1
|
Obewhere OA, Acurio-Cerda K, Sutradhar S, Dike M, Keloth R, Dishari SK. Unravel-engineer-design: a three-pronged approach to advance ionomer performance at interfaces in proton exchange membrane fuel cells. Chem Commun (Camb) 2024; 60:13114-13142. [PMID: 39356467 PMCID: PMC11560688 DOI: 10.1039/d4cc03221g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Proton exchange membrane fuel cells (PEMFCs), which use hydrogen as fuel, present an eco-friendly alternative to internal combustion engines (ICEs) for powering low-to-heavy-duty vehicles and various devices. Despite their promise, PEMFCs must meet strict cost, performance, and durability standards to reach their full potential. A key challenge lies in optimizing the electrode, where a thin ionomer layer is responsible for proton conduction and binding catalyst particles to the electrode. Enhancing ion transport within these sub-μm thick films is critical to improving the oxygen reduction reaction (ORR) at the cathodes of PEMFCs. For the past 15 years, our research has targeted this limitation through a comprehensive "Unravel - Engineer - Design" approach. We first unraveled the behavior of ionomers, gaining deeper insights into both the average and distributed proton conduction properties within sub-μm thick films and at interfaces that mimic catalyst binder layers. Next, we engineered ionomer-substrate interfaces to gain control over interfacial makeup and boost proton conductivity, essential for PEMFC efficiency. Finally, we designed novel nature-derived or nature-inspired, fluorine-free ionomers to tackle the ion transport limitations seen in state-of-the-art ionomers under thin-film confinement. Some of these ionomers even pave the way to address cost and sustainability challenges in PEMFC materials. This feature article highlights our contributions and their importance in advancing PEMFCs and other sustainable energy conversion and storage technologies.
Collapse
Affiliation(s)
| | - Karen Acurio-Cerda
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Nebraska, USA.
| | - Sourav Sutradhar
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Nebraska, USA.
| | - Moses Dike
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Nebraska, USA.
| | - Rajesh Keloth
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Nebraska, USA.
| | - Shudipto Konika Dishari
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Nebraska, USA.
| |
Collapse
|
2
|
Fan H, Xie T, Pang Y, Zhu S, Feng P, Zhu X, Zhao C, Guan S, Yao H. Sulfonated Polyimide Membranes Constructed by Main-Chain and Molecular-Network Engineering Strategy for Direct Methanol Fuel Cell. Macromol Rapid Commun 2024; 45:e2300502. [PMID: 37996994 DOI: 10.1002/marc.202300502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/05/2023] [Indexed: 11/25/2023]
Abstract
Excessive swelling is one important factor that leads to high fuel permeability and limited operating concentration of methanol for proton exchange membranes. Herein, a collaborative strategy of main-chain and molecular-network engineering is applied to lower swelling ratio and improve methanol resistance for highly sulfonated polyimide. Two m-phenylenediamine monomers (4-(2,3,5,6-tetrafluoro-4-vinylphenoxy)benzene-1,3-diamine and 4,6-bis(2,3,5,6-tetrafluoro-4-vinylphenoxy)benzene-1,3-diamine) with tetrafluorostyrol groups are designed and synthesized. Two series of cross-linked sulfonated polyimides (CSPI-Ts, CSPI-Bs) are prepared from the two diamines, 4,4'-diaminostilbene-2,2'-disulfonic acid and 1,4,5,8-naphthalenetetracarboxylicdianhydride. The rigid main-chain structure is cornerstone for wet CSPI-Ts and CSPI-Bs remaining stable at elevated temperatures. The introduction of hydrophobic cross-linked network further improves their dimensional stability and methanol resistance. CSPI-Ts and CSPI-Bs show obviously improved performances containing high proton conductivity (121 ± 0.27-158 ± 0.35 S cm-1 ), low swelling ratio (9.6 ± 0.40%-16.1 ± 0.01%) and methanol permeability (4.14-7.69 × 10-7 cm2 s-1 ) at 80 °C. The direct methanol fuel cell (DMFC) is assembled from CSPI-T-10 with balanced properties, and it exhibits high maximum power density (PDmax ) of 82.3 and 72.6 mW cm-2 in 2 and 10 m methanol solution, respectively. The ratio of PDmax in 10 m methanol solution to the value in 2 m methanol solution is as high as 88%. The CSPI-T-10 is promising proton exchange membrane candidate for DMFC application.
