1
|
Zhang M, Su Y, Du T, Ding S, Dai J, Wang C, Liu Y. Revealing Transition State Stabilization in Organocatalytic Ring-Opening Polymerization Using Data Science. Angew Chem Int Ed Engl 2025; 64:e202502090. [PMID: 40146080 DOI: 10.1002/anie.202502090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/19/2025] [Accepted: 03/27/2025] [Indexed: 03/28/2025]
Abstract
In nature, enzymes leverage constituent amino acid residues to create catalytically active sites to effect high reactivity and selectivity. Multicomponent host-guest assemblies have been exploited to mimic enzymatic microenvironments by pre-organizing a network of noncovalent interactions. While organocatalysts such as thioureas have gained widespread success in organic transformation and controlled polymerization, evaluation of the participating structural features in the transition state (TS) remains challenging. Herein, we report the use of data science tools, i.e., a decision-tree-based machine-learning algorithm and Shapley additive explanations (SHAP) analysis, to model reactivity and regioselectivity in a thiourea-catalyzed ring-opening polymerization of 1,2-dithiolanes. Variation of aryl substituent position and electronic characteristics reveals key catalyst features involved in the TS. The analysis of feature importance helps explain the reason behind the optimal performance of (pseudo)halogen-substituted catalysts. Furthermore, the structural basis for the unveiled reactivity-regioselectivity trade-off in the catalysis are established.
Collapse
Affiliation(s)
- Miaomiao Zhang
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, and College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yuming Su
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, Laboratory of AI for Electrochemistry (AI4EC), Tan Kah Kee Innovation Laboratory (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen, University, Xiamen, 361005, China
| | - Tianyi Du
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, and College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Shihao Ding
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, and College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jieyu Dai
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, and College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Cheng Wang
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, Laboratory of AI for Electrochemistry (AI4EC), Tan Kah Kee Innovation Laboratory (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen, University, Xiamen, 361005, China
| | - Yun Liu
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, and College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
2
|
Pei W, Liu Y, Yan Q, Yuan K, Li S, Shen Y, Li Z. Crystallization/Precipitation Driven Nonequilibrium Ring-Opening Polymerization of Thiovalerolactone Toward Closed-Loop Recyclable Polythioester with Excellent Barrier Properties. Angew Chem Int Ed Engl 2025:e202505104. [PMID: 40357831 DOI: 10.1002/anie.202505104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 05/08/2025] [Accepted: 05/13/2025] [Indexed: 05/15/2025]
Abstract
The development of closed-loop recyclable polymers with comparable performances with commodity plastics remains as a challenge to establish a circular plastic economy. In this contribution, we propose a precipitation/crystallization driven nonequilibrium ring-opening polymerization of δ-thiovalerolactone (δTVL) to produce high-molecular-weight PTVL in the presence of a strong base/urea binary catalyst. The obtained PTVL exhibits good thermal and mechanical performances as well as superior barrier properties comparable with some commodity plastics. Remarkably, the obtained PTVL can be depolymerized to recover pristine monomer with a high yield and purity by distillation from a commodity plastic waste mixture without tedious separation, highlighting its great potential as a closed-loop recyclable packaging material.
Collapse
Affiliation(s)
- Weijie Pei
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yiming Liu
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Qin Yan
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Kunlun Yuan
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Sai Li
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yong Shen
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
- State Key Laboratory of Advanced Optical Polymer and Manufacturing Technology, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Zhibo Li
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
- State Key Laboratory of Advanced Optical Polymer and Manufacturing Technology, Qingdao University of Science and Technology, Qingdao, 266042, China
| |
Collapse
|
3
|
Sanchez LAH, Woroch CP, Dumas DM, Waymouth RM, Kanan MW. Toughening Poly(lactic acid) without Compromise - Statistical Copolymerization with a Bioderived Bicyclic Lactone. J Am Chem Soc 2025; 147:5212-5219. [PMID: 39874214 DOI: 10.1021/jacs.4c15697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Poly(lactic acid) (PLA) offers a renewable and degradable alternative to petroleum-based plastic, but its mechanical properties are not ideal for many applications. Herein, we describe the synthesis and polymerization of 2-oxo-3,8-dioxabicyclo[3.2.1]octane (ODO), a bioderived bicyclic lactone, and show that copolymers of l-lactide (LA) with small amounts of ODO have improved mechanical properties over PLA. Homopolymerization of ODO to poly(oxo-3,8-dioxabicyclo[3.2.1]octane) (PODO) is optimized for both solution-phase, organocatalytic and melt-phase, metal-catalyzed conditions. In comparison to the monocyclic analog, ε-caprolactone (CL), ODO has a lower enthalpy of polymerization and faster rate of polymerization. PODO is an amorphous, elastomeric polyester that has a Tg 90 °C higher than poly(ε-caprolactone) (PCL). Statistical copolymerization of LA with small fractions of ODO yields tough and transparent thermoplastics that have over 12× elongation at break compared to native PLA, while maintaining Tg, Young's modulus (E), and yield strength. Together, these results describe how the incorporation of the tetrahydrofuran ring alters lactone polymerizability and the thermomechanical properties of the homopolymer and copolymer materials.
