1
|
de Avila Goncalves S, Ceccato BT, Moraes-Lacerda T, de Jesus MB, de la Torre LG, Vieira RP. Synthesis of poly[2-(dimethylamino)ethyl methacrylate] grafting from cellulose nanocrystals for DNA complexation employing a 3D-twisted cross-sectional microchannel microfluidic device. Int J Biol Macromol 2025; 305:140992. [PMID: 39952531 DOI: 10.1016/j.ijbiomac.2025.140992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 12/29/2024] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Developing effective and safe non-viral gene vectors poses a challenge in gene therapy. A promising strategy emerged addressing this challenge, involving a synergistic approach combining biopolymers and cationic synthetic polymers to enhance gene delivery systems. In this study, for the first time, poly[2-(dimethylamino)ethyl methacrylate] (PDMAEMA) was grafted from cellulose nanocrystals (CNC) using metal-free organocatalyzed atom-transfer radical polymerization (O-ATRP). The synthesis was confirmed through morphological, spectroscopic, and thermal analysis. The reaction achieved a 34 % monomer conversion and 15 % grafting, resulting in a CNC-g-PDMAEMA copolymer with impressive responsiveness to pH and temperature. Furthermore, CNC-g-PDMAEMA was utilized to obtain copolymer/pDNA polyplexes using a microfluidic device, providing a practical and efficient method for producing uniform, stable, and reproducible gene delivery systems. These polyplexes had sizes around 160 nm and a low PDI (<0.250). As a proof of concept, preliminary cell viability and transfection assays were conducted to demonstrate the biomaterial's applicability. These findings suggest that polyplexes (N/P = 15) at a 10 μg/mL concentration may serve as an upper limit threshold and a starting point for further in vivo studies. In summary, this research advances the development of gene delivery platforms through innovative and straightforward synthesis methods, opening up potential applications in gene therapy.
Collapse
Affiliation(s)
- Sayeny de Avila Goncalves
- Department of Bioprocess and Materials Engineering, School of Chemical Engineering, University of Campinas, Campinas, São Paulo, Brazil.
| | - Bruno Telli Ceccato
- Department of Bioprocess and Materials Engineering, School of Chemical Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Thaís Moraes-Lacerda
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Marcelo Bispo de Jesus
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Lucimara Gaziola de la Torre
- Department of Bioprocess and Materials Engineering, School of Chemical Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Roniérik Pioli Vieira
- Department of Bioprocess and Materials Engineering, School of Chemical Engineering, University of Campinas, Campinas, São Paulo, Brazil.
| |
Collapse
|
2
|
Yasir M, Hu B, Lin TC, Matyjaszewski K. Synergistic Combination of Living Ring-Opening Metathesis Polymerization and Atom Transfer Radical Polymerization to Synthesize Structurally Tailored and Engineered Macromolecular Networks. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:378-382. [PMID: 39739964 PMCID: PMC11736835 DOI: 10.1021/acs.langmuir.4c03654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/17/2024] [Accepted: 12/18/2024] [Indexed: 01/02/2025]
Abstract
Structurally tailored and engineered macromolecular (STEM) networks are attractive materials for soft robotics, stretchable electronics, tissue engineering, and 3D printing due to their tunable properties. To date, STEM networks have been synthesized by atom transfer radical polymerization (ATRP) or the combination of reversible addition-fragmentation chain-transfer (RAFT) polymerization and ATRP. RAFT polymerization could have limited selectivity with ATRP inimer sites that can participate in radical-transfer processes. On the other hand, living ring-opening metathesis polymerization (ROMP) can produce a polymeric network with latent ATRP initiator sites in high selectivity. Herein, for the first time, we report the syntheses of STEM zero-generation (STEM-0) networks using a monomer, a cross-linker, and an ATRP/ROMP inimer via living ROMP, followed by their modification using a second monomer via ATRP to synthesize STEM first-generation (STEM-1) networks. The mechanical property and swelling capacity analyses of these networks were carried out. A change in mechanical properties and swelling capacity of these networks was observed due to their structural modification.
Collapse
Affiliation(s)
- Mohammad Yasir
- Department
of Chemistry, Carnegie Mellon University, 4400 Avenue, Pittsburgh, Pennsylvania 15213, United States
- Department
of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, 1400 Lynch Street, Jackson, Mississippi 39217, United States
| | - Brian Hu
- Department
of Chemistry, Carnegie Mellon University, 4400 Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Ting-Chih Lin
- Department
of Chemistry, Carnegie Mellon University, 4400 Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department
of Chemistry, Carnegie Mellon University, 4400 Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
3
|
Zhang W, Li S, Liu S, Wang TT, Luo ZH, Bian C, Zhou YN. Photomediated Cationic Ring-Opening Polymerization of Cyclosiloxanes with Temporal Control. JACS AU 2024; 4:4317-4327. [PMID: 39610724 PMCID: PMC11600145 DOI: 10.1021/jacsau.4c00682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 11/30/2024]
Abstract
Precision synthesis of polyorganosiloxanes and temporal control over the polymerization process during ring-opening polymerization (ROP) of cyclosiloxanes remain challenging due to the occurrence of side reactions, e.g., intramolecular transfer (backbiting) and intermolecular chain transfer, and irreversible catalyst transformation. In this study, a merocyanine-based photoacid catalyst is developed for cationic ROP of different cyclosiloxanes. A series of well-defined cyclotrisiloxane polymers with predetermined molar masses and low dispersities (Đ < 1.30) are successfully synthesized under various conditions (i.e., different catalyst loadings, initiator concentrations, solvents, and monomer types). Mechanistic insights by experiments and theoretical calculations suggest that the cationic active species, siloxonium ions, are combined with the catalyst anions to form tight ion pairs, thereby attenuating the reactivity of active species and subsequently minimizing side reactions. An efficient photocatalytic cycle is established among the catalyst, monomer, and polymer chain due to the rapid and reversible isomeric phototransformation of the catalyst, which endows the polymerization process with excellent temporal control. Successful in situ chain extension further confirms the controlled characteristics of photomediated CROP. This as-developed polymerization strategy effectively addresses long-standing challenges in the field of polyorganosiloxane synthesis.
