1
|
Zhu C, Beauseroy H, Mougin J, Lages M, Nicolas J. In situ synthesis of degradable polymer prodrug nanoparticles. Chem Sci 2025; 16:2619-2633. [PMID: 39822905 PMCID: PMC11733764 DOI: 10.1039/d4sc07746f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/06/2025] [Indexed: 01/19/2025] Open
Abstract
The in situ synthesis of degradable polymer prodrug nanoparticles is still a challenge to be met, which would make it possible to remedy both the shortcomings of traditional formulation of preformed polymers (e.g., low nanoparticle concentrations) and those of the physical encapsulation of drugs (e.g., burst release and poor drug loadings). Herein, through the combination of radical ring-opening polymerization (rROP) and polymerization-induced self-assembly (PISA) under appropriate experimental conditions, we report the successful preparation of high-solid content, degradable polymer prodrug nanoparticles, exhibiting multiple drug moieties covalently linked to a degradable vinyl copolymer backbone. Such a rROPISA process relied on the chain extension of a biocompatible poly(ethylene glycol)-based solvophilic block with a mixture of lauryl methacrylate (LMA), cyclic ketene acetal (CKA) and drug-bearing methacrylic esters by reversible addition fragmentation chain transfer (RAFT) copolymerization at 20 wt% solid content. This novel approach was exemplified with two different CKA monomers and two different anticancer drugs, namely paclitaxel and gemcitabine, to demonstrate its versatility. After transferring to water, remarkably stable aqueous suspensions of core-degradable polymer prodrug nanoparticles, 56-225 nm in diameter, with tunable amounts of CKA units (7-26 mol%) and drug loadings of up to 33 wt% were obtained. The incorporation of ester groups in the copolymers was demonstrated by hydrolytic degradation of both the copolymers and the nanoparticles under accelerated conditions. The nanoparticles showed significant cytotoxicity against A549 cells, used as a lung cancer model. Fluorescence labeling of the solvophilic block also enabled effective monitoring of cell internalization by confocal microscopy, with potential for theranostic applications.
Collapse
Affiliation(s)
- Chen Zhu
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay 91400 Orsay France +33-180006081
| | - Hannah Beauseroy
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay 91400 Orsay France +33-180006081
| | - Julie Mougin
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay 91400 Orsay France +33-180006081
| | - Maëlle Lages
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay 91400 Orsay France +33-180006081
| | - Julien Nicolas
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay 91400 Orsay France +33-180006081
| |
Collapse
|
2
|
Ghorbani M, Prince E. Radical Ring-Opening Polymerization: Unlocking the Potential of Vinyl Polymers for Drug Delivery, Tissue Engineering, and More. Biomacromolecules 2025; 26:118-139. [PMID: 39733344 DOI: 10.1021/acs.biomac.4c01116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2024]
Abstract
Synthetic vinyl polymers have long been recognized for their potential to be utilized in drug delivery, tissue engineering, and other biomedical applications. The synthetic control that chemists have over their structure and properties is unmatched, allowing vinyl polymer-based materials to be precisely engineered for a range of therapeutic applications. Yet, their lack of biodegradability compromises the biocompatibility of vinyl polymers and has held back their translation into clinically used treatments for disease thus far. In recent years, radical ring-opening polymerization (rROP) has emerged as a promising strategy to render synthetic vinyl polymers biodegradable and bioresorbable. While rROP has long been touted as a strategy for preparing biodegradable vinyl polymers for biomedical applications, the translation of rROP into clinically approved treatments for disease has not yet been realized. This review highlights the opportunities for leveraging rROP to render vinyl polymers biodegradable and unlock their potential for use in biomedical applications.
Collapse
Affiliation(s)
- Mina Ghorbani
- Department of Chemical Engineering, University of Waterloo, 200 University Ave. WestN2L 3G1WaterlooON Canada
| | - Elisabeth Prince
- Department of Chemical Engineering, University of Waterloo, 200 University Ave. WestN2L 3G1WaterlooON Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Ave. WestN2L 3G1WaterlooON Canada
| |
Collapse
|
3
|
Abstract
The recent emergence of nanomedicine has revolutionized the therapeutic landscape and necessitated the creation of more sophisticated drug delivery systems. Polymeric nanoparticles sit at the forefront of numerous promising drug delivery designs, due to their unmatched control over physiochemical properties such as size, shape, architecture, charge, and surface functionality. Furthermore, polymeric nanoparticles have the ability to navigate various biological barriers to precisely target specific sites within the body, encapsulate a diverse range of therapeutic cargo and efficiently release this cargo in response to internal and external stimuli. However, despite these remarkable advantages, the presence of polymeric nanoparticles in wider clinical application is minimal. This review will provide a comprehensive understanding of polymeric nanoparticles as drug delivery vehicles. The biological barriers affecting drug delivery will be outlined first, followed by a comprehensive description of the various nanoparticle designs and preparation methods, beginning with the polymers on which they are based. The review will meticulously explore the current performance of polymeric nanoparticles against a myriad of diseases including cancer, viral and bacterial infections, before finally evaluating the advantages and crucial challenges that will determine their wider clinical potential in the decades to come.