Collapse
Affiliation(s)
- Lucas A H Sanchez
- Department of Chemistry, Stanford University, 337 Campus Drive, Stanford, California 94305, United States
| | - Cristian P Woroch
- Department of Chemistry, Stanford University, 337 Campus Drive, Stanford, California 94305, United States
| | - David M Dumas
- Department of Chemistry, Stanford University, 337 Campus Drive, Stanford, California 94305, United States
| | - Robert M Waymouth
- Department of Chemistry, Stanford University, 337 Campus Drive, Stanford, California 94305, United States
| | - Matthew W Kanan
- Department of Chemistry, Stanford University, 337 Campus Drive, Stanford, California 94305, United States
| |
Collapse
|
4
|
Liao M, Yao Y, Gan K, Su X, Zhao N, Zuckermann RN, Xuan S, Zhang Z. Self-promoted Controlled Ring-opening Polymerization via Side Chain-mediated Proton Transfer for the Synthesis of Tertiary Amine-pendant Polypeptoids. Angew Chem Int Ed Engl 2025; 64:e202417990. [PMID: 39410820 DOI: 10.1002/anie.202417990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Indexed: 11/10/2024]
Abstract
Proton transfer is essential in virtually all biochemical processes, with enzymes facilitating this transfer by optimizing the proximity and orientation of reactants through site-specific hydrogen bonds. Proton transfer is also crucial in the rate-determining step for the ring-opening polymerization of N-carboxyanhydrides (NCAs), widely used to prepare various peptidomimetic materials. This study utilizes side chain-assisted strategy to accelerate the rate of chain propagation by using NCAs with tertiary amine pendants. This moiety enables hydrogen bond formation between the incoming NCA and the polymer amino growing end. The tertiary amine side chain of the NCA forms a proton shuttle, via a less constrained transition state, to facilitate the proton transfer process. Moreover, the tertiary amine side chains enable the precipitation of NCA monomers through in situ protonation during the monomer synthesis. This greatly facilitates the synthesis of these unreported monomers, allowing the direct controlled synthesis of tertiary amine-pendant polypeptoids. This side chain-promoted polymerization has rarely been reported. Additionally, the tertiary amine side chains, as widely used functional groups, endow the polymers with unique properties including pH- and thermo-responsiveness, tunable pKas, and siRNA transfection capability. The self-promoted synthesis, facile monomer preparation, and attractive properties make tertiary amine-pendant polypeptoids promising materials for various applications.
Collapse
Affiliation(s)
- Mingzhen Liao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yao Yao
- Suzhou GenePharma Co., Ltd., Suzhou, 215123, China
| | - Kunyu Gan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xianghua Su
- Suzhou GenePharma Co., Ltd., Suzhou, 215123, China
| | - Ning Zhao
- Suzhou GenePharma Co., Ltd., Suzhou, 215123, China
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Ronald N Zuckermann
- The Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California, 94720, United States
| | - Sunting Xuan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhengbiao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| |
Collapse
|
5
|
Zhang J, Jiang L, Liu S, Shen J, Braunstein P, Shen Y, Kang X, Li Z. Bifunctional and recyclable polyesters by chemoselective ring-opening polymerization of a δ-lactone derived from CO 2 and butadiene. Nat Commun 2024; 15:8698. [PMID: 39379349 PMCID: PMC11461917 DOI: 10.1038/s41467-024-52090-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 08/27/2024] [Indexed: 10/10/2024] Open
Abstract
When aiming at the direct use of CO2 for the preparation of advanced/value-added materials, the synthesis of CO2/olefin copolymers is very appealing but challenging. The δ-lactone 3-ethylidene-6-vinyltetrahydro-2H-pyran-2-one (EVP), synthesized by telomerization of CO2 with 1,3-butadiene, is a promising monomer. However, its chemoselective ring-opening polymerization (ROP) is hampered by unfavorable thermodynamics and the competitive polymerization of highly reactive C=C double bonds under usual conditions. Herein, we report the chemoselective ROP of EVP using a phosphazene/urea binary catalyst, affording exclusively a linear unsaturated polyester poly(EVP)ROP, with a molar mass (Mn) up to 16.1 kg·mol-1 and a narrow distribution (Ð < 1.6), which can be fully recycled back to the pristine monomer, thus establishing a monomer-polymer-monomer closed-loop life cycle. In these polyesters, the CO2 content reaches 33 mol% (29 wt%). The reasons for the unexpected chemoselectivity were investigated by Density-functional theory (DFT) calculations. The poly(EVP)ROP features two pendent C=C double bonds per repeating unit, which show distinct reactivity and thus can be properly engaged in sequential functionalizations towards the synthesis of bifunctional polyesters. We disclose here a methodology providing a facile access to bifunctional and recyclable polyesters from readily available feedstocks.
