is less for DBMP-containing PIMs relative to that for other high performing PIMs, which is an attractive property for the fabrication of membranes for efficient gas separations.
Collapse
Affiliation(s)
- Jie Chen
- EaStCHEMSchool of ChemistryUniversity of EdinburghDavid Brewster RoadEdinburghEH9 3FJUK
| | - Mariagiulia Longo
- Institute on Membrane TechnologyNational Research Council of Italy (CNR-ITM)via P. Bucci 17/C87036Rende (CS)Italy
| | - Alessio Fuoco
- Institute on Membrane TechnologyNational Research Council of Italy (CNR-ITM)via P. Bucci 17/C87036Rende (CS)Italy
| | - Elisa Esposito
- Institute on Membrane TechnologyNational Research Council of Italy (CNR-ITM)via P. Bucci 17/C87036Rende (CS)Italy
| | - Marcello Monteleone
- Institute on Membrane TechnologyNational Research Council of Italy (CNR-ITM)via P. Bucci 17/C87036Rende (CS)Italy
| | | | - Johannes Carolus Jansen
- Institute on Membrane TechnologyNational Research Council of Italy (CNR-ITM)via P. Bucci 17/C87036Rende (CS)Italy
| | - Neil B. McKeown
- EaStCHEMSchool of ChemistryUniversity of EdinburghDavid Brewster RoadEdinburghEH9 3FJUK
| |
Collapse
|
8
|
Lin S, Storme KR, Wu YCM, Benedetti FM, Swager TM, Smith ZP. Role of side-chain length on gas transport of CO2/CH4 mixtures in polymers with side-chain porosity. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Song N, Wang T, Ma T, Li J, Yao H, Guan S. Microporous polyimide networks with tunable micropore size constructed through side-chain engineering of linear precursors. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
10
|
The effect of chain rigidity and microstructure on gas separation performance of the cardo-based polyimides. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Abdulhamid MA, Szekely G. Organic solvent nanofiltration membranes based on polymers of intrinsic microporosity. Curr Opin Chem Eng 2022. [DOI: 10.1016/j.coche.2022.100804] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
12
|
Weng Y, Ji W, Ye C, Dong H, Gao Z, Li J, Luo C, Ma X. Simultaneously enhanced CO2 permeability and CO2/N2 selectivity at sub-ambient temperature from two novel functionalized intrinsic microporous polymers. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Hu X, Miao J, Pang Y, Zhao J, Lu Y, Guo H, Wang Z, Yan J. Synthesis, microstructures, and gas separation performance of norbornyl bis-benzocyclobutene-Tröger’s base polymers derived from pure regioisomers. Polym Chem 2022. [DOI: 10.1039/d2py00210h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chain configuration significantly influences the microstructures and gas separation performance of polymers of intrinsic microporosity. Herein, pure regioisomers of norbornyl bis-benzocyclobutene-containing (N2BC) diamines, i.e. anti-CANAL-4-MeNH2, syn-CANAL-4-MeNH2, anti-CANAL-2-Me2NH2, and syn-CANAL-2-Me2NH2, were...