Collapse
Affiliation(s)
- Maximilian
A. Beach
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Umeka Nayanathara
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yanting Gao
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Changhe Zhang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yijun Xiong
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yufu Wang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Georgina K. Such
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
4
|
Ko K, Lundberg DJ, Johnson AM, Johnson JA. Mechanism-Guided Discovery of Cleavable Comonomers for Backbone Deconstructable Poly(methyl methacrylate). J Am Chem Soc 2024; 146:9142-9154. [PMID: 38526229 DOI: 10.1021/jacs.3c14554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
The development of cleavable comonomers (CCs) with suitable copolymerization reactivity paves the way for the introduction of backbone deconstructability into polymers. Recent advancements in thionolactone-based CCs, exemplified by dibenzo[c,e]-oxepine-5(7H)-thione (DOT), have opened promising avenues for the selective deconstruction of multiple classes of vinyl polymers, including polyacrylates, polyacrylamides, and polystyrenics. To date, however, no thionolactone CC has been shown to copolymerize with methacrylates to an appreciable extent to enable polymer deconstruction. Here, we overcome this challenge through the design of a new class of benzyl-functionalized thionolactones (bDOTs). Guided by detailed mechanistic analyses, we find that the introduction of radical-stabilizing substituents to bDOTs enables markedly increased and tunable copolymerization reactivity with methyl methacrylate (MMA). Through iterative optimizations of the molecular structure, a specific bDOT, F-p-CF3PhDOT, is discovered to copolymerize efficiently with MMA. High molar mass deconstructable PMMA-based copolymers (dPMMA, Mn > 120 kDa) with low percentages of F-p-CF3PhDOT (1.8 and 3.8 mol%) are prepared using industrially relevant bulk free radical copolymerization conditions. The thermomechanical properties of dPMMA are similar to PMMA; however, the former is shown to degrade into low molar mass fragments (<6.5 kDa) under mild aminolysis conditions. This work presents the first example of a radical ring-opening CC capable of nearly random copolymerization with MMA without the possibility of cross-linking and provides a workflow for the mechanism-guided design of deconstructable copolymers in the future.
Collapse
Affiliation(s)
- Kwangwook Ko
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - David J Lundberg
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Alayna M Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
5
|
Jiang NC, Zhou Z, Niu J. Quantitative, Regiospecific, and Stereoselective Radical Ring-Opening Polymerization of Monosaccharide Cyclic Ketene Acetals. J Am Chem Soc 2024; 146:5056-5062. [PMID: 38345300 DOI: 10.1021/jacs.3c14244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Cyclic ketene acetals (CKAs) are among the most well-studied monomers for radical ring-opening polymerization (rROP). However, ring-retaining side reactions and low reactivities in homopolymerization and copolymerization remain significant challenges for the existing CKAs. Here, we report that a class of monosaccharide CKAs can be facilely prepared from a short and scalable synthetic route and can undergo quantitative, regiospecific, and stereoselective rROP. NMR analyses and degradation experiments revealed a reaction mechanism involving a propagating radical at the C2 position of pyranose with different monosaccharides exhibiting distinct stereoselectivity in the radical addition of the monomer. Furthermore, the addition of maleimide was found to improve the incorporation efficiency of monosaccharide CKA in the copolymerization with vinyl monomers and produced unique degradable terpolymers with carbohydrate motifs in the polymer backbone.
Collapse
Affiliation(s)
- Na-Chuan Jiang
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Zefeng Zhou
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Jia Niu
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
6
|
Pesenti T, Gillon E, Ishii S, Messaoudi S, Guillaneuf Y, Imberty A, Nicolas J. Increasing the Hydrophilicity of Cyclic Ketene Acetals Improves the Hydrolytic Degradation of Vinyl Copolymers and the Interaction of Glycopolymer Nanoparticles with Lectins. Biomacromolecules 2023; 24:991-1002. [PMID: 36724405 DOI: 10.1021/acs.biomac.2c01419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Radical ring-opening polymerization (rROP) of cyclic ketene acetals (CKAs) with traditional vinyl monomers allows the synthesis of degradable vinyl copolymers. However, since the most commonly used CKAs are hydrophobic, most degradable vinyl copolymers reported so far degrade very slowly by hydrolysis under physiological conditions (phosphate-buffered saline, pH 7.4, 37 °C), which can be detrimental for biomedical applications. Herein, to design advanced vinyl copolymers by rROP with high CKA content and enhanced degradation profiles, we reported the copolymerization of 2-methylene-1,3,6-trioxocane (MTC) as a CKA with vinyl ether (VE) or maleimide (MI) derivatives. By performing a point-by-point comparison between the MTC/VE and MTC/MI copolymerization systems, and their counterparts based on 2-methylene-1,3-dioxepane (MDO) and 5,6-benzo-2-methylene-1,3-dioxepane (BMDO), we showed negligible impact on the macromolecular characteristics and similar reactivity ratios, suggesting successful substitution of MDO and BMDO by MTC. Interestingly, owing to the hydrophilicity of MTC, the obtained copolymers exhibited a faster hydrolytic degradation under both accelerated and physiological conditions. We then prepared MTC-based glycopolymers, which were formulated into surfactant-free nanoparticles, exhibiting excellent colloidal stability up to 4 months and complete degradation under enzymatic conditions. Importantly, MTC-based glyconanoparticles also showed a similar cytocompatibility toward two healthy cell lines and a much stronger lectin affinity than MDO-based glyconanoparticles.
Collapse
Affiliation(s)
- Théo Pesenti
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France
| | - Emilie Gillon
- Université Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France
| | - Seika Ishii
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France
| | | | - Yohann Guillaneuf
- Aix-Marseille-Univ., CNRS, Institut de Chimie Radicalaire, UMR 7273, 13397 Marseille, France
| | - Anne Imberty
- Université Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France
| | - Julien Nicolas
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France
| |
Collapse
|
7
|
Lages M, Pesenti T, Zhu C, Le D, Mougin J, Guillaneuf Y, Nicolas J. Degradable polyisoprene by radical ring-opening polymerization and application to polymer prodrug nanoparticles. Chem Sci 2023; 14:3311-3325. [PMID: 36970097 PMCID: PMC10034157 DOI: 10.1039/d2sc05316k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
Radical ring-opening copolymerization of isoprene and dibenzo[c,e]oxepane-5-thione via free-radical and controlled radical polymerizations led to degradable polyisoprene under basic, oxidative and physiological conditions with application to prodrug nanoparticles.