Collapse
Affiliation(s)
- Jinbo Zhang
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Lihang Jiang
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Shaofeng Liu
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Junhao Shen
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Pierre Braunstein
- Institut de Chimie (UMR 7177 CNRS), Université de Strasbourg, 4 rue Blaise Pascal, CS 90032, F-67081, Strasbourg Cedex, France.
| | - Yong Shen
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xiaohui Kang
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China.
| | - Zhibo Li
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| |
Collapse
|
6
|
Li G, Du P, Xu G, Guo X, Wang Q. Asymmetric Kinetic Resolution Polymerization of Racemic Lactide Mediated by Axial-Chiral Thiourea/Phosphazene Binary Organocatalyst. Chemistry 2024; 30:e202402201. [PMID: 39008613 DOI: 10.1002/chem.202402201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/08/2024] [Accepted: 07/14/2024] [Indexed: 07/17/2024]
Abstract
Asymmetric kinetic resolution polymerization (AKRP) provides an ideal way to obtain highly isotactic polylactide (PLA) with superior thermal-mechanical properties from racemic lactide (rac-LA). However, the development of a new catalytic system with concurrent high activity and selectivity at ambient temperature remains a great callenge. Here, a series of simple and effective binary organocatalytic pairs containing axial-chiral thioureas and commercially available phosphazene bases were designed. These chiral binary organocatalytic pairs allow for both high polymerization activity and moderate enantioselectivity for AKRP of rac-LA at room temperature, yielding semi-crystalline and metal-free stereoblock PLA with a melting temperature as high as 186 °C. The highest kinetic resolution coefficient (krel) of 8.5 at 47 % conversion was obtained, and D-LA was preferentially polymerized via kinetic resolution with a maximum selectivity factor (kD/kL) of 18.1, indicating that an enantiomorphic site control mechanism (ESC) was involved.
Collapse
Affiliation(s)
- Guojie Li
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Peng Du
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Guangqiang Xu
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuanhua Guo
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qinggang Wang
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
7
|
Geng X, Liu X, Yu Q, Zhang C, Zhang X. Advancing H-Bonding Organocatalysis for Ring-Opening Polymerization: Intramolecular Activation of Initiator/Chain End. J Am Chem Soc 2024; 146:25852-25859. [PMID: 39226029 DOI: 10.1021/jacs.4c09394] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Organocatalytic ring-opening polymerization (ROP) of lactones is a green method for accessing renewable and biodegradable polyesters. Developing new organocatalysts with high activity and controllability is a major and challenging research topic in this field. Here, we report a series of organocatalysts to achieve a fast and controlled ROP of lactones. These catalysts incorporate (thio)urea and alkoxide in one molecule and act as initiators in the ROP. Such catalysts enable an effective intramolecular activation of initiator/chain end, as revealed by computational studies, resulting in higher activity and fewer (thio)urea loads than existing (thio)urea/alkoxide binary systems. These organocatalysts exhibit ultrahigh activity comparable to metal complexes, i.e., turnover number up to 900 and turnover of frequency up to 4860 min-1, affording polyesters with tailor-made structure, predicted molecular weights, narrow dispersity, less epimerization, and minimal transesterification. The catalyst synthesis is simple and scalable, allowing widely tuned activities of the ROP.
Collapse
Affiliation(s)
- Xiaowei Geng
- State Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiong Liu
- State Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qinglei Yu
- State Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Chengjian Zhang
- State Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xinghong Zhang
- State Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
8
|
Xu J, Niu Y, Lin BL. Monomer-Recyclable Polyester from CO 2 and 1,3-Butadiene. Macromol Rapid Commun 2024; 45:e2400163. [PMID: 38690806 DOI: 10.1002/marc.202400163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/22/2024] [Indexed: 05/03/2024]
Abstract
Synthesis of monomer-recyclable polyesters solely from CO2 and bulk olefins holds great potential in significantly reducing CO2 emissions and addressing the issue of plastic pollution. Due to the kinetic disadvantage of direct copolymerization of CO2 and bulk olefins compared to homopolymerization of bulk olefins, considerable research attention has been devoted to synthesis of polyester via the ring-opening polymerization (ROP) of a six-membered disubstituted lactone intermediate, 1,2-ethylidene-6-vinyl-tetrahydro-2H-pyran-2-one (𝜹-L), obtained from telomerization of CO2 and 1,3-butadiene. However, the conjugate olefin on the six-membered ring of 𝜹-L leads to serious Michael addition side reactions. Thus, the selective ROP of 𝜹-L, which can precisely control the repeating unit for the production of polyesters potentially amenable to efficient monomer recycling, remains an unresolved challenge. Herein, the first example of selective ROP of 𝜹-L is reported using a combination of organobase and N,N'-Bis[3,5-bis(trifluoromethyl)phenyl]urea as the catalytic system. Systematic modifications of the substituent of the urea show that the presence of electron-deficient 3,5-bis(trifluoromethyl)-phenyl groups is the key to the extraordinary selectivity of ring opening over Michael addition. Efficient monomer recovery of oligo(𝜹-L) is also achieved under mild catalytic conditions.