Collapse
Affiliation(s)
- Wenxu Zhang
- School
of Chemical Engineering, Shandong University
of Technology, Zibo 255000, P. R. China
| | - Shen Li
- School
of Chemistry and Chemical Engineering, Shanghai
Jiao Tong University, Shanghai 200240, P. R. China
- School
of Chemical Engineering and Technology, Hainan University, Haikou570228, P. R. China
| | - Shuting Liu
- School
of Chemical Engineering, Shandong University
of Technology, Zibo 255000, P. R. China
| | - Tian-Tian Wang
- School
of Chemistry and Chemical Engineering, Shanghai
Jiao Tong University, Shanghai 200240, P. R. China
| | - Zheng-Hong Luo
- School
of Chemistry and Chemical Engineering, Shanghai
Jiao Tong University, Shanghai 200240, P. R. China
| | - Chao Bian
- School
of Chemical Engineering, Shandong University
of Technology, Zibo 255000, P. R. China
| | - Yin-Ning Zhou
- School
of Chemistry and Chemical Engineering, Shanghai
Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
4
|
Gu K, Zhou W, Liu C. Visualizing back electron transfer in eosin Y photoredox catalysis. Chem Commun (Camb) 2024; 60:12445-12448. [PMID: 39380317 DOI: 10.1039/d4cc04463k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Back electron transfer (BET) in eosin Y (EY) photoredox catalysis was visualized via the fluorescence of single EYs. BET between the radical ion pair formed in photoinduced electron transfer (PET) induced photoblinking of single EYs under constant photoexcitation. Commonly used quenchers, alkyl bromides and a tertiary amine, were studied. BET was observed in alkyl bromides, but not in the tertiary amine. The findings helped explain the mechanism of EY-catalyzed photoinduced atom transfer radical polymerizations. The method can be applied to studying BET on photo-emissive catalysts.
Collapse
Affiliation(s)
- Kai Gu
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, OH, 44325, USA.
| | - Wenqiao Zhou
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, OH, 44325, USA.
| | - Chunming Liu
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, OH, 44325, USA.
- Department of Chemistry, University of Akron, Akron, OH, 44325, USA
| |
Collapse
|
5
|
Nguyen TT, Wang H, Sun G, Kong J, Zhang X. Ultrasensitive electrochemical microRNA-21 detection based on MXene and ATRP photocatalytic strategy. Mikrochim Acta 2024; 191:472. [PMID: 39028442 DOI: 10.1007/s00604-024-06542-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024]
Abstract
A Ti3C2TxMXene-based biosensor has been developed and the photocatalytic atom transfer radical polymerization (photo ATRP) amplification strategy applied to detect target miRNA-21 (tRNA). Initially, Ti3C2TxMXene nanosheets were synthesized from the Ti3AlC2 MAX precursor via selective aluminum etching. Then, functionalization of Ti3C2TxMXene nanosheets with 3-aminopropyl triethoxysilane (APTES) via silylation reactions to facilitate covalent bonding with hairpin DNA biomolecules specifically designed for tRNA detection. Upon binding with the tRNA, the hairpin DNA liberated the azide (N₃) group, initiating a click reaction to affix to the photo ATRP initiator. Through the ATRP photoreaction, facilitated by an organic photoredox catalyst and light, a significant amount of ferrocenyl methyl methacrylate (FMMA) monomer was immobilized on the electrode. Therefore, the electrochemical signal is amplified. The electrochemical efficacy of the biosensor was assessed using square wave voltammetry (SWV). Under optimized conditions, the biosensor demonstrated remarkable sensitivity in detecting tRNA, with a linear detection range from 0.01 fM to 10 pM and a detection limit of 2.81 aM. The findings elucidate that the developed biosensor, in conjunction with the photo ATRP strategy, offers reproducibility, stability, and increased sensitivity, underscoring its potential applications within the experimental medical sector of the biomolecular industry.
Collapse
Affiliation(s)
- Thao Thi Nguyen
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 210094, Nanjing, China
| | - Huifang Wang
- Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, 211816, Nanjing, China
| | - Gengzhi Sun
- Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, 211816, Nanjing, China
| | - Jinming Kong
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 210094, Nanjing, China.
| | - Xueji Zhang
- School of Biomedical Engineering, Shenzhen University Health Science Center, 518060, Shenzhen, Guangdong, China
| |
Collapse
|
6
|
Kapil K, Jazani AM, Sobieski J, Madureira LP, Szczepaniak G, Martinez MR, Gorczyński A, Murata H, Kowalewski T, Matyjaszewski K. Hydrophilic Poly(meth)acrylates by Controlled Radical Branching Polymerization: Hyperbranching and Fragmentation. Macromolecules 2024; 57:5368-5379. [PMID: 38882197 PMCID: PMC11171460 DOI: 10.1021/acs.macromol.4c00408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/08/2024] [Accepted: 05/16/2024] [Indexed: 06/18/2024]
Abstract
Topology significantly impacts polymer properties and applications. Hyperbranched polymers (HBPs) synthesized via atom transfer radical polymerization (ATRP) using inimers typically exhibit broad molecular weight distributions and limited control over branching. Alternatively, copolymerization of inibramers (IB), such as α-chloro/bromo acrylates with vinyl monomers, yields HBPs with precise and uniform branching. Herein, we described the synthesis of hydrophilic HB polyacrylates in water by copolymerizing a water-soluble IB, oligo(ethylene oxide) methyl ether 2-bromoacrylate (OEOBA), with various hydrophilic acrylate comonomers. Visible-light-mediated controlled radical branching polymerization (CRBP) with dual catalysis using eosin Y (EY) and copper complexes resulted in HBPs with various molecular weights (M n = 38 000 to 170 000) and degrees of branching (2%-24%). Furthermore, the optimized conditions enabled the successful application of the OEOBA to synthesize linear-hyperbranched block copolymers and hyperbranched polymer protein hybrids (HB-PPH), demonstrating its potential to advance the synthesis of complex macromolecular architecture under environmentally benign conditions. Copolymerization of hydrophilic methacrylate monomer, oligo(ethylene oxide) methyl ether methacrylate (OEOMA500), and inibramer OEOBA was accompanied by fragmentation via β-carbon C-C bond scission and subsequent growth of polymer chains from the fragments. Furthermore, computational studies investigating the fragmentation depending on the IB and comonomer structure supported the experimental observations. This work expands the toolkit of water-soluble inibramers for CRBP and highlights the critical influence of the inibramer structure on reaction outcomes.