Collapse
|
14
|
Xue S, Lei X, Xiao Y, Xiong G, Lian R, Xin X, Peng Y, Zhang Q. Highly Refractive Polyimides Derived from Efficient Catalyst-Free Thiol–Yne Click Polymerization. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01959] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shuyu Xue
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P. R. China
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P. R. China
| | - Xingfeng Lei
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P. R. China
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P. R. China
| | - Yuyang Xiao
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P. R. China
| | - Guo Xiong
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P. R. China
| | - Ruhe Lian
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P. R. China
| | - Xiangze Xin
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P. R. China
| | - Yutian Peng
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P. R. China
| | - Qiuyu Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P. R. China
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P. R. China
| |
Collapse
|
15
|
Bandehali S, Ebadi Amooghin A, Sanaeepur H, Ahmadi R, Fuoco A, Jansen JC, Shirazian S. Polymers of intrinsic microporosity and thermally rearranged polymer membranes for highly efficient gas separation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119513] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Kang S, Zhang Z, Wu L, Xu S, Huo G, Ma X, Li N. Synthesis and gas separation properties of polyimide membranes derived from oxygencyclic pseudo-Tröger's base. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119604] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Bottom up approach to study the gas separation properties of PIM-PIs and its derived CMSMs by isomer monomers. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119519] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Deng J, Huang Z, Sundell BJ, Harrigan DJ, Sharber SA, Zhang K, Guo R, Galizia M. State of the art and prospects of chemically and thermally aggressive membrane gas separations: Insights from polymer science. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
19
|
|
20
|
Hu X, Pang Y, Mu H, Meng X, Wang X, Wang Z, Yan J. Synthesis and gas separation performances of intrinsically microporous polyimides based on 4-methylcatechol-derived monomers. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
Hu X, Lee WH, Bae JY, Zhao J, Kim JS, Wang Z, Yan J, Lee YM. Highly permeable polyimides incorporating Tröger's base (TB) units for gas separation membranes. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118533] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Hu X, Lee WH, Bae JY, Kim JS, Jung JT, Wang HH, Park HJ, Lee YM. Thermally rearranged polybenzoxazole copolymers incorporating Tröger's base for high flux gas separation membranes. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118437] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
23
|
Zhang Y, Lee WH, Seong JG, Bae JY, Zhuang Y, Feng S, Wan Y, Lee YM. Alicyclic segments upgrade hydrogen separation performance of intrinsically microporous polyimide membranes. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118363] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Song N, Ma T, Wang T, Li Z, Yao H, Guan S. Microporous polyimides with high surface area and CO 2 selectivity fabricated from cross-linkable linear polyimides. J Colloid Interface Sci 2020; 573:328-335. [PMID: 32298926 DOI: 10.1016/j.jcis.2020.03.113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/25/2020] [Accepted: 03/29/2020] [Indexed: 11/16/2022]
Abstract
Linear polyimides of intrinsic microporosity have been intensively investigated for gas separation due to their microporous structure and high surface area. The microporous structure in the linear polyimides of intrinsic microporosity comes from their contorted structure. Therefore, most linear polyimides without contorted structure do not have micropores. In this work, the microporous polyimides are constructed through the condensation of a cross-linkable dianhydride monomer with two novel nitrogen-rich diamine monomers and post crosslinking reaction. The linear polyimide precursors without contorted structure have the same main-chain structure. The introduction of crosslinked structure endow the crosslinked polyimides (PI-CLs) with microporous structure. The microporous structure in PI-CLs can be tuned by changing the substituents of the linear polyimide precursors. The PI-CLs have competitive CO2 uptake capacity (7.3-9.4 wt%) at 273 K and 1 bar. Particularly, the crosslinked polyimide containing trifluoromethyl groups (CF3-PI-CL) shows high CO2/N2 and CO2/CH4 selectivity (72 and 22) at 273 K, which are among the best results for reported porous materials. This work reveals that the introduction of crosslinked structure and changing substituents is an efficient method for constructing microporous polyimides with abundant micropores and excellent CO2 selective adsorption capacity. This method also has great potential for fabricating high-performance microporous polymers based on other linear polymers without rigid contorted structure.
Collapse
Affiliation(s)
- Ningning Song
- Key Laboratory of High Performance Plastics, Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Tengning Ma
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Tianjiao Wang
- Key Laboratory of High Performance Plastics, Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Zhenghua Li
- State Key Laboratory of Inorganic Synthesis & Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Hongyan Yao
- Key Laboratory of High Performance Plastics, Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, PR China.