Collapse
Affiliation(s)
- Jialin Xu
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, 201210, China
| | - Yuxuan Niu
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, 201210, China
| | - Bo-Lin Lin
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, 201210, China
| |
Collapse
|
9
|
Morodo R, Dumas DM, Zhang J, Lui KH, Hurst PJ, Bosio R, Campos LM, Park NH, Waymouth RM, Hedrick JL. Ring-Opening Polymerization of Cyclic Esters and Carbonates with (Thio)urea/Cyclopropenimine Organocatalytic Systems. ACS Macro Lett 2024:181-188. [PMID: 38252690 DOI: 10.1021/acsmacrolett.3c00716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Organocatalyzed ring-opening polymerization is a powerful tool for the synthesis of a variety of functional, readily degradable polyesters and polycarbonates. We report the use of (thio)ureas in combination with cyclopropenimine bases as a unique catalyst for the polymerization of cyclic esters and carbonates with a large span of reactivities. Methodologies of exceptionally effective and selective cocatalyst combinations were devised to produce polyesters and polycarbonates with narrow dispersities (Đ = 1.01-1.10). Correlations of the pKa of the various ureas and cyclopropenimine bases revealed the critical importance of matching the pKa of the two cocatalysts to achieve the most efficient polymerization conditions. It was found that promoting strong H-bonding interactions with a noncompetitive organic solvent, such as CH2Cl2, enabled greatly increased polymerization rates. The stereoselective polymerization of rac-lactide afforded stereoblock poly(lactides) that crystallize as stereocomplexes, as confirmed by wide-angle X-ray scattering.
Collapse
Affiliation(s)
- Romain Morodo
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - David M Dumas
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Jia Zhang
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Kai H Lui
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Paul J Hurst
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Riccardo Bosio
- IBM Almaden Research Center, San Jose, California 95120, United States
| | - Luis M Campos
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Nathaniel H Park
- IBM Almaden Research Center, San Jose, California 95120, United States
| | - Robert M Waymouth
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - James L Hedrick
- IBM Almaden Research Center, San Jose, California 95120, United States
| |
Collapse
|
10
|
Du T, Shen B, Dai J, Zhang M, Chen X, Yu P, Liu Y. Controlled and Regioselective Ring-Opening Polymerization for Poly(disulfide)s by Anion-Binding Catalysis. J Am Chem Soc 2023; 145:27788-27799. [PMID: 37987648 DOI: 10.1021/jacs.3c10708] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Poly(disulfide)s are an emerging class of sulfur-containing polymers with applications in medicine, energy, and functional materials. However, the constituent dynamic covalent S-S bond is highly reactive in the presence of the sulfide (RS-) anion, imposing a persistent challenge to control the polymerization. Here, we report an anion-binding approach to arrest the high reactivity of the RS- chain end to control the synthesis of linear poly(disulfide)s, realizing a rapid, living ring-opening polymerization of 1,2-dithiolanes with narrow dispersity and high regioselectivity (Mw/Mn ∼ 1.1, Ps ∼ 0.85). Mechanistic studies support the formation of a thiourea-base-sulfide ternary complex as the catalytically active species during the chain propagation. Theoretical analyses reveal a synergistic catalytic model where the catalyst preorganizes the protonated base and anionic chain end to establish spatial confinement over the bound monomer, effecting the observed regioselectivity. The catalytic system is amenable to monomers with various functional groups, and semicrystalline polymers are also obtained from lipoic acid derivatives by enhancing the regioselectivity.