Collapse
Affiliation(s)
- Hang Fan
- National and Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China
| | - Tiantian Xie
- National and Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China
| | - Yang Pang
- National and Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China
| | - Shiyang Zhu
- National and Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China
| | - Pengju Feng
- Guangzhou High-tech Zone Institute for Energy Technology Co., Ltd, Hongyuan Road 8, Guangzhou, 510700, P. R. China
| | - Xuanbo Zhu
- National and Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China
| | - Chengji Zhao
- National and Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China
| | - Shaowei Guan
- National and Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China
| | - Hongyan Yao
- National and Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China
| |
Collapse
|
3
|
Yao Y, Watanabe H, Hara M, Nagano S, Nagao Y. Lyotropic Liquid Crystalline Property and Organized Structure in High Proton-Conductive Sulfonated Semialicyclic Oligoimide Thin Films. ACS OMEGA 2023; 8:7470-7478. [PMID: 36872982 PMCID: PMC9979332 DOI: 10.1021/acsomega.2c06398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Fully aromatic sulfonated polyimides with a rigid backbone can form lamellar structures under humidified conditions, thereby facilitating the transmission of protons in ionomers. Herein, we synthesized a new sulfonated semialicyclic oligoimide composed of 1,2,3,4-cyclopentanetetracarboxylic dianhydride (CPDA) and 3,3'-bis-(sulfopropoxy)-4,4'-diaminobiphenyl to investigate the influence of molecular organized structure and proton conductivity with lower molecular weight. The weight-average molecular weight (M w) determined by gel permeation chromatography was 9300. Humidity-controlled grazing incidence X-ray scattering revealed that one scattering was observed in the out-of-plane direction and showed that the scattering position shifted to a lower angle as the humidity increased. A loosely packed lamellar structure was formed by lyotropic liquid crystalline properties. Although the ch-pack aggregation of the present oligomer was reduced by substitution to the semialicyclic CPDA from the aromatic backbone, the formation of a distinct organized structure in the oligomeric form was observed because of the linear conformational backbone. This report is the first-time observation of the lamellar structure in such a low-molecular-weight oligoimide thin film. The thin film exhibited a high conductivity of 0.2 (±0.01) S cm-1 under 298 K and 95% relative humidity, which is the highest value compared to the other reported sulfonated polyimide thin films with comparable molecular weight.
Collapse
Affiliation(s)
- Yuze Yao
- School
of Materials Science, Japan Advanced Institute
of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Hayato Watanabe
- Graduate
School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Mitsuo Hara
- Graduate
School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Shusaku Nagano
- Department
of Chemistry, College of Science, Rikkyo
University, 3-34-1 Nishi-ikebukuro, Toshima, Tokyo 171-8501, Japan
| | - Yuki Nagao
- School
of Materials Science, Japan Advanced Institute
of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| |
Collapse
|
4
|
Tabata K, Nohara T, Nakazaki H, Makino T, Saito T, Arita T, Masuhara A. Proton conductivity dependence on the surface polymer thickness of core-shell type nanoparticles in a proton exchange membrane. NANOSCALE ADVANCES 2022; 4:4714-4723. [PMID: 36381507 PMCID: PMC9642339 DOI: 10.1039/d2na00450j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
The proton exchange membrane (PEM) is the main component that determines the performance of polymer electrolyte fuel cells. The construction of proton-conduction channels capable of fast proton conduction is an important topic in PEM research. In this study, we have developed poly(vinylphosphonic acid)-block-polystyrene (PVPA-b-PS)-coated core-shell type silica nanoparticles prepared by in situ polymerization and a core-shell type nanoparticle-filled PEM. In this system, two-dimensional (2D) proton-conduction channels have been constructed between PVPA and the surface of silica nanoparticles, and three-dimensional proton-conduction channels were constructed by connecting these 2D channels by filling with the core-shell type nanoparticles. The proton conductivities and activation energies of pelletized PVPA-coated core-shell type nanoparticles increased depending on the coated PVPA thickness. Additionally, pelletized PVPA-b-PS-coated silica nanoparticles showed a good proton conductivity of 1.3 × 10-2 S cm-1 at 80 °C and 95% RH. Also, the membrane state achieved 1.8 × 10-4 S cm-1 in a similar temperature and humidity environment. Although these proton conductivities were lower than those of PVPA, they have advantages such as low activation energy for proton conduction, suppression of swelling due to water absorption, and the ability to handle samples in powder form. Moreover, by using PS simultaneously, we succeeded in improving the stability of proton conductivity against changes in the temperature and humidity environment. Therefore, we have demonstrated a highly durable, tough but still enough high proton conductive material by polymer coating onto the surface of nanoparticles and also succeeded in constructing proton-conduction channels through the easy integration of core-shell type nanoparticles.