| | - Shaowei Guan
- Key Laboratory of High Performance Plastics, Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, PR China
| |
Collapse
|
25
|
Wang Y, Ghanem BS, Han Y, Pinnau I. Facile synthesis and gas transport properties of Hünlich's base-derived intrinsically microporous polyimides. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122619] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Ma X, Lai HWH, Wang Y, Alhazmi A, Xia Y, Pinnau I. Facile Synthesis and Study of Microporous Catalytic Arene-Norbornene Annulation-Tröger's Base Ladder Polymers for Membrane Air Separation. ACS Macro Lett 2020; 9:680-685. [PMID: 35648573 DOI: 10.1021/acsmacrolett.0c00135] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We report the facile synthesis and study of two soluble microporous ladder polymers, CANAL-TBs, by combining catalytic arene-norbornene annulation (CANAL) and Tröger's base (TB) formation. The polymers were synthesized in two steps from commercially available chemicals in high yields. CANAL-TBs easily formed mechanically robust films, were thermally stable up to 440 °C, and exhibited very high Brunauer-Teller-Emmett surface areas of 900-1000 m2 g-1. The gas separation performance of the CANAL-TBs for the O2/N2 pair is located between the 2008 and 2015 permeability/selectivity upper bounds. After 300 days of aging, CANAL-TBs still exhibited O2 permeability of 200-500 barrer with O2/N2 selectivity of about 5. The polymer with more methyl substituents exhibited higher permeability and slightly larger intersegmental spacing as revealed by WAXS, presumably due to more frustrated chain packing. The facile synthesis, excellent mechanical properties, and promising air separation performance of the CANAL-TB polymers make them attractive membrane materials for various air separation applications, such as aircraft on-board nitrogen generation and oxygen enrichment for combustion.
Collapse
Affiliation(s)
- Xiaohua Ma
- Functional Polymer Membranes Group, Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, Chemical Engineering Program, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, KSA
| | - Holden W. H. Lai
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Yingge Wang
- Functional Polymer Membranes Group, Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, Chemical Engineering Program, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, KSA
| | - Abdulrahman Alhazmi
- Functional Polymer Membranes Group, Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, Chemical Engineering Program, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, KSA
| | - Yan Xia
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Ingo Pinnau
- Functional Polymer Membranes Group, Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, Chemical Engineering Program, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, KSA
| |
Collapse
|
27
|
Deng G, Luo J, Liu S, Wang Y, Zong X, Xue S. Molecular design and characterization of new polyimides based on binaphthyl-ether diamines for gas separation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116218] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Zhu Z, Zhu J, Li J, Ma X. Enhanced Gas Separation Properties of Tröger’s Base Polymer Membranes Derived from Pure Triptycene Diamine Regioisomers. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02328] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Zhiyang Zhu
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, Tianjin 300387, P. R. China
- School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, P. R. China
| | - Junjie Zhu
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, Tianjin 300387, P. R. China
- School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, P. R. China
| | - Jianxin Li
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, Tianjin 300387, P. R. China
- School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, P. R. China
| | - Xiaohua Ma
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, Tianjin 300387, P. R. China
- School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, P. R. China
| |
Collapse
|
29
|
Ma MC, Guo YL. Physical Properties of Polymers Under Soft and Hard Nanoconfinement: A Review. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-020-2380-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
30
|
Gas separation performance and mechanical properties of thermally-rearranged polybenzoxazoles derived from an intrinsically microporous dihydroxyl-functionalized triptycene diamine-based polyimide. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117512] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
31
|
Jessop IA, Bravo D, Durán E, Rodríguez‐González FE, Tagle LH, Coll D, Ortiz P, Mirabal Y, Aguilar‐Vega M, Martin‐Trasanco R, Terraza CA, Tundidor‐Camba A. Synthesis and characterization of new spirobisindane‐based poly(imide)s: Structure effects on solubility, thermal behavior, and gas transport properties. J Appl Polym Sci 2020. [DOI: 10.1002/app.48944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- I. A. Jessop