Collapse
Affiliation(s)
- Tianyi Du
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Boming Shen
- Department of Chemistry and Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jieyu Dai
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Miaomiao Zhang
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xingjian Chen
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Peiyuan Yu
- Department of Chemistry and Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yun Liu
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
11
|
Shen Y, Leng M, Yang Y, Boopathi SK, Sun G, Wooley KL. Elucidation of Substantial Differences in Ring-Opening Polymerization Outcomes from Subtle Variation of Glucose Carbonate-Based Monomer Substitution Patterns and Substituent Types. J Am Chem Soc 2023; 145:15405-15413. [PMID: 37409894 PMCID: PMC10863030 DOI: 10.1021/jacs.3c03339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Indexed: 07/07/2023]
Abstract
The substituents present upon five-membered bicyclic glucose carbonate monomers were found to greatly affect the reactivities and regioselectivities during ring-opening polymerization (ROP), which contrast in significant and interesting ways from previous studies on similar systems, while also leading to predictable effects on the thermal properties of the resulting polycarbonates. Polymerization behaviors were probed for a series of five five-membered bicyclic 2,3-glucose-carbonate monomers having 4,6-ether, -carbonate, or -sulfonyl urethane protecting groups, under catalysis with three different organobase catalysts. Irrespective of the organobase catalyst employed, regioregular polycarbonates were obtained via ROP of monomers with ether substituents, while the backbone connectivities of polymers derived from monomers with carbonate protecting groups suffered transcarbonylation reactions, resulting in irregular backbone connectivities and broad molar mass distributions. The sulfonyl urethane-protected monomers were unable to undergo organobase-catalyzed ROP, possibly due to the acidity of the proton in urethane functionality. The thermal behaviors of polycarbonates with ether and carbonate pendant groups were investigated in terms of thermal stability and glass transition temperature (Tg). A two-stage thermal decomposition was observed when tert-butyloxycarbonyl (BOC) groups were employed as protecting side chains, while all other polycarbonates presented high thermal stabilities with a single-stage thermal degradation. Tg was greatly affected by side-chain bulkiness, with values ranging from 39 to 139 °C. These fundamental findings of glucose-based polycarbonates may facilitate the development of next-generation sustainable highly functional materials.
Collapse
Affiliation(s)
- Yidan Shen
- Departments
of Materials Science & Engineering, Chemistry, and Chemical Engineering, Texas A&M University, College Station, Texas 77842, United States
| | - Mingwan Leng
- Departments
of Materials Science & Engineering, Chemistry, and Chemical Engineering, Texas A&M University, College Station, Texas 77842, United States
| | - Yunchong Yang
- Departments
of Materials Science & Engineering, Chemistry, and Chemical Engineering, Texas A&M University, College Station, Texas 77842, United States
| | - Senthil Kumar Boopathi
- Departments
of Materials Science & Engineering, Chemistry, and Chemical Engineering, Texas A&M University, College Station, Texas 77842, United States
| | - Guorong Sun
- Departments
of Materials Science & Engineering, Chemistry, and Chemical Engineering, Texas A&M University, College Station, Texas 77842, United States
| | - Karen L. Wooley
- Departments
of Materials Science & Engineering, Chemistry, and Chemical Engineering, Texas A&M University, College Station, Texas 77842, United States
| |
Collapse
|
12
|
Fitzgerald DM, Colson YL, Grinstaff MW. Synthetic Pressure Sensitive Adhesives for Biomedical Applications. Prog Polym Sci 2023; 142:101692. [PMID: 37273788 PMCID: PMC10237363 DOI: 10.1016/j.progpolymsci.2023.101692] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Pressure sensitive adhesives are components of everyday products found in homes, offices, industries, and hospitals. Serving the general purpose of fissure repair and object fixation, pressure sensitive adhesives indiscriminately bind surfaces, as long as contact pressure is administered at application. With that being said, the chemical and material properties of the adhesive formulation define the strength of a pressure sensitive adhesive to a particular surface. Given our increased understanding of the viscoelastic material requirements as well as the intermolecular interactions at the binding interface required for functional adhesives, pressure sensitive adhesives are now being explored for greater use. New polymer formulations impart functionality and degradability for both internal and external applications. This review highlights the structure-property relationships between polymer architecture and pressure sensitive adhesion, specifically for medicine. We discuss the rational, molecular-level design of synthetic polymers for durable, removable, and biocompatible adhesion to wet surfaces like tissue. Finally, we examine prevalent challenges in biomedical wound closure and the new, innovative strategies being employed to address them. We conclude by summarizing the progress of current research, identifying additional clinical opportunities, and discussing future prospects.