Collapse
Affiliation(s)
- Kriti Kapil
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Arman Moini Jazani
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Julian Sobieski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Leticia P Madureira
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Grzegorz Szczepaniak
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
- Faculty of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | - Michael R Martinez
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
- PPG Industries, Inc., 4325 Rosanna Drive, Allison Park, Pennysylvania 15101, United States
| | - Adam Gorczyński
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań, 61-614, Poland
| | - Hironobu Murata
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Tomasz Kowalewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
7
|
Fitzgerald DM, Colson YL, Grinstaff MW. Synthetic Pressure Sensitive Adhesives for Biomedical Applications. Prog Polym Sci 2023; 142:101692. [PMID: 37273788 PMCID: PMC10237363 DOI: 10.1016/j.progpolymsci.2023.101692] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Pressure sensitive adhesives are components of everyday products found in homes, offices, industries, and hospitals. Serving the general purpose of fissure repair and object fixation, pressure sensitive adhesives indiscriminately bind surfaces, as long as contact pressure is administered at application. With that being said, the chemical and material properties of the adhesive formulation define the strength of a pressure sensitive adhesive to a particular surface. Given our increased understanding of the viscoelastic material requirements as well as the intermolecular interactions at the binding interface required for functional adhesives, pressure sensitive adhesives are now being explored for greater use. New polymer formulations impart functionality and degradability for both internal and external applications. This review highlights the structure-property relationships between polymer architecture and pressure sensitive adhesion, specifically for medicine. We discuss the rational, molecular-level design of synthetic polymers for durable, removable, and biocompatible adhesion to wet surfaces like tissue. Finally, we examine prevalent challenges in biomedical wound closure and the new, innovative strategies being employed to address them. We conclude by summarizing the progress of current research, identifying additional clinical opportunities, and discussing future prospects.
Collapse
Affiliation(s)
- Danielle M. Fitzgerald
- Department of Chemistry, Biomedical Engineering, and Medicine, Boston University, Boston, MA 02115
| | - Yolonda L. Colson
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA 02214
| | - Mark W. Grinstaff
- Department of Chemistry, Biomedical Engineering, and Medicine, Boston University, Boston, MA 02115
| |
Collapse
|
8
|
Kapil K, Jazani AM, Szczepaniak G, Murata H, Olszewski M, Matyjaszewski K. Fully Oxygen-Tolerant Visible-Light-Induced ATRP of Acrylates in Water: Toward Synthesis of Protein-Polymer Hybrids. Macromolecules 2023; 56:2017-2026. [PMID: 36938511 PMCID: PMC10019465 DOI: 10.1021/acs.macromol.2c02537] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/05/2023] [Indexed: 02/22/2023]
Abstract
Over the last decade, photoinduced ATRP techniques have been developed to harness the energy of light to generate radicals. Most of these methods require the use of UV light to initiate polymerization. However, UV light has several disadvantages: it can degrade proteins, damage DNA, cause undesirable side reactions, and has low penetration depth in reaction media. Recently, we demonstrated green-light-induced ATRP with dual catalysis, where eosin Y (EYH2) was used as an organic photoredox catalyst in conjunction with a copper complex. This dual catalysis proved to be highly efficient, allowing rapid and well-controlled aqueous polymerization of oligo(ethylene oxide) methyl ether methacrylate without the need for deoxygenation. Herein, we expanded this system to synthesize polyacrylates under biologically relevant conditions using CuII/Me6TREN (Me6TREN = tris[2-(dimethylamino)ethyl]amine) and EYH2 at ppm levels. Water-soluble oligo(ethylene oxide) methyl ether acrylate (average M n = 480, OEOA480) was polymerized in open reaction vessels under green light irradiation (520 nm). Despite continuous oxygen diffusion, high monomer conversions were achieved within 40 min, yielding polymers with narrow molecular weight distributions (1.17 ≤ D̵ ≤ 1.23) for a wide targeted DP range (50-800). In situ chain extension and block copolymerization confirmed the preserved chain end functionality. In addition, polymerization was triggered/halted by turning on/off a green light, showing temporal control. The optimized conditions also enabled controlled polymerization of various hydrophilic acrylate monomers, such as 2-hydroxyethyl acrylate, 2-(methylsulfinyl)ethyl acrylate), and zwitterionic carboxy betaine acrylate. Notably, the method allowed the synthesis of well-defined acrylate-based protein-polymer hybrids using a straightforward reaction setup without rigorous deoxygenation.
Collapse
Affiliation(s)
- Kriti Kapil
- Department of Chemistry, Carnegie
Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Arman Moini Jazani
- Department of Chemistry, Carnegie
Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Grzegorz Szczepaniak
- Department of Chemistry, Carnegie
Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Hironobu Murata
- Department of Chemistry, Carnegie
Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Mateusz Olszewski
- Department of Chemistry, Carnegie
Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie
Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
9
|
Hu Y, Yu S, Ma N, Kong J, Zhang X. Rose bengal-mediated photoinduced atom transfer radical polymerization for high sensitivity detection of target DNA. Talanta 2023; 254:124104. [PMID: 36521324 DOI: 10.1016/j.talanta.2022.124104] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022]
Abstract
Convenient and sensitive detection of biomolecules is of utmost importance in the field of early disease screening. In this study, a Rose Bengal-Mediated photoinduced atom transfer radical polymerization (photoATRP) method was used to achieve highly sensitive detection of target DNA (tDNA). The tDNA was specifically recognized using PNA with terminal modified sulfhydryl groups, and the initiator α-bromophenylacetic acid (BPAA) was attached to the electrode surface via a phosphate-Zr4+-carboxylate acid structure. Under the excitation of blue light, rose bengal (RB) acts as a photocatalyst, β-nicotinamide adenine dinucleotide (NADH) as an electron donor, and ferrocenylmethyl methacrylate (FMMA) as a monomer to activate the photoATRP reaction and generate a large number of electroactive polymer chains on the electrode surface. Under optimal conditions, the method can be used for the quantitative analysis of tDNA in the concentration range of 1-105 fM (R2 = 0.994) with a limit of detection (LOD) of 0.115 fM. This metal-free mediated photoATRP biosensor, with low cost and environmental friendliness, has great potential in the field of highly sensitive biomolecule detection.