Collapse
Affiliation(s)
- Maëlle Lages
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 17 Avenue des Sciences, 91400 Orsay, France
| | - Théo Pesenti
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 17 Avenue des Sciences, 91400 Orsay, France
| | - Chen Zhu
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 17 Avenue des Sciences, 91400 Orsay, France
| | - Dao Le
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 17 Avenue des Sciences, 91400 Orsay, France
| | - Julie Mougin
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 17 Avenue des Sciences, 91400 Orsay, France
| | - Yohann Guillaneuf
- Aix-Marseille-Univ., CNRS, Institut de Chimie Radicalaire, UMR 7273, F-13397 Marseille, France
| | - Julien Nicolas
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 17 Avenue des Sciences, 91400 Orsay, France
| |
Collapse
|
8
|
Ali A, Ul Amin B, Yu W, Gui T, Cong W, Zhang K, Tong Z, Hu J, Zhan X, Zhang Q. Eco-friendly biodegradable polyurethane based coating for antibacterial and antifouling performance. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Pesenti T, Domingo-Lopez D, Gillon E, Ibrahim N, Messaoudi S, Imberty A, Nicolas J. Degradable Glycopolyester-like Nanoparticles by Radical Ring-Opening Polymerization. Biomacromolecules 2022; 23:4015-4028. [PMID: 35971824 DOI: 10.1021/acs.biomac.2c00851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A small library of degradable polyester-like glycopolymers was successfully prepared by the combination of radical ring-opening copolymerization of 2-methylene-1,3-dioxepane as a cyclic ketene acetal (CKA) with vinyl ether (VE) derivatives and a Pd-catalyzed thioglycoconjugation. The resulting thioglycopolymers were formulated into self-stabilized thioglyconanoparticles, which were stable up to 4 months and were enzymatically degraded. Nanoparticles and their degradation products exhibited a good cytocompatibility on two healthy cell lines. Interactions between thioglyconanoparticles and lectins were investigated and highlighted the presence of both specific carbohydrate/lectin interactions and nonspecific hydrophobic interactions. Fluorescent thioglyconanoparticles were also prepared either by encapsulation of Nile red or by the functionalization of the polymer backbone with rhodamine B. Such nanoparticles were used to prove the cell internalization of the thioglyconanoparticles by lung adenocarcinoma (A549) cells, which underlined the great potential of P(CKA-co-VE) copolymers for biomedical applications.
Collapse
Affiliation(s)
- Théo Pesenti
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Daniel Domingo-Lopez
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Emilie Gillon
- Université Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France
| | - Nada Ibrahim
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Samir Messaoudi
- Université Paris-Saclay, CNRS, BioCIS, 92296 Châtenay-Malabry, France
| | - Anne Imberty
- Université Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France
| | - Julien Nicolas
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296 Châtenay-Malabry, France
| |
Collapse
|
10
|
Dong Y, Wang J, Yang Y, Wang Q, Zhang X, Hu H, Zhu J. Bio-based poly(butylene diglycolate-co-furandicarboxylate) copolyesters with balanced mechanical, barrier and biodegradable properties: A prospective substitute for PBAT. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Gil N, Caron B, Siri D, Roche J, Hadiouch S, Khedaioui D, Ranque S, Cassagne C, Montarnal D, Gigmes D, Lefay C, Guillaneuf Y. Degradable Polystyrene via the Cleavable Comonomer Approach. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Noémie Gil
- Aix Marseille Univ., CNRS, Institut de Chimie Radicalaire, UMR 7273, F-13397 Marseille, France
| | - Baptiste Caron
- Aix Marseille Univ., CNRS, Institut de Chimie Radicalaire, UMR 7273, F-13397 Marseille, France
| | - Didier Siri
- Aix Marseille Univ., CNRS, Institut de Chimie Radicalaire, UMR 7273, F-13397 Marseille, France
| | - Julien Roche
- Aix Marseille Univ., APHM, IHU Méditerranée Infect, IRD, VITROME, 13005 Marseille, France
| | - Slim Hadiouch
- Aix Marseille Univ., CNRS, Institut de Chimie Radicalaire, UMR 7273, F-13397 Marseille, France
| | - Douriya Khedaioui
- University of Lyon, CPE Lyon, CNRS, Catalyse, Polymerization, Processes and Materials, UMR 5128, F-69003 Lyon, France
| | - Stéphane Ranque
- Aix Marseille Univ., APHM, IHU Méditerranée Infect, IRD, VITROME, 13005 Marseille, France
| | - Carole Cassagne
- Aix Marseille Univ., APHM, IHU Méditerranée Infect, IRD, VITROME, 13005 Marseille, France
| | - Damien Montarnal
- University of Lyon, CPE Lyon, CNRS, Catalyse, Polymerization, Processes and Materials, UMR 5128, F-69003 Lyon, France
| | - Didier Gigmes
- Aix Marseille Univ., CNRS, Institut de Chimie Radicalaire, UMR 7273, F-13397 Marseille, France
| | - Catherine Lefay
- Aix Marseille Univ., CNRS, Institut de Chimie Radicalaire, UMR 7273, F-13397 Marseille, France
| | - Yohann Guillaneuf
- Aix Marseille Univ., CNRS, Institut de Chimie Radicalaire, UMR 7273, F-13397 Marseille, France
| |
Collapse
|
12
|
Zhu C, Nicolas J. (Bio)degradable and Biocompatible Nano-Objects from Polymerization-Induced and Crystallization-Driven Self-Assembly. Biomacromolecules 2022; 23:3043-3080. [PMID: 35707964 DOI: 10.1021/acs.biomac.2c00230] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Polymerization-induced self-assembly (PISA) and crystallization-driven self-assembly (CDSA) techniques have emerged as powerful approaches to produce a broad range of advanced synthetic nano-objects with high potential in biomedical applications. PISA produces nano-objects of different morphologies (e.g., spheres, vesicles and worms), with high solids content (∼10-50 wt %) and without additional surfactant. CDSA can finely control the self-assembly of block copolymers and readily forms nonspherical crystalline nano-objects and more complex, hierarchical assemblies, with spatial and dimensional control over particle length or surface area, which is typically difficult to achieve by PISA. Considering the importance of these two assembly techniques in the current scientific landscape of block copolymer self-assembly and the craze for their use in the biomedical field, this review will focus on the advances in PISA and CDSA to produce nano-objects suitable for biomedical applications in terms of (bio)degradability and biocompatibility. This review will therefore discuss these two aspects in order to guide the future design of block copolymer nanoparticles for future translation toward clinical applications.