Collapse
Affiliation(s)
- Danielle M. Fitzgerald
- Department of Chemistry, Biomedical Engineering, and Medicine, Boston University, Boston, MA 02115
| | - Yolonda L. Colson
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA 02214
| | - Mark W. Grinstaff
- Department of Chemistry, Biomedical Engineering, and Medicine, Boston University, Boston, MA 02115
| |
Collapse
|
13
|
Park NH, Manica M, Born J, Hedrick JL, Erdmann T, Zubarev DY, Adell-Mill N, Arrechea PL. Artificial intelligence driven design of catalysts and materials for ring opening polymerization using a domain-specific language. Nat Commun 2023; 14:3686. [PMID: 37344485 PMCID: PMC10284867 DOI: 10.1038/s41467-023-39396-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 06/12/2023] [Indexed: 06/23/2023] Open
Abstract
Advances in machine learning (ML) and automated experimentation are poised to vastly accelerate research in polymer science. Data representation is a critical aspect for enabling ML integration in research workflows, yet many data models impose significant rigidity making it difficult to accommodate a broad array of experiment and data types found in polymer science. This inflexibility presents a significant barrier for researchers to leverage their historical data in ML development. Here we show that a domain specific language, termed Chemical Markdown Language (CMDL), provides flexible, extensible, and consistent representation of disparate experiment types and polymer structures. CMDL enables seamless use of historical experimental data to fine-tune regression transformer (RT) models for generative molecular design tasks. We demonstrate the utility of this approach through the generation and the experimental validation of catalysts and polymers in the context of ring-opening polymerization-although we provide examples of how CMDL can be more broadly applied to other polymer classes. Critically, we show how the CMDL tuned model preserves key functional groups within the polymer structure, allowing for experimental validation. These results reveal the versatility of CMDL and how it facilitates translation of historical data into meaningful predictive and generative models to produce experimentally actionable output.
Collapse
Affiliation(s)
| | - Matteo Manica
- IBM Research-Zurich, Säumerstrasse 4, Rüschlikon, 8803, Switzerland
| | - Jannis Born
- IBM Research-Zurich, Säumerstrasse 4, Rüschlikon, 8803, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - James L Hedrick
- IBM Research-Almaden, 650 Harry Rd., San Jose, CA, 95120, USA
| | - Tim Erdmann
- IBM Research-Almaden, 650 Harry Rd., San Jose, CA, 95120, USA
| | | | - Nil Adell-Mill
- IBM Research-Zurich, Säumerstrasse 4, Rüschlikon, 8803, Switzerland
- Arctoris, 120E Olympic Avenue, Abingdon, OX14 4SA, Oxfordshire, UK
| | | |
Collapse
|
14
|
Liu Y, Xu J, Zhang Y, Shen Y, Li Z. Rapid Ring-Opening Polymerization of γ-Butyrolactone toward High-Molecular-Weight Poly (γ-butyrolactone) by an Organophosphazene Base and Bisurea Binary Catalyst. Chem Asian J 2023; 18:e202201107. [PMID: 36519360 DOI: 10.1002/asia.202201107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/04/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
The low temperature condition, long reaction time and associated high energy inputs involved in the polymerization process still hampered the scalable production of poly(γ-butyrolactone) (PγBL) via ring-opening polymerization (ROP) of low strained γBL due to its unfavorable thermodynamics. In this contribution, we presented the rapid ROP of γBL using a bisurea in combination with an organophosphazene base as the binary catalyst. Well-defined PγBL samples with various terminal groups were prepared by using different alcohol initiators. The bisurea as a co-catalyst exhibited much higher catalytic activity even compared to the most active monourea in previous report as supported by the kinetic experiments. A moderate monomer conversion of 61% was achieved within 10 mins, producing high-molecular-weight PγBL with Mn up to 37.5 kDa and good mechanical properties. The short polymerization time considerably reduced the energy cost for the ROP of γBL conducted at low temperature condition. This study may clear away obstacles for the scalable production and practical applications for PγBL.