Collapse
Affiliation(s)
- Yaodong Hu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, PR China
| | - Shuaibing Yu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, PR China
| | - Nan Ma
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, PR China
| | - Jinming Kong
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, PR China.
| | - Xueji Zhang
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, Guangdong, 518060, PR China
| |
Collapse
|
10
|
Cox CA, Ogorek AN, Habumugisha JP, Martell JD. Switchable DNA Photocatalysts for Radical Polymerization Controlled by Chemical Stimuli. J Am Chem Soc 2023; 145:1818-1825. [PMID: 36629375 DOI: 10.1021/jacs.2c11199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Polymerization catalysts that activate in response to specific chemical triggers offer spatial and temporal control over polymer synthesis, facilitating the development of responsive materials and custom polymer coatings. However, existing catalysts switch their activity through mechanisms that are not generalizable to chemically diverse stimuli. To approach the level of control exhibited in biological polymer synthesis, switchable polymerization catalysts need to be configurable for activation in response to diverse chemical stimuli. Here, we combine synthetic photocatalysts with conformation-switching DNA aptamers to create polymerization catalysts that respond to diverse chemical stimuli. We use the secondary structure of DNA to bring a photocatalyst and quencher dye into proximity, turning off photocatalysis. The DNA structure can be precisely designed to change conformation in response to a molecular trigger, moving the photocatalyst far from the quencher and activating photocatalysis. We show these photocatalysts can initiate free-radical polymerization to form bulk hydrogels in response to complementary DNA, a metal ion (Zn2+), or small molecules (glucose and hydrocortisone). We demonstrate the biocompatibility of these switchable photocatalysts by triggering their activation on the surface of yeast cells. Finally, we perform reversible-deactivation radical polymerization through photoinduced electron/energy transfer reversible addition-fragmentation chain-transfer in a dual-stimulus manner, in which catalytic activity is regulated reversibly by photoirradiation and the conformational state of the DNA catalyst. These results demonstrate that DNA conformational changes triggered by chemically diverse stimuli can regulate the activity of radical polymerization photocatalysts. This platform offers new capabilities in spatially and temporally controlled polymer synthesis, with potential applications in diagnostics, sensing, and environmentally responsive materials.
Collapse
Affiliation(s)
- Caleb A Cox
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Ashley N Ogorek
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Jean Paul Habumugisha
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Jeffrey D Martell
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705, United States
| |
Collapse
|
11
|
Simple and Safe Liquid Seal Approach to Oxygen-tolerant ATRP. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Peng Y, Du X, Zhu D, Nie Y, Shi S, Xing J. Nanogels loading 5-Fluorouracil in situ through thiol-ene click reaction and photopolymerization at 532 nm for its controlled release. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Precision Polymer Synthesis by Controlled Radical Polymerization: Fusing the progress from Polymer Chemistry and Reaction Engineering. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101555] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Ultrasonication enhanced photocatalytic solvent-free reversible deactivation radical polymerization up to high conversion with good control. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Corbin DA, Miyake GM. Photoinduced Organocatalyzed Atom Transfer Radical Polymerization (O-ATRP): Precision Polymer Synthesis Using Organic Photoredox Catalysis. Chem Rev 2022; 122:1830-1874. [PMID: 34842426 PMCID: PMC9815475 DOI: 10.1021/acs.chemrev.1c00603] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The development of photoinduced organocatalyzed atom transfer radical polymerization (O-ATRP) has received considerable attention since its introduction in 2014. Expanding on many of the advantages of traditional ATRP, O-ATRP allows well-defined polymers to be produced under mild reaction conditions using organic photoredox catalysts. As a result, O-ATRP has opened access to a range of sensitive applications where the use of a metal catalyst could be of concern, such as electronics, certain biological applications, and the polymerization of coordinating monomers. However, key limitations of this method remain and necessitate further investigation to continue the development of this field. As such, this review details the achievements made to-date as well as future research directions that will continue to expand the capabilities and application landscape of O-ATRP.
Collapse
|
16
|
Harth E, Keyes A, Dau H, Matyjaszewski K. Tandem Living Insertion and Controlled Radical Polymerization for Polyolefin-Polyvinyl Block Copolymers. Angew Chem Int Ed Engl 2021; 61:e202112742. [PMID: 34967088 DOI: 10.1002/anie.202112742] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Indexed: 11/07/2022]
Abstract
Practical synthesis of polyolefin-polyvinyl block copolymers remains a challenge for transition-metal catalyzed polymerizations. Common approaches functionalize polyolefins for post-radical polymerization via insertion methods, yet sacrifice the livingness of the olefin polymerization. This work identifies an orthogonal radical/spin coupling technique which affords tandem living insertion and controlled radical polymerization. The broad tolerance of this coupling technique has been demonstrated for diverse radical/spin traps such as 2,2,5-trimethyl-4-phenyl-3-azahexane-3-nitroxide (TIPNO), 1-oxyl- (2,2,6,6-tetramethylpiperidine) -4-yl-α-bromoisobutyrate (TEMPO-Br), and N-tert -butyl-α-phenylnitrone (PBN). Subsequent controlled radical polymerization is demonstrated with NMP and atom transfer radical polymerization (ATRP), yielding polyolefin-polyvinyl di- and triblock copolymers ( Đ <1.3) with acrylic, vinylic and styrenic segments. These findings highlight radical trapping as an approach to expand the scope of polyolefin functionalization techniques to access polyolefin macroinitiators.
Collapse
Affiliation(s)
- Eva Harth
- University of Houston, Chemistry, 406 STL Building, United States, 77004, Houston, UNITED STATES
| | | | - Huong Dau
- University of Houston, Chemistry, UNITED STATES
| | | |
Collapse
|
17
|
Harth E, Keyes A, Dau H, Matyjaszewski K. Tandem Living Insertion and Controlled Radical Polymerization for Polyolefin‐Polyvinyl Block Copolymers. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202112742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Eva Harth
- University of Houston Chemistry 406 STL BuildingUnited States 77004 Houston UNITED STATES
| | | | - Huong Dau
- University of Houston Chemistry UNITED STATES
| | | |
Collapse
|
18
|
Soly S, Mistry B, Murthy CN. Photo‐mediated metal‐free atom transfer radical polymerization: recent advances in organocatalysts and perfection towards polymer synthesis. POLYM INT 2021. [DOI: 10.1002/pi.6336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Sneha Soly
- Macromolecular Materials Laboratory, Applied Chemistry Department, Faculty of Technology and Engineering The Maharaja Sayajirao University of Baroda Vadodara 390001 India
| | - Bhavita Mistry
- Macromolecular Materials Laboratory, Applied Chemistry Department, Faculty of Technology and Engineering The Maharaja Sayajirao University of Baroda Vadodara 390001 India
| | - CN Murthy
- Macromolecular Materials Laboratory, Applied Chemistry Department, Faculty of Technology and Engineering The Maharaja Sayajirao University of Baroda Vadodara 390001 India
| |
Collapse
|
19
|
Peng Y, Wang Z, Peña J, Guo Z, Xing J. Effect of TEOA on the Process of Photopolymerization at 532 nm and Properties of Nanogels. Photochem Photobiol 2021; 98:132-140. [PMID: 34390000 DOI: 10.1111/php.13505] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/11/2021] [Indexed: 11/29/2022]
Abstract
Nanogel is an important kind of biomaterials applied for wound dressings, drug delivery, medical diagnostics and biosensors. The properties of nanogels closely depend on the density of the crosslinking network. In this study, the role of triethanolamine (TEOA) in the effect on the crosslinking degree of nanogels based on poly(ethylene glycol) diacrylate (PEGDA) was investigated and illustrated. The effect of TEOA on the process of photopolymerization at 532 nm and properties of the nanogels was systematically investigated by using UV-vis spectroscopy, FT-IR spectroscopy, 1 H NMR, DLS, SEM, AFM and DSC. In brief, the double bond conversion of photopolymerization and the crosslinking degree of nanogels can be effectively regulated by TEOA.