Collapse
Affiliation(s)
- Chen Zhu
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Julien Nicolas
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296 Châtenay-Malabry, France
| |
Collapse
|
13
|
Bossion A, Zhu C, Guerassimoff L, Mougin J, Nicolas J. Vinyl copolymers with faster hydrolytic degradation than aliphatic polyesters and tunable upper critical solution temperatures. Nat Commun 2022; 13:2873. [PMID: 35610204 PMCID: PMC9130262 DOI: 10.1038/s41467-022-30220-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/19/2022] [Indexed: 11/18/2022] Open
Abstract
Vinyl polymers are the focus of intensive research due to their ease of synthesis and the possibility of making well-defined, functional materials. However, their non-degradability leads to environmental problems and limits their use in biomedical applications, allowing aliphatic polyesters to still be considered as the gold standards. Radical ring-opening polymerization of cyclic ketene acetals is considered the most promising approach to impart degradability to vinyl polymers. However, these materials still exhibit poor hydrolytic degradation and thus cannot yet compete with traditional polyesters. Here we show that a simple copolymerization system based on acrylamide and cyclic ketene acetals leads to well-defined and cytocompatible copolymers with faster hydrolytic degradation than that of polylactide and poly(lactide-co-glycolide). Moreover, by changing the nature of the cyclic ketene acetal, the copolymers can be either water-soluble or can exhibit tunable upper critical solution temperatures relevant for mild hyperthermia-triggered drug release. Amphiphilic diblock copolymers deriving from this system can also be formulated into degradable, thermosensitive nanoparticles by an all-water nanoprecipitation process.
Collapse
Affiliation(s)
- Amaury Bossion
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296, Châtenay-Malabry, France
| | - Chen Zhu
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296, Châtenay-Malabry, France
| | - Léa Guerassimoff
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296, Châtenay-Malabry, France
| | - Julie Mougin
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296, Châtenay-Malabry, France
| | - Julien Nicolas
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296, Châtenay-Malabry, France.
| |
Collapse
|
14
|
Bingham N, Nisa QU, Gupta P, Young NP, Velliou E, Roth PJ. Biocompatibility and Physiological Thiolytic Degradability of Radically Made Thioester-Functional Copolymers: Opportunities for Drug Release. Biomacromolecules 2022; 23:2031-2039. [PMID: 35472265 PMCID: PMC9092349 DOI: 10.1021/acs.biomac.2c00039] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Being nondegradable, vinyl polymers have limited biomedical applicability. Unfortunately, backbone esters incorporated through conventional radical ring-opening methods do not undergo appreciable abiotic hydrolysis under physiologically relevant conditions. Here, PEG acrylate and di(ethylene glycol) acrylamide-based copolymers containing backbone thioesters were prepared through the radical ring-opening copolymerization of the thionolactone dibenzo[c,e]oxepin-5(7H)-thione. The thioesters degraded fully in the presence of 10 mM cysteine at pH 7.4, with the mechanism presumed to involve an irreversible S-N switch. Degradations with N-acetylcysteine and glutathione were reversible through the thiol-thioester exchange polycondensation of R-SC(═O)-polymer-SH fragments with full degradation relying on an increased thiolate/thioester ratio. Treatment with 10 mM glutathione at pH 7.2 (mimicking intracellular conditions) triggered an insoluble-soluble switch of a temperature-responsive copolymer at 37 °C and the release of encapsulated Nile Red (as a drug model) from core-degradable diblock copolymer micelles. Copolymers and their cysteinolytic degradation products were found to be noncytotoxic, making thioester backbone-functional polymers promising for drug delivery applications.
Collapse
Affiliation(s)
- Nathaniel
M. Bingham
- Department
of Chemistry, School of Chemistry and Chemical Engineering, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom
| | - Qamar un Nisa
- Department
of Chemistry, School of Chemistry and Chemical Engineering, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom
| | - Priyanka Gupta
- Department
of Chemical and Process Engineering, School of Chemistry and Chemical
Engineering, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom,Centre
for 3D Models of Health and Disease, UCL-Division
of Surgery and Interventional Science, Charles Bell House, 43−45 Foley Street, Fitzrovia, London W1W 7TY, United Kingdom
| | - Neil P. Young
- Holder
Building, Department of Materials, University
of Oxford, Parks Road, Oxford OX1
3PH, United Kingdom
| | - Eirini Velliou
- Department
of Chemical and Process Engineering, School of Chemistry and Chemical
Engineering, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom,Centre
for 3D Models of Health and Disease, UCL-Division
of Surgery and Interventional Science, Charles Bell House, 43−45 Foley Street, Fitzrovia, London W1W 7TY, United Kingdom
| | - Peter J. Roth
- Department
of Chemistry, School of Chemistry and Chemical Engineering, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom,
| |
Collapse
|
15
|
Wang W, Zhou Z, Sathe D, Tang X, Moran S, Jin J, Haeffner F, Wang J, Niu J. Degradable Vinyl Random Copolymers via Photocontrolled Radical Ring‐Opening Cascade Copolymerization**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Wenqi Wang
- Department of Chemistry Boston College Chestnut Hill MA 02467 USA
| | - Zefeng Zhou
- Department of Chemistry Boston College Chestnut Hill MA 02467 USA
| | - Devavrat Sathe
- School of Polymer Science and Polymer Engineering University of Akron Akron OH 44325 USA
| | - Xuanting Tang
- Department of Chemistry Boston College Chestnut Hill MA 02467 USA
| | - Stephanie Moran
- Department of Chemistry Boston College Chestnut Hill MA 02467 USA
| | - Jing Jin
- Department of Chemistry Boston College Chestnut Hill MA 02467 USA
| | - Fredrik Haeffner
- Department of Chemistry Boston College Chestnut Hill MA 02467 USA
| | - Junpeng Wang
- School of Polymer Science and Polymer Engineering University of Akron Akron OH 44325 USA
| | - Jia Niu
- Department of Chemistry Boston College Chestnut Hill MA 02467 USA
| |
Collapse
|
16
|
Wang W, Zhou Z, Sathe D, Tang X, Moran S, Jin J, Haeffner F, Wang J, Niu J. Degradable Vinyl Random Copolymers via Photocontrolled Radical Ring-Opening Cascade Copolymerization. Angew Chem Int Ed Engl 2021; 61:e202113302. [PMID: 34890493 DOI: 10.1002/anie.202113302] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Indexed: 11/12/2022]
Abstract
Degradable vinyl polymers by radical ring-opening polymerization are promising solutions to the challenges caused by non-degradable vinyl plastics. However, achieving even distributions of labile functional groups in the backbone of degradable vinyl polymers remains challenging. Herein, we report a photocatalytic approach to degradable vinyl random copolymers via radical ring-opening cascade copolymerization (rROCCP). The rROCCP of macrocyclic allylic sulfones and acrylates or acrylamides mediated by visible light at ambient temperature achieved near-unity comonomer reactivity ratios over the entire range of the feed compositions. Experimental and computational evidence revealed an unusual reversible inhibition of chain propagation by in situ generated sulfur dioxide (SO2), which was successfully overcome by reducing the solubility of SO2. This study provides a powerful approach to degradable vinyl random copolymers with comparable material properties to non-degradable vinyl polymers.