Collapse
Affiliation(s)
- Yiming Liu
- Key Laboratory of Biobased Polymer Materials Shandong Provincial Education Department College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Jizhe Xu
- State Key Laboratory Base of Eco-Chemical Engineering College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Yiming Zhang
- Key Laboratory of Biobased Polymer Materials Shandong Provincial Education Department College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Yong Shen
- State Key Laboratory Base of Eco-Chemical Engineering College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Zhibo Li
- Key Laboratory of Biobased Polymer Materials Shandong Provincial Education Department College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China.,State Key Laboratory Base of Eco-Chemical Engineering College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| |
Collapse
|
15
|
Cai W, Zheng S, Pang W, Si G, Tan C. Photoresponsive thiourea and urea catalysts for ring‐opening polymerization of L‐lactide. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Wen Cai
- Department of Polymer Science and Engineering University of Science and Technology of China Hefei China
| | - Shengquan Zheng
- Department of Polymer Science and Engineering University of Science and Technology of China Hefei China
| | - Wenmin Pang
- Department of Polymer Science and Engineering University of Science and Technology of China Hefei China
| | - Guifu Si
- Department of Polymer Science and Engineering University of Science and Technology of China Hefei China
| | - Chen Tan
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education Anhui University Hefei China
| |
Collapse
|
16
|
Kang F, Yang Y, Wang W, Li Z. Preparation of degradable aliphatic polyester elastomers with tunable strength and elasticity via photo‐crosslinking. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Feifei Kang
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering Qingdao University of Science and Technology Qingdao China
| | - Yan Yang
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering Qingdao University of Science and Technology Qingdao China
| | - Wenpin Wang
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering Qingdao University of Science and Technology Qingdao China
| | - Zhibo Li
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering Qingdao University of Science and Technology Qingdao China
- College of Chemical Engineering Qingdao University of Science and Technology Qingdao China
| |
Collapse
|
17
|
Liu Y, Zhang J, Kou X, Liu S, Li Z. Highly Active Organocatalysts for Stereoselective Ring-Opening Polymerization of Racemic Lactide at Room Temperature. ACS Macro Lett 2022; 11:1183-1189. [DOI: 10.1021/acsmacrolett.2c00425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yongxin Liu
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Jinbo Zhang
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xinhui Kou
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Shaofeng Liu
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Zhibo Li
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| |
Collapse
|
18
|
Zaky MS, Wirotius AL, Coulembier O, Guichard G, Taton D. Reaching High Stereoselectivity and Activity in Organocatalyzed Ring-Opening Polymerization of Racemic Lactide by the Combined Use of a Chiral (Thio)Urea and a N-Heterocyclic Carbene. ACS Macro Lett 2022; 11:1148-1155. [PMID: 36067070 DOI: 10.1021/acsmacrolett.2c00457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Stereochemical control during polymerization is a key strategy of polymer chemistry to achieve semicrystalline engineered plastics. The stereoselective ring-opening polymerization (ROP) of racemic lactide (rac-LA), which can lead to highly isotactic polylactide (PLA), is one of the emblematic examples in this area. Surprisingly, stereoselective ROP of rac-LA employing chiral organocatalysts has been under-leveraged. Here we show that a commercially available chiral thiourea (TU1), or its urea homologue (U1), can be used in conjunction with an appropriately selected N-heterocyclic carbene (NHC) to trigger the stereoselective ROP of rac-LA at room temperature in toluene. Both a high organic catalysis activity (>90% monomer conversion in 5-9 h) and a high stereoselectivity (probability of formation of meso dyads, Pm, in the range 0.82-0.93) can be achieved by thus pairing a NHC and a chiral amino(thio)urea. The less sterically hindered and the more basic NHC, that is, a NHC bearing tert-butyl substituents (NHCtBu), provides the highest stereoselectivity when employed in conjunction with the chiral TU1 or U1. This asymmetric organic catalysis strategy, as applied here in polymerization chemistry, further expands the field of possibilities to achieve bioplastics with adapted thermomechanical properties.
Collapse
Affiliation(s)
- Mohamed Samir Zaky
- Laboratoire de Chimie des Polymères Organiques (LCPO), UMR 5629, Université de Bordeaux, INP-ENSCBP, 16 av, Pey Berland, 33607 PESSAC Cedex France
| | - Anne-Laure Wirotius
- Laboratoire de Chimie des Polymères Organiques (LCPO), UMR 5629, Université de Bordeaux, INP-ENSCBP, 16 av, Pey Berland, 33607 PESSAC Cedex France
| | - Olivier Coulembier
- Center of Innovation and Research in Materials and Polymers (CIRMAP), Laboratory of Polymeric and Composite Materials, University of Mons, Mons B-7000, Belgium
| | - Gilles Guichard
- Univ. Bordeaux, CNRS, CBMN, UMR 5248, Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, F-33607 Pessac, France
| | - Daniel Taton
- Laboratoire de Chimie des Polymères Organiques (LCPO), UMR 5629, Université de Bordeaux, INP-ENSCBP, 16 av, Pey Berland, 33607 PESSAC Cedex France
| |
Collapse
|
19
|
Li J, Liu F, Liu Y, Shen Y, Li Z. Functionalizable and Chemically Recyclable Thermoplastics from Chemoselective Ring-Opening Polymerization of Bio-renewable Bifunctional α-Methylene-δ-valerolactone. Angew Chem Int Ed Engl 2022; 61:e202207105. [PMID: 35674460 DOI: 10.1002/anie.202207105] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Indexed: 01/13/2023]
Abstract
It is a highly attractive strategy to develop chemically recyclable polymers to establish a circular plastic economy. Despite the recent advancements, chemically recyclable polymers still face challenges including high energy cost for polymer preparation or recycling, poor monomer recovery selectivity and efficiency as well as undesired material performance. In this contribution, we present the chemoselective controlled ring-opening polymerization of bio-renewable bifunctional α-methylene-δ-valerolactone (MVL) to produce exclusive functionalizable polyester using strong base/urea binary catalysts. The obtained polyester with high molar mass exhibits good tensile strength comparable to that of some commodity plastics. Remarkably, the obtained polyester can be depolymerized to recover pristine monomer with a 96 % yield by thermolysis, thus successfully establishing a closed-loop life cycle.