- Faculty of Chemistry, Organic and Polymeric Materials Research LaboratoryUniversidad de Tarapacá P.O. Box 7‐D Arica Chile
| | - D. Bravo
- Research Laboratory for Organic Polymers (RLOP), Department of Organic ChemistryPontificia Universidad Católica de Chile Santiago Chile
| | - E. Durán
- Research Laboratory for Organic Polymers (RLOP), Department of Organic ChemistryPontificia Universidad Católica de Chile Santiago Chile
| | - F. E. Rodríguez‐González
- Research Laboratory for Organic Polymers (RLOP), Department of Organic ChemistryPontificia Universidad Católica de Chile Santiago Chile
| | - L. H. Tagle
- Research Laboratory for Organic Polymers (RLOP), Department of Organic ChemistryPontificia Universidad Católica de Chile Santiago Chile
| | - D. Coll
- Núcleo de Química y BioquímicaFacultad de Ciencias, Universidad Mayor Santiago Chile
| | - P. Ortiz
- Núcleo de Química y BioquímicaFacultad de Ciencias, Universidad Mayor Santiago Chile
| | - Y. Mirabal
- Faculty of EngineeringUniversidad Autónoma de Chile, Institute of Applied Chemisty Talca Chile
| | - M. Aguilar‐Vega
- Laboratorio de Membranas, Unidad de MaterialesCentro de Investigación Científica de Yucatán A.C., Chuburna de Hidalgo Mérida Yucatán Mexico
| | - R. Martin‐Trasanco
- Departamento de Química, Universidad Tecnológica MetropolitanaJ. P. Alessandri 1242 Santiago Chile
| | - C. A. Terraza
- Research Laboratory for Organic Polymers (RLOP), Department of Organic ChemistryPontificia Universidad Católica de Chile Santiago Chile
- UC Energy Research Center, Pontificia Universidad Católica de Chile
| | - A. Tundidor‐Camba
- Research Laboratory for Organic Polymers (RLOP), Department of Organic ChemistryPontificia Universidad Católica de Chile Santiago Chile
- UC Energy Research Center, Pontificia Universidad Católica de Chile
| |
Collapse
|
32
|
Hu X, Mu H, Miao J, Lu Y, Wang X, Meng X, Wang Z, Yan J. Synthesis and gas separation performance of intrinsically microporous polyimides derived from sterically hindered binaphthalenetetracarboxylic dianhydride. Polym Chem 2020. [DOI: 10.1039/d0py00594k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Intrinsically microporous polyimides with high gas permeability and favorable selectivity were prepared from a bulky, rigid, and sterically hindered dianhydride, 3,3′-di-t-butyl-2,2′-dimethoxy-[1,1′-binaphthalene]-6,6′,7,7′,-tetracarboxylic dianhydride.
Collapse
Affiliation(s)
- Xiaofan Hu
- Ningbo Institute of Material Technology and Engineering
- Chinese Academy of Science
- Ningbo 315201
- China
| | - Hongliang Mu
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Jie Miao
- Ningbo Institute of Material Technology and Engineering
- Chinese Academy of Science
- Ningbo 315201
- China
- Changchun Institute of Applied Chemistry
| | - Yao Lu
- Ningbo Institute of Material Technology and Engineering
- Chinese Academy of Science
- Ningbo 315201
- China
- Changchun Institute of Applied Chemistry
| | - Xianwei Wang
- Ningbo Institute of Material Technology and Engineering
- Chinese Academy of Science
- Ningbo 315201
- China
| | - Xiangsheng Meng
- Ningbo Institute of Material Technology and Engineering
- Chinese Academy of Science
- Ningbo 315201
- China
| | - Zhen Wang
- Ningbo Institute of Material Technology and Engineering
- Chinese Academy of Science
- Ningbo 315201
- China
| | - Jingling Yan
- Ningbo Institute of Material Technology and Engineering
- Chinese Academy of Science
- Ningbo 315201
- China
| |
Collapse
|
33
|
Longo M, De Santo MP, Esposito E, Fuoco A, Monteleone M, Giorno L, Comesaña-Gándara B, Chen J, Bezzu CG, Carta M, Rose I, McKeown NB, Jansen JC. Correlating Gas Permeability and Young’s Modulus during the Physical Aging of Polymers of Intrinsic Microporosity Using Atomic Force Microscopy. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b04881] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Mariagiulia Longo
- Institute on Membrane Technology, CNR-ITM, Via P. Bucci 17/C, 87036 Rende (CS), Italy
| | | | - Elisa Esposito
- Institute on Membrane Technology, CNR-ITM, Via P. Bucci 17/C, 87036 Rende (CS), Italy
| | - Alessio Fuoco
- Institute on Membrane Technology, CNR-ITM, Via P. Bucci 17/C, 87036 Rende (CS), Italy
| | - Marcello Monteleone
- Institute on Membrane Technology, CNR-ITM, Via P. Bucci 17/C, 87036 Rende (CS), Italy
| | - Lidietta Giorno
- Institute on Membrane Technology, CNR-ITM, Via P. Bucci 17/C, 87036 Rende (CS), Italy
| | - Bibiana Comesaña-Gándara
- EaStCHEM, School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Jie Chen
- EaStCHEM, School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - C. Grazia Bezzu
- EaStCHEM, School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Mariolino Carta
- Department of Chemistry, College of Science, Swansea University, Grove Building, Singleton Park, Swansea, SA2 8PP, U.K