Collapse
Affiliation(s)
- Yuanyuan Peng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Zhipeng Wang
- Tianjin Institute of Metrological Supervision and Testing, Tianjin, 300192, China
| | - Jhair Peña
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Zhiming Guo
- Tianjin Institute of Metrological Supervision and Testing, Tianjin, 300192, China
| | - Jinfeng Xing
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
20
|
Lu Z, Yang H, Fu X, Zhao R, Zhao Y, Cai J, Xiao L, Hou L. Fully-π conjugated covalent organic frameworks as catalyst for photo-induced atom transfer radical polymerization with ppm-level copper concentration under LED irradiation. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110670] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
de Ávila Gonçalves S, R Rodrigues P, Pioli Vieira R. Metal-Free Organocatalyzed Atom Transfer Radical Polymerization: Synthesis, Applications, and Future Perspectives. Macromol Rapid Commun 2021; 42:e2100221. [PMID: 34223686 DOI: 10.1002/marc.202100221] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/18/2021] [Indexed: 12/17/2022]
Abstract
Reversible deactivation radical polymerization (RDRP) is a class of powerful techniques capable of synthesizing polymers with a well-defined structure, properties, and functionalities. Among the available RDRPs, ATRP is the most investigated. However, the necessity of a metal catalyst represents a drawback and limits its use for some applications. O-ATRP emerged as an alternative to traditional ATRP that uses organic compounds that catalyze polymerization under light irradiation instead of metal. The friendly nature and the robustness of O-ATRP allow its use in the synthesis of tailorable advanced materials with unique properties. In this review, the fundamental aspects of the reductive and oxidative quenching mechanism of O-ATRP are provided, as well as insights into each component and its role in the reaction. Besides, the breakthrough recent studies that applied O-ATRP for the synthesis of functional materials are presented, which illustrate the significant potential and impact of this technique across diverse fields.
Collapse
Affiliation(s)
- Sayeny de Ávila Gonçalves
- Department of Bioprocess and Materials Engineering, School of Chemical Engineering, University of Campinas, Campinas, São Paulo, 13083-852, Brazil
| | - Plínio R Rodrigues
- Department of Bioprocess and Materials Engineering, School of Chemical Engineering, University of Campinas, Campinas, São Paulo, 13083-852, Brazil
| | - Roniérik Pioli Vieira
- Department of Bioprocess and Materials Engineering, School of Chemical Engineering, University of Campinas, Campinas, São Paulo, 13083-852, Brazil
| |
Collapse
|
22
|
Zhang Z, Chen W, Zhang Y, Wang Y, Tian Y, Fang L, Ba X. Photoredox Organocatalysts with Thermally Activated Delayed Fluorescence for Visible-Light-Driven Atom Transfer Radical Polymerization. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Zhongwei Zhang
- College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, China
| | - Weiping Chen
- College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, China
| | - Yuewei Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yue Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yuelan Tian
- College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, China
| | - Liping Fang
- College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, China
| | - Xinwu Ba
- College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, China
| |
Collapse
|
23
|
Xu X, Xu X, Zeng Y, Zhang F. Oxygen-tolerant photo-induced metal-free atom transfer radical polymerization. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Improved antifouling properties of PVA hydrogel via an organic semiconductor graphitic carbon nitride catalyzed surface-initiated photo atom transfer radical polymerization. Colloids Surf B Biointerfaces 2021; 203:111718. [PMID: 33774491 DOI: 10.1016/j.colsurfb.2021.111718] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/14/2021] [Accepted: 03/18/2021] [Indexed: 01/03/2023]
Abstract
An innovative g-C3N4 catalyzed surface-initiated photo atom transfer radical polymerization (SI-photoATRP) has been developed to construct MEDSAH zwitterionic polymer brushes on PVA hydrogel surface. g-C3N4 catalyzed SI-photoATRP is temporal and spatial control. As a heterogeneous reaction system, it can solve the catalyst residues problem. After grafting with MEDSAH, surface chemical composition and morphology of PVA-g-pMEDSAH hydrogel confirmed that MEDSAH was successfully grafted onto PVA hydrogel. Thermal property of PVA-g-pMEDSAH hydrogel decreased and hydrophilicity increased. No statistically significant differences between PVA and PVA-g-pMEDSAH were observed on mechanical properties. Cytotoxicity in vitro of PVA-g-pMEDSAH hydrogel could be considered as no cytotoxicity for L929 and NDHF cells. The antifouling properties of PVA-g-pMEDSAH hydrogel were significantly improved due to the enhancement of the surface hydration and steric repulsion effects caused by pMEDSAH polymer brushes. In addition, g-C3N4 is easier to modify to enhance the photocatalyst property. Thus, the heterogeneous reaction system of g-C3N4 catalyzed SI-photoATRP has huge potential applied in biomaterials surface modification.
Collapse
|
25
|
Organocatalyzed β-pinene polymerization in UV light: Assessment of reaction conditions and material characterization. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
26
|
Grishin DF, Grishin ID. Modern trends in controlled synthesis of functional polymers: fundamental aspects and practical applications. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr4964] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Major trends in controlled radical polymerization (CRP) or reversible-deactivation radical polymerization (RDRP), the most efficient method of synthesis of well-defined homo- and copolymers with specified parameters and properties, are critically analyzed. Recent advances associated with the three classical versions of CRP: nitroxide mediated polymerization, reversible addition-fragmentation chain transfer polymerization and atom transfer radical polymerization, are considered. Particular attention is paid to the prospects for the application of photoinitiation and photocatalysis in CRP. This approach, which has been intensively explored recently, brings synthetic methods of polymer chemistry closer to the light-induced processes of macromolecular synthesis occurring in living organisms. Examples are given of practical application of CRP techniques to obtain industrially valuable, high-tech polymeric products.
The bibliography includes 429 references.
Collapse
|
27
|
Zaborniak I, Macior A, Chmielarz P, Caceres Najarro M, Iruthayaraj J. Lignin-based thermoresponsive macromolecules via vitamin-induced metal-free ATRP. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123537] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
28
|
Zhu Y, Ramadani E, Egap E. Thiol ligand capped quantum dot as an efficient and oxygen tolerance photoinitiator for aqueous phase radical polymerization and 3D printing under visible light. Polym Chem 2021. [DOI: 10.1039/d1py00705j] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We report here a rapid visible-light-induced radical polymerization in aqueous media photoinitiated by only ppm level thiol ligand capped cadmium selenide quantum dots. The photoinitiation system could be readily employed for photo 3D printing.