Collapse
Affiliation(s)
- Wenqi Wang
- Boston College, Chemistry, UNITED STATES
| | | | - Devavrat Sathe
- University of Akron, School of Polymer Science and Polymer Engineering, UNITED STATES
| | | | | | - Jing Jin
- Boston College, Chemistry, UNITED STATES
| | | | - Junpeng Wang
- University of Akron, School of Polymer Science and Polymer Engineering, UNITED STATES
| | - Jia Niu
- Boston College, Department of Chemistry, 2609 Beacon St., Merkert Chemistry Center 214B, 02467, Chestnut Hill, UNITED STATES
| |
Collapse
|
17
|
Zaremski MY, Melik-Nubarov NS. Reversible Deactivation Radical Polymerization Mediated by Nitroxides and Green Chemistry. POLYMER SCIENCE SERIES C 2021. [PMCID: PMC8597878 DOI: 10.1134/s1811238221020120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- M. Yu. Zaremski
- Faculty of Chemistry, Moscow State University, 119991 Moscow, Russia
| | | |
Collapse
|
18
|
Zeng TY, Xia L, Zhang Z, Hong CY, You YZ. Dithiocarbamate-mediated controlled copolymerization of ethylene with cyclic ketene acetals towards polyethylene-based degradable copolymers. Polym Chem 2021. [DOI: 10.1039/d0py00200c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In this article, degradable polyethylene (PE)-based copolymers containing ester units in the backbone were prepared through the hybrid copolymerization of ethylene and cyclic ketene acetals (CKAs) mediated by dithiocarbamate successfully.
Collapse
Affiliation(s)
- Tian-You Zeng
- Key Laboratory of Soft Matter Chemistry
- Chinese Academy of Science
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
| | - Lei Xia
- Key Laboratory of Soft Matter Chemistry
- Chinese Academy of Science
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
| | - Ze Zhang
- Key Laboratory of Soft Matter Chemistry
- Chinese Academy of Science
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
| | - Chun-Yan Hong
- Key Laboratory of Soft Matter Chemistry
- Chinese Academy of Science
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
| | - Ye-Zi You
- Key Laboratory of Soft Matter Chemistry
- Chinese Academy of Science
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
| |
Collapse
|
19
|
Zaremski MY, Odintsova VV. Kinetic Features of the Radical Polymerization of Methyl Methacrylate under Conditions of Nitroxide-Mediated Reversible Inhibition. POLYMER SCIENCE SERIES C 2021. [DOI: 10.1134/s1811238221010069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Pesenti T, Nicolas J. 100th Anniversary of Macromolecular Science Viewpoint: Degradable Polymers from Radical Ring-Opening Polymerization: Latest Advances, New Directions, and Ongoing Challenges. ACS Macro Lett 2020; 9:1812-1835. [PMID: 35653672 DOI: 10.1021/acsmacrolett.0c00676] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Radical ring-opening polymerization (rROP) allows facile incorporation of labile groups (e.g., ester) into the main chain of vinyl polymers to obtain (bio)degradable materials. rROP has focused a lot of attention especially since the advent of reversible deactivation radical polymerization (RDRP) techniques and is still incredibly moving forward, as attested by the numerous achievements in terms of monomer synthesis, macromolecular engineering, and potential biomedical applications of the resulting degradable polymers. In the present Viewpoint, we will cover the latest progress made in rROP in the last ∼5 years, such as its recent directions, its remaining limitations, and the ongoing challenges. More specifically, this will be achieved through the three different classes of monomers that recently caught most of the attention: cyclic ketene acetals (CKA), thionolactones, and macrocyclic monomers.