Collapse
Affiliation(s)
- Keisuke Tabata
- Graduate School of Science and Engineering, Yamagata University 4-3-16 Yonezawa Yamagata 992-8510 Japan
| | - Tomohiro Nohara
- Graduate School of Science and Engineering, Yamagata University 4-3-16 Yonezawa Yamagata 992-8510 Japan
| | - Haruki Nakazaki
- Graduate School of Science and Engineering, Yamagata University 4-3-16 Yonezawa Yamagata 992-8510 Japan
| | - Tsutomu Makino
- Graduate School of Science and Engineering, Yamagata University 4-3-16 Yonezawa Yamagata 992-8510 Japan
| | - Takaaki Saito
- Graduate School of Science and Engineering, Yamagata University 4-3-16 Yonezawa Yamagata 992-8510 Japan
| | - Toshihiko Arita
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University 2-1-1 Katahira, Aoba-ku Sendai Miyagi 980-8577 Japan
| | - Akito Masuhara
- Graduate School of Science and Engineering, Yamagata University 4-3-16 Yonezawa Yamagata 992-8510 Japan
- Frontier Center for Organic Materials (FROM), Yamagata University 4-3-16 Jonan Yonezawa Yamagata 992-8510 Japan
| |
Collapse
|
5
|
Xie T, Pang Y, Fan H, Zhu S, Zhao C, Guan S, Yao H. Controlling the microphase morphology and performance of cross-linked highly sulfonated polyimide membranes by varying the molecular structure and volume of the hydrophobic cross-linkable diamine monomers. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
6
|
He Z, Wang G, Wei S, Li G, Zhang J, Chen J, Wang R. A novel fluorinated acid-base sulfonated polyimide membrane with sulfoalkyl side-chain for vanadium redox flow battery. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Wang F, Wang D, Nagao Y. OH - Conductive Properties and Water Uptake of Anion Exchange Thin Films. CHEMSUSCHEM 2021; 14:2694-2697. [PMID: 33928758 DOI: 10.1002/cssc.202100711] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Several investigations have indicated that proton conduction and hydration properties of acidic ionomers differ from those of membranes. However, relations between the OH- conductivity and water uptake in thin film forms of anion exchange membranes have not been reported yet. For this study, new in situ measurements were established to elucidate the OH- conductivity and water uptake without allowing any influence of CO2 from the air. Poly[(9,9-bis(6'-(N,N,N-trimethylammonium)-hexyl)-9H-fluorene)-alt-(1,4-benzene)], denoted as PFB+ , was synthesized as a model ionomer. The highest OH- conductivity of 273 nm-thick PFB+ film was 5.3×10-2 S cm-1 at 25 °C under 95 % relative humidity (RH), which is comparable to the reported OH- conductivity of PFB+ membrane. Reduced OH- conductivity was found in the thinner film at 95 % RH. The decreased OH- conductivity is explainable by the reduced number of water molecules contained in the thinner film. The OH- conductivity was reduced only slightly under the same water uptake.