| | - Ian Rose
- EaStCHEM, School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Neil B. McKeown
- EaStCHEM, School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Johannes C. Jansen
- Institute on Membrane Technology, CNR-ITM, Via P. Bucci 17/C, 87036 Rende (CS), Italy
| |
Collapse
|
34
|
Usman M, Ahmed A, Yu B, Peng Q, Shen Y, Cong H. A review of different synthetic approaches of amorphous intrinsic microporous polymers and their potential applications in membrane-based gases separation. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.109262] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
35
|
Ogieglo W, Furchner A, Ma X, Hazazi K, Alhazmi AT, Pinnau I. Thin Composite Carbon Molecular Sieve Membranes from a Polymer of Intrinsic Microporosity Precursor. ACS APPLIED MATERIALS & INTERFACES 2019; 11:18770-18781. [PMID: 31042347 DOI: 10.1021/acsami.9b04602] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Ultra-thin composite carbon molecular sieve (CMS) membranes were fabricated on well-defined inorganic alumina substrates using a polymer of intrinsic microporosity (PIM) as a precursor. Details of the pyrolysis-related structural development were elucidated using focused-beam, interference-enhanced spectroscopic ellipsometry (both in the UV-vis and IR range), which allowed accurate determination of the film thickness, optical properties as well as following the chemical transformations. The pyrolysis-induced collapse of thin and bulk PIM-derived CMS membranes was compared with CMS made from a well-known non-PIM precursor 6FDA-DABA. Significant differences between the PIM and non-PIM precursors were discovered and explained by a much larger possible volume contraction in the PIM. In spite of the differences, surprisingly, the gas separation properties did not fundamentally differ. The high-temperature collapse of the initially amorphous and isotropic precursor structure was accompanied by a significant molecular orientation within the formed turbostratic carbon network guided by the laterally constraining presence of the substrate. This manifested itself in the development of uniaxial optical anisotropy, which was shown to correlate with increases in gas separation selectivity for multiple technologically important gas pairs. Reduction of CMS skin thickness significantly below ∼1 μm induced large losses in permeability coefficients with only small to moderate effects on selectivity. Remarkably, skin thickness reduction and physical aging seemed to superimpose onto the same trend, which explains and strengthens some of the earlier fundamental insights.
Collapse
Affiliation(s)
- Wojciech Ogieglo
- Functional Polymer Membranes Group, Advanced Membranes and Porous Materials Center , King Abdullah University of Science and Technology (KAUST) , Thuwal 23955 , Kingdom of Saudi Arabia
| | - Andreas Furchner
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V. , Schwarzschildstraße 8 , 12489 Berlin , Germany
| | - Xiaohua Ma
- Functional Polymer Membranes Group, Advanced Membranes and Porous Materials Center , King Abdullah University of Science and Technology (KAUST) , Thuwal 23955 , Kingdom of Saudi Arabia
| | - Khalid Hazazi
- Functional Polymer Membranes Group, Advanced Membranes and Porous Materials Center , King Abdullah University of Science and Technology (KAUST) , Thuwal 23955 , Kingdom of Saudi Arabia
| | - Abdulrahman T Alhazmi
- Functional Polymer Membranes Group, Advanced Membranes and Porous Materials Center , King Abdullah University of Science and Technology (KAUST) , Thuwal 23955 , Kingdom of Saudi Arabia
| | - Ingo Pinnau
- Functional Polymer Membranes Group, Advanced Membranes and Porous Materials Center , King Abdullah University of Science and Technology (KAUST) , Thuwal 23955 , Kingdom of Saudi Arabia
| |
Collapse
|
36
|
Ma M, Guo Y. Accelerated Aging of PS Blocks in PS- b-PMMA Diblock Copolymer under Hard Confinement. J Phys Chem B 2019; 123:2448-2453. [PMID: 30763094 DOI: 10.1021/acs.jpcb.8b12565] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
This letter presents an accelerated physical aging of polystyrene (PS) blocks in polystyrene- block-poly(methyl methacrylate) (PS- b-PMMA) diblock copolymers under hard confinement. The three-dimensional hard nanoconfinement was provided by the PMMA component owing to its high elasticity and was formed via self-assembled microphase separation. Aging was observed by measuring enthalpy recovery of the PS blocks in the copolymers for which the degree of polymerization ( N) of PS blocks is fixed, whereas the N of PMMA blocks varies. Our results demonstrate that the aging speed of the PS blocks can increase by a factor of three to that of the neat PS as the N of PMMA blocks increases. Therefore, the hard confinement accelerates physical aging of the PS blocks, i.e., the relatively soft component in the copolymer.