Collapse
Affiliation(s)
- Théo Pesenti
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Julien Nicolas
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296 Châtenay-Malabry, France
| |
Collapse
|
21
|
Tardy A, Gil N, Plummer CM, Siri D, Gigmes D, Lefay C, Guillaneuf Y. Polyesters by a Radical Pathway: Rationalization of the Cyclic Ketene Acetal Efficiency. Angew Chem Int Ed Engl 2020; 59:14517-14526. [DOI: 10.1002/anie.202005114] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/12/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Antoine Tardy
- Aix-Marseille Univ CNRS Institut de Chimie Radicalaire UMR 7273 Marseille France
| | - Noémie Gil
- Aix-Marseille Univ CNRS Institut de Chimie Radicalaire UMR 7273 Marseille France
| | | | - Didier Siri
- Aix-Marseille Univ CNRS Institut de Chimie Radicalaire UMR 7273 Marseille France
| | - Didier Gigmes
- Aix-Marseille Univ CNRS Institut de Chimie Radicalaire UMR 7273 Marseille France
| | - Catherine Lefay
- Aix-Marseille Univ CNRS Institut de Chimie Radicalaire UMR 7273 Marseille France
| | - Yohann Guillaneuf
- Aix-Marseille Univ CNRS Institut de Chimie Radicalaire UMR 7273 Marseille France
| |
Collapse
|
22
|
Tardy A, Gil N, Plummer CM, Siri D, Gigmes D, Lefay C, Guillaneuf Y. Polyesters by a Radical Pathway: Rationalization of the Cyclic Ketene Acetal Efficiency. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Antoine Tardy
- Aix-Marseille Univ CNRS Institut de Chimie Radicalaire UMR 7273 Marseille France
| | - Noémie Gil
- Aix-Marseille Univ CNRS Institut de Chimie Radicalaire UMR 7273 Marseille France
| | | | - Didier Siri
- Aix-Marseille Univ CNRS Institut de Chimie Radicalaire UMR 7273 Marseille France
| | - Didier Gigmes
- Aix-Marseille Univ CNRS Institut de Chimie Radicalaire UMR 7273 Marseille France
| | - Catherine Lefay
- Aix-Marseille Univ CNRS Institut de Chimie Radicalaire UMR 7273 Marseille France
| | - Yohann Guillaneuf
- Aix-Marseille Univ CNRS Institut de Chimie Radicalaire UMR 7273 Marseille France
| |
Collapse
|
23
|
Pelegri-O'Day EM, Bhattacharya A, Theopold N, Ko JH, Maynard HD. Synthesis of Zwitterionic and Trehalose Polymers with Variable Degradation Rates and Stabilization of Insulin. Biomacromolecules 2020; 21:2147-2154. [PMID: 32369347 PMCID: PMC8259896 DOI: 10.1021/acs.biomac.0c00133] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Polymers that stabilize biomolecules are important as excipients in protein formulation. Herein, we describe a class of degradable polymers that have tunable degradation rates depending on the polymer backbone and can stabilize proteins to aggregation. Specifically, zwitterion- and trehalose-substituted polycaprolactone, polyvalerolactone, polycarbonate, and polylactide were prepared and characterized with regards to their hydrolytic degradation and ability to stabilize insulin to mechanical agitation during heat. Ring-opening polymerization (ROP) of allyl-substituted monomers was performed by using organocatalysis, resulting in well-defined alkene-substituted polymers with good control over molecular weight and dispersity. The polymers were then modified by using photocatalyzed thiol-ene reactions to install protein-stabilizing carboxybetaine and trehalose side chains. The resulting polymers were water-soluble and exhibited a wide range of half-lives, from 12 h to more than 3 months. The polymers maintained the ability to stabilize the therapeutic protein insulin from activity loss due to aggregation, demonstrating their potential as degradable excipients for protein formulation.
Collapse
Affiliation(s)
- Emma M Pelegri-O'Day
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Arvind Bhattacharya
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Nik Theopold
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Jeong Hoon Ko
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Heather D Maynard
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| |
Collapse
|
24
|
Spick MP, Bingham NM, Li Y, de Jesus J, Costa C, Bailey MJ, Roth PJ. Fully Degradable Thioester-Functional Homo- and Alternating Copolymers Prepared through Thiocarbonyl Addition–Ring-Opening RAFT Radical Polymerization. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02497] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Abstract
This review discusses the history of reversible-deactivation radical ring-opening polymerization of cyclic ketene acetals, focusing on the preparation of degradable complex polymeric architectures.
Collapse
Affiliation(s)
- Alexander W. Jackson
- Agency for Science
- Technology and Engineering (A*Star)
- Institute of Chemical and Engineering Sciences (ICES)
- Functional Molecules and Polymers (FMP) Division
- Jurong Island
| |
Collapse
|
26
|
Hillmyer MA. Editorial. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Guégain E, Zhu C, Giovanardi E, Nicolas J. Radical Ring-Opening Copolymerization-Induced Self-Assembly (rROPISA). Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00161] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Elise Guégain
- Institut Galien Paris-Sud, UMR CNRS 8612, Univ Paris-Sud/Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry cedex, France
| | - Chen Zhu
- Institut Galien Paris-Sud, UMR CNRS 8612, Univ Paris-Sud/Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry cedex, France
| | - Erika Giovanardi
- Institut Galien Paris-Sud, UMR CNRS 8612, Univ Paris-Sud/Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry cedex, France
| | - Julien Nicolas
- Institut Galien Paris-Sud, UMR CNRS 8612, Univ Paris-Sud/Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry cedex, France
| |
Collapse
|
28
|
Xie Q, Pan J, Ma C, Zhang G. Dynamic surface antifouling: mechanism and systems. SOFT MATTER 2019; 15:1087-1107. [PMID: 30444519 DOI: 10.1039/c8sm01853g] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Marine biofouling is a global problem today. High efficiency and eco-friendly antifouling systems are in pressing need. In recent years, we have proposed the concept of dynamic surface antifouling (DSA). That is, a continuously changing surface can effectively prevent marine fouling organisms from landing and adhesion. Based on this strategy, we developed coatings with dynamic surfaces by using degradable polymers including polyester-polyurethane, modified polyester and poly(ester-co-acrylate). They exhibit tunable renewability, and excellent antifouling and mechanical performance. Moreover, the polymers can serve as carrier and controlled release systems of antifoulants so that they have long service life. This paper reviews the progress and trends in marine anti-biofouling, and presents the mechanism and systems of DSA.