Collapse
Affiliation(s)
- Yifan Zhu
- Department of Materials Science and Nanoengineering, USA
| | - Emira Ramadani
- Department of Materials Science and Nanoengineering, USA
| | - Eilaf Egap
- Department of Materials Science and Nanoengineering, USA
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas, 77005, USA
| |
Collapse
|
29
|
Aklujkar PS, Rao AR. Developments in the Components of Metal‐Free Photoinitiated Organocatalyzed‐Atom Transfer Radical Polymerization (O‐ATRP). ChemistrySelect 2020. [DOI: 10.1002/slct.202004194] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Pritish. S. Aklujkar
- Department of Polymer and Surface Engineering Institute of Chemical Technology, Matunga East Mumbai 400019 India
| | - Adarsh. R. Rao
- Department of Polymer and Surface Engineering Institute of Chemical Technology, Matunga East Mumbai 400019 India
| |
Collapse
|
30
|
Doerr AM, Burroughs JM, Gitter SR, Yang X, Boydston AJ, Long BK. Advances in Polymerizations Modulated by External Stimuli. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03802] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Alicia M. Doerr
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996-1600, United States
| | - Justin M. Burroughs
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996-1600, United States
| | - Sean R. Gitter
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Xuejin Yang
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Andrew J. Boydston
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Chemical and Biological Engineering and Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Brian K. Long
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996-1600, United States
| |
Collapse
|
31
|
|
32
|
da Silva RVDCA, Vieira RP. An Experimental and Computational Approach on Controlled Radical Photopolymerization of Limonene. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.202000199] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
33
|
Olson RA, Korpusik AB, Sumerlin BS. Enlightening advances in polymer bioconjugate chemistry: light-based techniques for grafting to and from biomacromolecules. Chem Sci 2020; 11:5142-5156. [PMID: 34122971 PMCID: PMC8159357 DOI: 10.1039/d0sc01544j] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/28/2020] [Indexed: 12/30/2022] Open
Abstract
Photochemistry has revolutionized the field of polymer-biomacromolecule conjugation. Ligation reactions necessitate biologically benign conditions, and photons have a significant energy advantage over what is available thermally at ambient temperature, allowing for rapid and unique reactivity. Photochemical reactions also afford many degrees of control, specifically, spatio-temporal control, light source tunability, and increased oxygen tolerance. Light-initiated polymerizations, in particular photo-atom-transfer radical polymerization (photo-ATRP) and photoinduced electron/energy transfer reversible addition-fragmentation chain transfer polymerization (PET-RAFT), have been used for grafting from proteins, DNA, and cells. Additionally, the spatio-temporal control inherent to light-mediated chemistry has been utilized for grafting biomolecules to hydrogel networks for many applications, such as 3-D cell culture. While photopolymerization has clear advantages, there are factors that require careful consideration in order to obtain optimal control. These factors include the photocatalyst system, light intensity, and wavelength. This Perspective aims to discuss recent advances of photochemistry for polymer biomacromolecule conjugation and potential considerations while tailoring these systems.
Collapse
Affiliation(s)
- Rebecca A Olson
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida Gainesville Florida USA
| | - Angie B Korpusik
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida Gainesville Florida USA
| | - Brent S Sumerlin
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida Gainesville Florida USA
| |
Collapse
|
34
|
Controllable surface-initiated metal-free atom transfer radical polymerization of methyl methacrylate on mesoporous SBA-15 via reductive quenching. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109724] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
35
|
Bian C, Zhou Y, Luo Z. Double‐external‐field enables bulk controlled radical polymerization with narrow molecular weight distribution at high conversion. AIChE J 2020. [DOI: 10.1002/aic.16245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chao Bian
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University Shanghai China
| | - Yin‐Ning Zhou
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University Shanghai China
| | - Zheng‐Hong Luo
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University Shanghai China
| |
Collapse
|
36
|
Zhou YN, Li JJ, Wu YY, Luo ZH. Role of External Field in Polymerization: Mechanism and Kinetics. Chem Rev 2020; 120:2950-3048. [PMID: 32083844 DOI: 10.1021/acs.chemrev.9b00744] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The past decades have witnessed an increasing interest in developing advanced polymerization techniques subjected to external fields. Various physical modulations, such as temperature, light, electricity, magnetic field, ultrasound, and microwave irradiation, are noninvasive means, having superb but distinct abilities to regulate polymerizations in terms of process intensification and spatial and temporal controls. Gas as an emerging regulator plays a distinctive role in controlling polymerization and resembles a physical regulator in some cases. This review provides a systematic overview of seven types of external-field-regulated polymerizations, ranging from chain-growth to step-growth polymerization. A detailed account of the relevant mechanism and kinetics is provided to better understand the role of each external field in polymerization. In addition, given the crucial role of modeling and simulation in mechanisms and kinetics investigation, an overview of model construction and typical numerical methods used in this field as well as highlights of the interaction between experiment and simulation toward kinetics in the existing systems are given. At the end, limitations and future perspectives for this field are critically discussed. This state-of-the-art research progress not only provides the fundamental principles underlying external-field-regulated polymerizations but also stimulates new development of advanced polymerization methods.