Collapse
Affiliation(s)
- Mingchao Ma
- University of Michigan , Shanghai Jiao Tong University Joint Institute , Shanghai 200240 , China
| | - Yunlong Guo
- University of Michigan , Shanghai Jiao Tong University Joint Institute , Shanghai 200240 , China.,School of Materials Science and Engineering , Shanghai Jiao Tong University , Shanghai 200240 , China
| |
Collapse
|
37
|
Bernardo P, Scorzafave V, Clarizia G, Tocci E, Jansen J, Borgogno A, Malpass-Evans R, McKeown NB, Carta M, Tasselli F. Thin film composite membranes based on a polymer of intrinsic microporosity derived from Tröger's base: A combined experimental and computational investigation of the role of residual casting solvent. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.10.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Song N, Wang T, Yao H, Ma T, Shi K, Tian Y, Zou Y, Zhu S, Zhang Y, Guan S. Construction and carbon dioxide capture of microporous polymer networks with high surface area based on cross-linkable linear polyimides. Polym Chem 2019. [DOI: 10.1039/c9py00100j] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Microporous polyimide networks with high surface area and excellent CO2 adsorption performance have been constructed based on cross-linkable linear polyimides through crosslinking reaction.
Collapse
|
39
|
Fuoco A, Comesaña-Gándara B, Longo M, Esposito E, Monteleone M, Rose I, Bezzu CG, Carta M, McKeown NB, Jansen JC. Temperature Dependence of Gas Permeation and Diffusion in Triptycene-Based Ultrapermeable Polymers of Intrinsic Microporosity. ACS APPLIED MATERIALS & INTERFACES 2018; 10:36475-36482. [PMID: 30265512 DOI: 10.1021/acsami.8b13634] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A detailed analysis of the basic transport parameters of two triptycene-based polymers of intrinsic microporosity (PIMs), the ultrapermeable PIM-TMN-Trip and the more selective PIM-BTrip, as a function of temperature from 25 to 55 °C, is reported. For both PIMs, high permeability is based on very high diffusion and solubility coefficients. The contribution of these two factors on the overall permeability is affected by the temperature and depends on the penetrant dimensions. Energetic parameters of permeability, diffusivity, and solubility are calculated using Arrhenius-van't Hoff equations and compared with those of the archetypal PIM-1 and the ultrapermeable, but poorly selective poly(trimethylsilylpropyne). This considers, for the first time, the role of entropic and energetic selectivities in the diffusion process through highly rigid PIMs. This analysis demonstrates that how energetic selectivity dominates the gas-transport properties of the highly rigid triptycene PIMs and enhances the strong size-sieving character of these ultrapermeable polymers.