Collapse
Affiliation(s)
- Qingyi Xie
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China.
| | | | | | | |
Collapse
|
29
|
Tran J, Pesenti T, Cressonnier J, Lefay C, Gigmes D, Guillaneuf Y, Nicolas J. Degradable Copolymer Nanoparticles from Radical Ring-Opening Copolymerization between Cyclic Ketene Acetals and Vinyl Ethers. Biomacromolecules 2019; 20:305-317. [PMID: 30540444 DOI: 10.1021/acs.biomac.8b01500] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
2-Methylene-1,3-dioxepane (MDO) and different vinyl ether (VE) monomers were successfully copolymerized by free-radical radical ring-opening copolymerization (rROP) to yield P(MDO- co-VE) copolymers with Mn = 7 000-13 000 g·mol-1 and high molar fractions of MDO ( FMDO = 0.7-0.9). By using VE derivatives of different aqueous solubilities or by grafting PEG chains onto the copolymers by "click" chemistry via azide-containing VE units, hydrophobic, amphiphilic and water-soluble copolymers were obtained. The different copolymers were then formulated into nanoparticles by nanoprecipitation using Pluronics for hydrophobic copolymers, without surfactant for amphiphilic copolymers, or blended with PMDO for water-soluble copolymers. Most of the copolymers led to nanoparticles with average diameters in the 130-250 nm with narrow particle size distributions and satisfying colloidal stability for a period of at least 1-2 weeks and up to 6 months. The copolymers were successfully degraded under accelerated, hydrolytic or enzymatic conditions. Hydrophobic copolymers led to degradation kinetics in PBS similar to that of PCL and complete degradation (-95% in Mn decrease) was observed in the presence of enzymes (lipases). Preliminary cytotoxicity assays were performed on endothelial cells (HUVEC) and macrophages (J774.A1) and revealed high cell viabilities at 0.1 mg·mL-1.
Collapse
Affiliation(s)
- Johanna Tran
- Institut Galien Paris-Sud, UMR CNRS 8612, Univ Paris-Sud, Univ. Paris-Saclay, Faculté de Pharmacie , 5 rue Jean-Baptiste Clément , F-92296 Châtenay-Malabry cedex , France
| | - Théo Pesenti
- Institut Galien Paris-Sud, UMR CNRS 8612, Univ Paris-Sud, Univ. Paris-Saclay, Faculté de Pharmacie , 5 rue Jean-Baptiste Clément , F-92296 Châtenay-Malabry cedex , France
| | - Jonathan Cressonnier
- Institut Galien Paris-Sud, UMR CNRS 8612, Univ Paris-Sud, Univ. Paris-Saclay, Faculté de Pharmacie , 5 rue Jean-Baptiste Clément , F-92296 Châtenay-Malabry cedex , France
| | - Catherine Lefay
- Aix Marseille Univ. , CNRS, Institut de Chimie Radicalaire UMR 7273, Marseille 13397 France
| | - Didier Gigmes
- Aix Marseille Univ. , CNRS, Institut de Chimie Radicalaire UMR 7273, Marseille 13397 France
| | - Yohann Guillaneuf
- Aix Marseille Univ. , CNRS, Institut de Chimie Radicalaire UMR 7273, Marseille 13397 France
| | - Julien Nicolas
- Institut Galien Paris-Sud, UMR CNRS 8612, Univ Paris-Sud, Univ. Paris-Saclay, Faculté de Pharmacie , 5 rue Jean-Baptiste Clément , F-92296 Châtenay-Malabry cedex , France
| |
Collapse
|
30
|
Le Fer G, Luo Y, Becker ML. Poly(propylene fumarate) stars, using architecture to reduce the viscosity of 3D printable resins. Polym Chem 2019. [DOI: 10.1039/c9py00738e] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Additive manufacturing is changing tissue engineering by offering pathways to otherwise unattainable, highly complex scaffold morphologies.
Collapse
Affiliation(s)
- Gaëlle Le Fer
- Department of Polymer Science
- University of Akron
- Akron
- USA
| | - Yuanyuan Luo
- Department of Polymer Science
- University of Akron
- Akron
- USA
| | - Matthew L. Becker
- Department of Polymer Science
- University of Akron
- Akron
- USA
- Department of Chemistry
| |
Collapse
|
31
|
Guégain E, Tran J, Deguettes Q, Nicolas J. Degradable polymer prodrugs with adjustable activity from drug-initiated radical ring-opening copolymerization. Chem Sci 2018; 9:8291-8306. [PMID: 30542578 PMCID: PMC6240899 DOI: 10.1039/c8sc02256a] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/28/2018] [Indexed: 01/09/2023] Open
Abstract
Degradable polymer prodrugs based on gemcitabine (Gem) as an anticancer drug were synthesized by 'drug-initiated' nitroxide-mediated radical ring-opening copolymerization (NMrROP) of methacrylic esters and 2-methylene-4-phenyl-1,3-dioxolane (MPDL). Different structural parameters were varied to determine the best biological performances: the nature of the monomer [i.e., oligo(ethylene glycol) methacrylate (OEGMA) or methyl methacrylate (MMA)], the nature of the Gem-polymer linker (i.e., amide or amide and diglycolate) and the MPDL content in the copolymer. Depending on the nature of the methacrylate monomer, two small libraries of water-soluble copolymer prodrugs and nanoparticles were obtained (M n ∼10 000 g mol-1, Đ = 1.1-1.5), which exhibited tunable hydrolytic degradation under accelerated conditions governed by the MPDL content. Drug-release profiles in human serum and in vitro anticancer activity on different cell lines enabled preliminary structure-activity relationships to be established. The cytotoxicity was independently governed by: (i) the MPDL content - the lower the MPDL content, the greater the cytotoxicity; (ii) the nature of the linker - the presence of a labile diglycolate linker enabled a greater Gem release compared to a simple amide bond and (iii) the hydrophilicity of the methacrylate monomer-OEGMA enabled a greater anticancer activity to be obtained compared to MMA-based polymer prodrugs. Remarkably, the optimal structural parameters enabled reaching the cytotoxic activity of the parent (free) drug.