Collapse
Affiliation(s)
- Fangfang Wang
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Dongjin Wang
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Yuki Nagao
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| |
Collapse
|
8
|
Synthesis of pH-responsive polyimide hydrogel from bioderived amino acid. Polym J 2021. [DOI: 10.1038/s41428-021-00509-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Ishige R, Tanaka K, Ando S. Quantitative analysis of stereoscopic molecular orientations in thermally reactive and heterogeneous noncrystalline thin films via variable-temperature infrared pMAIRS and GI-XRD. Polym J 2021. [DOI: 10.1038/s41428-020-00458-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
Liu D, Xie Y, Cui N, Han X, Zhang J, Pang J, Jiang Z. Structure and properties of sulfonated poly(arylene ether)s with densely sulfonated segments containing mono-, di- and tri-tetraphenylmethane as proton exchange membrane. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118856] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Yu H, Wang Y. Sulfonated poly (arylene ether sulfone)-graft-sulfonated poly (vinyl alcohol) proton exchange membranes: Improved proton selectivity. HIGH PERFORM POLYM 2020. [DOI: 10.1177/0954008320968164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aldehyde terminated sulfonated poly (arylene ether sulfone) (SPAES-CHO) is prepared by a series of nucleophilic substitution reaction based on SPAES in this paper. Novel SPAES-graft-SPVA (SPAES-g-SPVA) membranes are fabricated by acetal reaction between SPAES-CHO and different amounts of sulfonated poly (vinyl alcohol) (SPVA). The 1H-NMR and FTIR indicate the successful preparation of SPAES-CHO and SPAES-g-SPVA membranes. With the introduction of SPVA, the SPAES-g-SPVA membranes have much lower methanol permeability than pure SPAES membrane and Nafion117 membrane. The methanol permeability coefficients of the SPAES-g-SPVA membranes decrease from 3.41 × 10−7 cm2 s−1 to 1.67 × 10−7 cm2 s−1 with the increase of SPVA content. And the proton conductivity of all the membranes is higher than 15 mS cm−1 at 25°C. Moreover, SPAES-g-SPVA membranes exhibit high proton selectivity. Especially, SPAES-g-SPVA-30% membrane has the highest proton selectivity, which is nearly five times higher than Nafion117.
Collapse
Affiliation(s)
- Hailin Yu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, People’s Republic of China
| | - Yinghan Wang
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
12
|
|
13
|
Nagao Y. Progress on highly proton-conductive polymer thin films with organized structure and molecularly oriented structure. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2020; 21:79-91. [PMID: 32158509 PMCID: PMC7033726 DOI: 10.1080/14686996.2020.1722740] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 05/08/2023]
Abstract
Several current topics are introduced in this review, with particular attention to highly proton-conductive polymer thin films with organized structure and molecularly oriented structure. Organized structure and molecularly oriented structure are anticipated as more promising approaches than conventional less-molecular-ordered structure to elucidate mechanisms of high proton conduction and control proton conduction. This review introduces related polymer materials and molecular design using lyotropic liquid crystals and hydrogen bond networks for high proton conduction. It also outlines the use of substrate surfaces and external fields, such as pressure and centrifugal force, for organizing structures and molecularly oriented structures.
Collapse
Affiliation(s)
- Yuki Nagao
- School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi, Japan
| |
Collapse
|
14
|
Kumar AG, Saha S, Komber H, Tiwari BR, Ghangrekar MM, Voit B, Banerjee S. Trifluoromethyl and benzyl ether side groups containing novel sulfonated co-poly(ether imide)s: Application in microbial fuel cell. Eur Polym J 2019; 118:451-464. [DOI: 10.1016/j.eurpolymj.2019.06.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
15
|
Tanaka K, Ando S, Ishige R. Spontaneous Chain Orientation of Aromatic Polyimides Evolved during Thermal Imidization from Shear-Oriented Glassy Liquid Crystalline Precursors. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00953] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kazuyuki Tanaka
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, E4-5, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Shinji Ando
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, E4-5, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Ryohei Ishige
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, E4-5, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
16
|
Wang R, Liu S, Wang L, Li M, Gao C. Understanding of Nanophase Separation and Hydrophilic Morphology in Nafion and SPEEK Membranes: A Combined Experimental and Theoretical Studies. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E869. [PMID: 31181646 PMCID: PMC6631217 DOI: 10.3390/nano9060869] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/02/2019] [Accepted: 06/03/2019] [Indexed: 01/12/2023]
Abstract
The understanding of the relationship between the chemical structure and the hydrophilic structure is crucial for the designing of high-performance PEMs. Comparative studies in typical Nafion and sulfonated poly (ether ether ketone) (SPEEK) were performed using a combined experimental and theoretical method. SPEEK showed suppressed fuel crossover and good mechanical property but low water uptake, weak phase separation, and inadequate proton conductivity. Molecular dynamics (MD) simulation approaches were employed to get a molecular-level understanding of the structure-property relationship of SPEEK and Nafion membranes. In SPEEK membranes, the local aggregation of hydrophilic clusters is worse, and much stronger electrostatic interaction between Os-Hh was verified, resulting in less delocalized free H3O+ and much lower DH3O+. In addition, the probability of H2O-H3O+ association varied with water content. Particularly, SPEEK exhibited much lower H9O4+ probability at various relative water contents, leading to lower structural diffusivity than Nafion. Eventually, SPEEK possessed low vehicular and structural diffusivities, which resulted in a low proton conductivity. The results indicated that the structure of hydrated hydronium complexes would deform to adapt the confining hydrophilic channels. The confinement effect on diffusion of H2O and H3O+ is influenced by the water content and the hydrophilic morphologies. This study provided a new insight into the exploration of high-performance membranes in fuel cell.