Collapse
Affiliation(s)
- Alessio Fuoco
- Institute on Membrane Technology (ITM-CNR) , Via P. Bucci 17/C , Rende 87036 , Cosenza , Italy
| | - Bibiana Comesaña-Gándara
- EastChem, School of Chemistry , University of Edinburgh , David Brewster Road , Edinburgh EH9 3FJ , U.K
| | - Mariagiulia Longo
- Institute on Membrane Technology (ITM-CNR) , Via P. Bucci 17/C , Rende 87036 , Cosenza , Italy
| | - Elisa Esposito
- Institute on Membrane Technology (ITM-CNR) , Via P. Bucci 17/C , Rende 87036 , Cosenza , Italy
| | - Marcello Monteleone
- Institute on Membrane Technology (ITM-CNR) , Via P. Bucci 17/C , Rende 87036 , Cosenza , Italy
| | - Ian Rose
- EastChem, School of Chemistry , University of Edinburgh , David Brewster Road , Edinburgh EH9 3FJ , U.K
| | - C Grazia Bezzu
- EastChem, School of Chemistry , University of Edinburgh , David Brewster Road , Edinburgh EH9 3FJ , U.K
| | - Mariolino Carta
- Department of Chemistry, College of Science , Swansea University , Grove Building, Singleton Park , Swansea SA2 8PP , U.K
| | - Neil B McKeown
- EastChem, School of Chemistry , University of Edinburgh , David Brewster Road , Edinburgh EH9 3FJ , U.K
| | - Johannes C Jansen
- Institute on Membrane Technology (ITM-CNR) , Via P. Bucci 17/C , Rende 87036 , Cosenza , Italy
| |
Collapse
|
40
|
Sulub-Sulub R, Loría-Bastarrachea MI, Santiago-García JL, Aguilar-Vega M. Synthesis and characterization of new polyimides from diphenylpyrene dianhydride and ortho methyl substituted diamines. RSC Adv 2018; 8:31881-31888. [PMID: 35547479 PMCID: PMC9085778 DOI: 10.1039/c8ra05991h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 08/29/2018] [Indexed: 11/21/2022] Open
Abstract
Three new polyimides were synthesized via one-step polycondensation from 3,8-diphenylpyrene-1,2,6,7-tetracarboxylic dianhydride (DPPD) with two diamines with ortho methyl substitution (MBDAM and HFI) and one diamine without ortho substituents (BAPHF). The effect of diamine structure in DPPD based polyimides' physical, thermal, mechanical and gas transport properties has been studied. The polyimide structure was confirmed by FTIR and 1H NMR. All polymers show high thermal stability with decomposition temperatures above 493 °C, and glass transition temperatures above 336 °C. Changes in packing density of polyimide membranes were assessed by wide angle X-ray diffraction and correlated to fractional free volume FFV. Polyimides based on rigid DPPD dianhydride exhibited an improved gas permeability and selectivity when ortho methyl substituents are present in the diamine used for polyimide synthesis. DPPD-MBDAM polyimide showed the best gas productivity values with 565 barrer CO2 permeability and a selectivity of 16 for CO2/CH4. Three new polyimides were synthesized from 3,8-diphenylpyrene-1,2,6,7-tetracarboxylic dianhydride (DPPD) with two diamines with ortho methyl substitution (MBDAM and HFI) and one diamine without ortho substituents (BAPHF).![]()
Collapse
Affiliation(s)
- R Sulub-Sulub
- Unidad de Materiales, Centro de Investigación Científica de Yucatán A. C., Calle 43 No. 130, Chuburná de Hidalgo, C. P. 97200 Mérida Yucatán México
| | - M I Loría-Bastarrachea
- Unidad de Materiales, Centro de Investigación Científica de Yucatán A. C., Calle 43 No. 130, Chuburná de Hidalgo, C. P. 97200 Mérida Yucatán México
| | - J L Santiago-García
- Unidad de Materiales, Centro de Investigación Científica de Yucatán A. C., Calle 43 No. 130, Chuburná de Hidalgo, C. P. 97200 Mérida Yucatán México
| | - M Aguilar-Vega
- Unidad de Materiales, Centro de Investigación Científica de Yucatán A. C., Calle 43 No. 130, Chuburná de Hidalgo, C. P. 97200 Mérida Yucatán México
| |
Collapse
|
41
|
Zhang C, Li P. Preparation and Gas Separation Properties of Spirobichroman-Based Polyimides. MACROMOL CHEM PHYS 2018. [DOI: 10.1002/macp.201800157] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Caili Zhang
- School of Materials Science and Mechanical Engineering; Beijing Technology and Business University; Beijing 100048 China
| | - Pei Li
- College of Materials Science and Engineering; Beijing University of Chemical Technology; Beijing 100029 China
| |
Collapse
|