Collapse
Affiliation(s)
- Elise Guégain
- Institut Galien Paris-Sud , CNRS UMR 8612 , Univ Paris-Sud , Faculté de Pharmacie , 5 rue Jean-Baptiste Clément, 92290 Châtenay-Malabry , France . ; Tel: +33 1 46 83 58 53 ; www.twitter.com/julnicolas
| | - Johanna Tran
- Institut Galien Paris-Sud , CNRS UMR 8612 , Univ Paris-Sud , Faculté de Pharmacie , 5 rue Jean-Baptiste Clément, 92290 Châtenay-Malabry , France . ; Tel: +33 1 46 83 58 53 ; www.twitter.com/julnicolas
| | - Quentin Deguettes
- Institut Galien Paris-Sud , CNRS UMR 8612 , Univ Paris-Sud , Faculté de Pharmacie , 5 rue Jean-Baptiste Clément, 92290 Châtenay-Malabry , France . ; Tel: +33 1 46 83 58 53 ; www.twitter.com/julnicolas
| | - Julien Nicolas
- Institut Galien Paris-Sud , CNRS UMR 8612 , Univ Paris-Sud , Faculté de Pharmacie , 5 rue Jean-Baptiste Clément, 92290 Châtenay-Malabry , France . ; Tel: +33 1 46 83 58 53 ; www.twitter.com/julnicolas
| |
Collapse
|
32
|
Synthesis and characterization of hydrolytically degradable poly(N-vinylcaprolactam) copolymers with in-chain ester groups. Colloid Polym Sci 2018. [DOI: 10.1007/s00396-018-4414-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
33
|
Hill MR, Kubo T, Goodrich SL, Figg CA, Sumerlin BS. Alternating Radical Ring-Opening Polymerization of Cyclic Ketene Acetals: Access to Tunable and Functional Polyester Copolymers. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00889] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Megan R. Hill
- George & Josephine Butler Polymer Research Laboratory, Department of Chemistry, Center for Macromolecular Science & Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Tomohiro Kubo
- George & Josephine Butler Polymer Research Laboratory, Department of Chemistry, Center for Macromolecular Science & Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Sofia L. Goodrich
- George & Josephine Butler Polymer Research Laboratory, Department of Chemistry, Center for Macromolecular Science & Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - C. Adrian Figg
- George & Josephine Butler Polymer Research Laboratory, Department of Chemistry, Center for Macromolecular Science & Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Brent S. Sumerlin
- George & Josephine Butler Polymer Research Laboratory, Department of Chemistry, Center for Macromolecular Science & Engineering, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
34
|
Schönemann E, Laschewsky A, Rosenhahn A. Exploring the Long-Term Hydrolytic Behavior of Zwitterionic Polymethacrylates and Polymethacrylamides. Polymers (Basel) 2018; 10:E639. [PMID: 30966673 PMCID: PMC6403559 DOI: 10.3390/polym10060639] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 06/04/2018] [Accepted: 06/06/2018] [Indexed: 12/16/2022] Open
Abstract
The hydrolytic stability of polymers to be used for coatings in aqueous environments, for example, to confer anti-fouling properties, is crucial. However, long-term exposure studies on such polymers are virtually missing. In this context, we synthesized a set of nine polymers that are typically used for low-fouling coatings, comprising the well-established poly(oligoethylene glycol methylether methacrylate), poly(3-(N-2-methacryloylethyl-N,N-dimethyl) ammoniopropanesulfonate) ("sulfobetaine methacrylate"), and poly(3-(N-3-methacryamidopropyl-N,N-dimethyl)ammoniopropanesulfonate) ("sulfobetaine methacrylamide") as well as a series of hitherto rarely studied polysulfabetaines, which had been suggested to be particularly hydrolysis-stable. Hydrolysis resistance upon extended storage in aqueous solution is followed by ¹H NMR at ambient temperature in various pH regimes. Whereas the monomers suffered slow (in PBS) to very fast hydrolysis (in 1 M NaOH), the polymers, including the polymethacrylates, proved to be highly stable. No degradation of the carboxyl ester or amide was observed after one year in PBS, 1 M HCl, or in sodium carbonate buffer of pH 10. This demonstrates their basic suitability for anti-fouling applications. Poly(sulfobetaine methacrylamide) proved even to be stable for one year in 1 M NaOH without any signs of degradation. The stability is ascribed to a steric shielding effect. The hemisulfate group in the polysulfabetaines, however, was found to be partially labile.
Collapse
Affiliation(s)
- Eric Schönemann
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam-Golm, Germany.
| | - André Laschewsky
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam-Golm, Germany.
- Fraunhofer Institute of Applied Polymer Research IAP, Geiselberg-Str. 69, D-14476 Potsdam-Golm, Germany.
| | - Axel Rosenhahn
- Institute of Analytical Chemistry-Biogrenzflächen, Ruhr-Universität Bochum, Universitätsstr. 150, D-44801 Bochum, Germany.
| |
Collapse
|
35
|
Wais U, Chennamaneni LR, Thoniyot P, Zhang H, Jackson AW. Main-chain degradable star polymers comprised of pH-responsive hyperbranched cores and thermoresponsive polyethylene glycol-based coronas. Polym Chem 2018. [DOI: 10.1039/c8py01113c] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Dual stimuliresponsive main-chain degradable star hyperbranched polymers have been synthesized via cyclic ketene acetal radical ring-opening and RAFT-based methacrylate copolymerization.
Collapse
Affiliation(s)
- Ulrike Wais
- Institute of Chemical and Engineering Sciences
- Jurong Island
- Singapore
- Department of Chemistry
- University of Liverpool
| | | | - Praveen Thoniyot
- Institute of Chemical and Engineering Sciences
- Jurong Island
- Singapore
| | - Haifei Zhang
- Department of Chemistry
- University of Liverpool
- Liverpool L69 7ZD
- UK
| | | |
Collapse
|