Collapse
Affiliation(s)
- Rujie Wang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China.
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Shanshan Liu
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China.
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Lidong Wang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China.
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Ming Li
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China.
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Chong Gao
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China.
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
17
|
Tsuksamoto M, Ebata K, Sakiyama H, Yamamoto S, Mitsuishi M, Miyashita T, Matsui J. Biomimetic Polyelectrolytes Based on Polymer Nanosheet Films and Their Proton Conduction Mechanism. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:3302-3307. [PMID: 30744379 DOI: 10.1021/acs.langmuir.8b04079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We report a biomimetic polyelectrolyte based on amphiphilic polymer nanosheet multilayer films. Copolymers of poly( N-dodecylacrylamide- co-vinylphosphonic acid) [p(DDA/VPA)] form a uniform monolayer at the air-water interface. By depositing such monolayers onto solid substrates using the Langmuir-Blodgett (LB) method, multilayer lamellae films with a structure similar to a bilayer membrane were fabricated. The proton conductivity at the hydrophilic interlayer of the lamellar multilayer films was studied by impedance spectroscopy under temperature- and humidity-controlled conditions. At 60 °C and 98% relative humidity (RH), the conductivity increased with increasing mole fraction of VPA ( n) up to 3.2 × 10-2 S cm-1 for n = 0.41. For a film with n = 0.45, the conductivity decreased to 2.2 × 10-2 S cm-1 despite the increase of proton sources. The reason for this decrease was evaluated by studying the effect of the distance between the VPAs ( lVPA) on the proton conductivity as well as their activation energy. We propose that for n = 0.41, lVPA is the optimal distance not only to form an efficient two-dimensional (2D) hydrogen bonding network but also to reorient water and VPA. For n = 0.45, on the other hand, the lVPA was too close for a reorientation. Therefore, we concluded that there should be an optimal distance to obtain high proton conductivity at the hydrophilic interlayer of such multilayer films.
Collapse
Affiliation(s)
| | | | | | - Shunsuke Yamamoto
- Institute of Multidisciplinary Research for Advanced Materials , Tohoku University , 2-1-1 Katahira , Aoba-ku , Sendai 980-8577 , Japan
| | - Masaya Mitsuishi
- Institute of Multidisciplinary Research for Advanced Materials , Tohoku University , 2-1-1 Katahira , Aoba-ku , Sendai 980-8577 , Japan
| | - Tokuji Miyashita
- Institute of Multidisciplinary Research for Advanced Materials , Tohoku University , 2-1-1 Katahira , Aoba-ku , Sendai 980-8577 , Japan
| | | |
Collapse
|
18
|
Introducing planar hydrophobic groups into an alkyl-sulfonated rigid polyimide and how this affects morphology and proton conductivity. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.01.118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Sun ZB, Li YL, Zhang ZH, Li ZF, Xiao B, Li G. A path to improve proton conductivity: from a 3D hydrogen-bonded organic framework to a 3D copper-organic framework. NEW J CHEM 2019. [DOI: 10.1039/c9nj02025j] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The proton conduction in one HOF and related MOF have been investigated and discussed.
Collapse
Affiliation(s)
- Zhi-Bing Sun
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Yi-Lin Li
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control
- Jiangsu Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology
- School of Environmental Science and Engineering
- Nanjing University of Information Science &Technology
- Nanjing 210044
| | - Zhe-Hua Zhang
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Zi-Feng Li
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Bo Xiao
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control
- Jiangsu Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology
- School of Environmental Science and Engineering
- Nanjing University of Information Science &Technology
- Nanjing 210044
| | - Gang Li
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- China
| |
Collapse
|
20
|
Takakura K, Ono Y, Suetsugu K, Hara M, Nagano S, Abe T, Nagao Y. Lyotropic ordering for high proton conductivity in sulfonated semialiphatic polyimide thin films. Polym J 2018. [DOI: 10.1038/s41428-018-0111-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|