Collapse
Affiliation(s)
- Yin-Ning Zhou
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jin-Jin Li
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yi-Yang Wu
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zheng-Hong Luo
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
37
|
Li X, Zhang YC, Zhao Y, Zhao HP, Zhang B, Cai T. Xanthene Dye-Functionalized Conjugated Porous Polymers as Robust and Reusable Photocatalysts for Controlled Radical Polymerization. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00106] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xue Li
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Science, Wuhan University, Wuhan, Hubei 430072, P. R. China
- Shenzhen Research Institute, Wuhan University, Shenzhen, Guangdong 518057, P. R. China
| | - Yu Chi Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Science, Wuhan University, Wuhan, Hubei 430072, P. R. China
- Shenzhen Research Institute, Wuhan University, Shenzhen, Guangdong 518057, P. R. China
| | - Yujie Zhao
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Science, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Hong Peng Zhao
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Science, Wuhan University, Wuhan, Hubei 430072, P. R. China
- Shenzhen Research Institute, Wuhan University, Shenzhen, Guangdong 518057, P. R. China
| | - Bin Zhang
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Tao Cai
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Science, Wuhan University, Wuhan, Hubei 430072, P. R. China
- Shenzhen Research Institute, Wuhan University, Shenzhen, Guangdong 518057, P. R. China
| |
Collapse
|
38
|
Yang L, Huang Y, Peng Y, Liu F, Zhang Q, He H, Wang J, Jiang L, Zhou Y. Pyridine-Diketopyrrolopyrrole-Based Novel Metal-Free Visible-Light Organophotoredox Catalyst for Atom-Transfer Radical Polymerization. J Phys Chem A 2020; 124:1068-1075. [PMID: 31958227 DOI: 10.1021/acs.jpca.9b10404] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In the field of electronics, organocatalysts are in high demand for use in the synthesis of clean polymers using solar radiation rather than potentially contaminating metals. Combining theoretical design, simulation, and experiments, this work presents a novel, pyridine-diketopyrrolopyrrole (P-DPP)-based metal-free visible-light organophotoredox catalyst (P-DPP). It is effective in the photocontrolled organocatalytic atom-transfer radical polymerization (O-ATRP) of methyl methacrylate (MMA) and styrene. The use of this catalyst and white light-emitting diode (LED) irradiation produces polymers with a cross-linked feature. In O-ATRP, the P-DPP catalyst has an oxidative quenching catalytic mechanism with an excited-state reductive potential of -1.8 V, fluorescence lifetime of 7.5 ns, and radical-cation oxidative potential of 0.45 V. Through molecular simulation, we found that the adjacent pyridine group is key to reducing the alkyl halide initiator and generating radicals, while the diketopyrrolopyrrole core stabilizes the triplet state of the catalyst through intramolecular charge transfer. The findings related to this novel photoredox catalyst will aid in the search for much more effective organophotoredox catalysts for use in controlled radical polymerization. They will also be of value in the fields of polymer chemistry and physics and in various applications.
Collapse
Affiliation(s)
- Long Yang
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials Science and Engineering , Southwest University of Science and Technology , Mianyang 621010 , Sichuan , China
| | - Yujie Huang
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials Science and Engineering , Southwest University of Science and Technology , Mianyang 621010 , Sichuan , China
| | - Yuting Peng
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials Science and Engineering , Southwest University of Science and Technology , Mianyang 621010 , Sichuan , China
| | - Fei Liu
- State Key Laboratory of Polymer Materials Engineering of China (Sichuan University) , Polymer Research Institute of Sichuan University , Chengdu 610065 , China
| | - Qingchun Zhang
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials Science and Engineering , Southwest University of Science and Technology , Mianyang 621010 , Sichuan , China
| | - Huichao He
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials Science and Engineering , Southwest University of Science and Technology , Mianyang 621010 , Sichuan , China
| | - Jun Wang
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials Science and Engineering , Southwest University of Science and Technology , Mianyang 621010 , Sichuan , China
| | - Long Jiang
- State Key Laboratory of Polymer Materials Engineering of China (Sichuan University) , Polymer Research Institute of Sichuan University , Chengdu 610065 , China
| | - Yong Zhou
- School of Physics , Nanjing University , Nanjing 211102 , Jiangsu , China
| |
Collapse
|
39
|
Liu Q, Jian L, Liu R, Yang H, Kong J, Zhang X. Metal-Free Photoinduced Atom Transfer Radical Polymerization for Highly Sensitive Detection of Lung Cancer DNA. Chemistry 2020; 26:1633-1639. [PMID: 31724757 DOI: 10.1002/chem.201904271] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/13/2019] [Indexed: 11/12/2022]
Abstract
Convenient and sensitive detection of biomolecules is of great significance to disease diagnosis. In this work, a metal-free photoinduced atom transfer radical polymerization (photoATRP) by a reductive quenching pathway as a novel strategy is applied to achieve lung cancer DNA detection. Thiolated PNA is exploited to specifically recognize target DNA, and the initiator of photoATRP is linked to the electrode surface via phosphate-Zr4+ -carboxylate. Under the excitation of blue light, the reductive quenching pathway is activated with eosin Y (EY) as photoredox catalyst and N,N,N',N'',N'-pentamethyldiethylenetriamine (PMDETA) as electron donor, and numerous polymeric chains are formed. Under optimal conditions, the linear range of this strategy is from 0.1 pm to 10 nm (R2 =0.989) with a limit of detection (LOD) of 1.4 fm (14 zmol in 10 μL). The variety of possible light sources for photoATRP and simple operation endow this biosensor with great potential for practical applications.
Collapse
Affiliation(s)
- Qianrui Liu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Lihe Jian
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450008, P. R. China
| | - Ruiqian Liu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Huaixia Yang
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450008, P. R. China
| | - Jinming Kong
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Xueji Zhang
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, Guangdong, 518060, P. R. China
| |
Collapse
|
40
|
Sun A, Ashammakhi N, Dokmeci MR. Methacrylate Coatings for Titanium Surfaces to Optimize Biocompatibility. MICROMACHINES 2020; 11:E87. [PMID: 31940980 PMCID: PMC7019220 DOI: 10.3390/mi11010087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/01/2020] [Accepted: 01/02/2020] [Indexed: 12/12/2022]
Abstract
Currently, there are more than 1.5 million knee and hip replacement procedures carried out in the United States. Implants have a 10-15-year lifespan with up to 30% of revision surgeries showing complications with osteomyelitis. Titanium and titanium alloys are the favored implant materials because they are lightweight and have high mechanical strength. However, this increased strength can be associated with decreased bone density around the implant, leading to implant loosening and failure. To avoid this, current strategies include plasma-spraying titanium surfaces and foaming titanium. Both techniques give the titanium a rough and irregular finish that improves biocompatibility. Recently, researchers have also sought to surface-conjugate proteins to titanium to induce osteointegration. Cell adhesion-promoting proteins can be conjugated to methacrylate groups and crosslinked using a variety of methods. Methacrylated proteins can be conjugated to titanium surfaces through atom transfer radical polymerization (ATRP). However, surface conjugation of proteins increases biocompatibility non-specifically to bone cells, adding to the risk of biofouling which may result in osteomyelitis that causes implant failure. In this work, we analyze the factors contributing to biofouling when coating titanium to improve biocompatibility, and design an experimental scheme to evaluate optimal coating parameters.
Collapse
Affiliation(s)
- Argus Sun
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, CA 90095, USA
- Eidolon Hydros, Buena Park, CA 90622, USA
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Nureddin Ashammakhi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, CA 90095, USA
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- California Nanosystems Institute, Los Angeles, CA 90095, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Mehmet R Dokmeci
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, CA 90095, USA
- Eidolon Hydros, Buena Park, CA 90622, USA
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- California Nanosystems Institute, Los Angeles, CA 90095, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
41
|
Li M, Wang S, Li F, Zhou L, Lei L. Organocatalyzed atom transfer radical polymerization (ATRP) using triarylsulfonium hexafluorophosphate salt (THS) as a photocatalyst. Polym Chem 2020. [DOI: 10.1039/c9py01742a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Triarylsulfonium hexafluorophosphate salt (THS), an organic and inexpensive compound, was employed as a photocatalyst for metal free atom transfer radical polymerization (ATRP) of methacrylate monomers.
Collapse
Affiliation(s)
- Mengmeng Li
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of the Ministry of Education
- College of Chemistry and Materials Science/Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry
- Northwest University
- Xi'an
- P. R. China
| | - Sixuan Wang
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of the Ministry of Education
- College of Chemistry and Materials Science/Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry
- Northwest University
- Xi'an
- P. R. China
| | - Feifei Li
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of the Ministry of Education
- College of Chemistry and Materials Science/Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry
- Northwest University
- Xi'an
- P. R. China
| | - Lin Zhou
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of the Ministry of Education
- College of Chemistry and Materials Science/Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry
- Northwest University
- Xi'an
- P. R. China
| | - Lin Lei
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of the Ministry of Education
- College of Chemistry and Materials Science/Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry
- Northwest University
- Xi'an
- P. R. China
| |
Collapse
|
42
|
Bian C, Zhou Y, Luo Z. Mechanistic and kinetic investigation of Cu(II)‐catalyzed controlled radical polymerization enabled by ultrasound irradiation. AIChE J 2019. [DOI: 10.1002/aic.16746] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Chao Bian
- Department of Chemical Engineering School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University Shanghai People's Republic of China
| | - Yin‐Ning Zhou
- Department of Chemical Engineering School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University Shanghai People's Republic of China
| | - Zheng‐Hong Luo
- Department of Chemical Engineering School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University Shanghai People's Republic of China
| |
Collapse
|
43
|
Zhang P, Yuan M, Xu C, Jia K, Zhu Y, Tang H. Alkyl halide/tertiary amine as novel initiators for free radical polymerizations of methyl methacrylate, methyl acrylate and styrene. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2019. [DOI: 10.1080/10601325.2019.1581577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Panpan Zhang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China
| | - Ming Yuan
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China
| | - Cheng Xu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China
| | - Kan Jia
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China
| | - Yifeng Zhu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China
| | - Huadong Tang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China
| |
Collapse
|
44
|
Pereira VA, Mendonça PV, Coelho JFJ, Serra AC. Liquid salts as eco-friendly solvents for atom transfer radical polymerization: a review. Polym Chem 2019. [DOI: 10.1039/c9py00865a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Liquid salts, comprising ionic liquids and eutectic mixtures, are organic compounds/mixtures characterized by a low melting point that have been emerging as a very promising eco-friendly solvent for atom transfer radical polymerization.
Collapse
Affiliation(s)
- Vanessa A. Pereira
- CEMMPRE
- Department of Chemical Engineering
- University of Coimbra
- 3030-790 Coimbra
- Portugal
| | - Patrícia V. Mendonça
- CEMMPRE
- Department of Chemical Engineering
- University of Coimbra
- 3030-790 Coimbra
- Portugal
| | - Jorge F. J. Coelho
- CEMMPRE
- Department of Chemical Engineering
- University of Coimbra
- 3030-790 Coimbra
- Portugal
| | - Arménio C. Serra
- CEMMPRE
- Department of Chemical Engineering
- University of Coimbra
- 3030-790 Coimbra
- Portugal
| |
Collapse
|
45
|
Collins J, McKenzie TG, Nothling MD, Allison-Logan S, Ashokkumar M, Qiao GG. Sonochemically Initiated RAFT Polymerization in Organic Solvents. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01845] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
46
|
Discekici EH, Anastasaki A, Read de Alaniz J, Hawker CJ. Evolution and Future Directions of Metal-Free Atom Transfer Radical Polymerization. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01401] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Emre H. Discekici
- Department of Chemistry and Biochemistry, Materials Department, and Materials Research Laboratory University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Athina Anastasaki
- Department of Chemistry and Biochemistry, Materials Department, and Materials Research Laboratory University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Javier Read de Alaniz
- Department of Chemistry and Biochemistry, Materials Department, and Materials Research Laboratory University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Craig J. Hawker
- Department of Chemistry and Biochemistry, Materials Department, and Materials Research Laboratory University of California, Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
47
|
Zhou YN, Li JJ, Ljubic D, Luo ZH, Zhu S. Mechanically Mediated Atom Transfer Radical Polymerization: Exploring Its Potential at High Conversions. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01153] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yin-Ning Zhou
- Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada L8S 4L7
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China 200240
| | - Jin-Jin Li
- Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada L8S 4L7
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China 200240
| | - Darko Ljubic
- Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada L8S 4L7
| | - Zheng-Hong Luo
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China 200240
| | - Shiping Zhu
- Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada L8S 4L7
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, China 518172
| |
Collapse
|
48
|
Buss BL, Miyake GM. Photoinduced Controlled Radical Polymerizations Performed in Flow: Methods, Products, and Opportunities. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2018; 30:3931-3942. [PMID: 30559577 PMCID: PMC6293981 DOI: 10.1021/acs.chemmater.8b01359] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Photoinduced controlled radical polymerizations (CRPs) have provided a variety of approaches for the synthesis of polymers possessing targeted structures, compositions, and functionalities with the added capability for spatial and temporal control, presenting the potential for new materials development. However, the scalability and reliability of these systems can be limited as a consequence of dependence on uniform irradiation of the reaction to produce well-defined products. In this perspective, we highlight the utility and promise of photo-CRP approaches through an overview of the adaptation of these methodologies to photo-flow reactor systems. Special emphasis is placed on the current state-of-the-art in polymerization scalability, reactor design, and polymer scope.
Collapse
Affiliation(s)
- Bonnie L. Buss
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1101, United States
| | - Garret M. Miyake
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1101, United States
| |
Collapse
|
49
|
Destarac M. Industrial development of reversible-deactivation radical polymerization: is the induction period over? Polym Chem 2018. [DOI: 10.1039/c8py00970h] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The commercial applications of polymers produced by reversible-deactivation radical polymerization are reviewed here.
Collapse
Affiliation(s)
- Mathias Destarac
- Laboratoire des IMRCP
- Université de Toulouse
- CNRS UMR 5623
- Université Paul Sabatier
- 31062 Toulouse Cedex 9
| |
Collapse
|