Collapse
Affiliation(s)
- Jiandong Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Fusheng Liu
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yalei Liu
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yong Shen
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Zhibo Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.,Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| |
Collapse
|
20
|
Liang J, Ye S, Wang S, Wang S, Han D, Huang S, Huang Z, Liu W, Xiao M, Sun L, Meng Y. Biodegradable Copolymers from CO 2, Epoxides, and Anhydrides Catalyzed by Organoborane/Tertiary Amine Pairs: High Selectivity and Productivity. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jiaxin Liang
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Shuxian Ye
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Siyuan Wang
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Shuanjin Wang
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Dongmei Han
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Guangzhou 510275, China
| | - Sheng Huang
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhiheng Huang
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Wei Liu
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Min Xiao
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Luyi Sun
- Polymer Program, Institute of Materials Science and Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Yuezhong Meng
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
21
|
Functionalizable and Chemically Recyclable Thermoplastics from Chemoselective Ring‐Opening Polymerization of Bio‐renewable Bifunctional α‐Methylene‐δ‐valerolactone. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
22
|
Yan Q, Li C, Yan T, Shen Y, Li Z. Chemically Recyclable Thermoplastic Polyurethane Elastomers via a Cascade Ring-Opening and Step-Growth Polymerization Strategy from Bio-renewable δ-Caprolactone. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00439] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Qin Yan
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Changjian Li
- State Key Laboratory Base of Eco-Chemical Engineering; College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Ting Yan
- State Key Laboratory Base of Eco-Chemical Engineering; College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yong Shen
- State Key Laboratory Base of Eco-Chemical Engineering; College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhibo Li
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- State Key Laboratory Base of Eco-Chemical Engineering; College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
23
|
Jadrich CN, Pane VE, Lin B, Jones GO, Hedrick JL, Park NH, Waymouth RM. A Cation-Dependent Dual Activation Motif for Anionic Ring-Opening Polymerization of Cyclic Esters. J Am Chem Soc 2022; 144:8439-8443. [PMID: 35504294 DOI: 10.1021/jacs.2c01436] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new organocatalyst for the ring-opening polymerization of lactones has been identified. Under the tested conditions, the anions of 2,2'-bisindole promote fast, living polymerizations (as short as 10 ms) which are selective for chain elongation over transesterification (Đ ≤ 1.1). While structurally related to (thio)urea anion catalysts, anions of 2,2'-bisindole activate the monomer via the counterion rather than through hydrogen bonding. This new activation motif enables modulation of the polymerization rate by 2 orders of magnitude by changing the counterion.
Collapse
Affiliation(s)
- Caleb N Jadrich
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Vince E Pane
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Binhong Lin
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Gavin O Jones
- IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120, United States
| | - James L Hedrick
- IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120, United States
| | - Nathaniel H Park
- IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120, United States
| | - Robert M Waymouth
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| |
Collapse
|
24
|
Chen S, Feng Y, Zhang Z, Li X, Zhang J, Zhao J. Catalyzed Michael addition, polycondensation, and the related performance of Diels–Alder self‐healing crosslinked polyamides. POLYM ENG SCI 2022. [DOI: 10.1002/pen.25924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Shuo Chen
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education; College of Materials Science and Engineering Beijing University of Chemical Technology Beijing China
| | - Yu Feng
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education; College of Materials Science and Engineering Beijing University of Chemical Technology Beijing China
| | - Zhi‐Yuan Zhang
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education; College of Materials Science and Engineering Beijing University of Chemical Technology Beijing China
| | - Xiang‐Yuan Li
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education; College of Materials Science and Engineering Beijing University of Chemical Technology Beijing China
| | - Jun‐Ying Zhang
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education; College of Materials Science and Engineering Beijing University of Chemical Technology Beijing China
| | - Jing‐Bo Zhao
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education; College of Materials Science and Engineering Beijing University of Chemical Technology Beijing China
| |
Collapse
|
25
|
Xu J, Wang X, Liu J, Feng X, Gnanou Y, Hadjichristidis N. Ionic H-bonding organocatalysts for the ring-opening polymerization of cyclic esters and cyclic carbonates. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2021.101484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
26
|
Lian J, Chen J, Luan S, Liu W, Zong B, Tao Y, Wang X. Organocatalytic Copolymerization of Cyclic Lysine Derivative and ε-Caprolactam toward Antibacterial Nylon-6 Polymers. ACS Macro Lett 2022; 11:46-52. [PMID: 35574805 DOI: 10.1021/acsmacrolett.1c00658] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Functional polymers of nylon-6, particularly those with sustained antibacterial functions, have many practical applications. However, the development of functional ε-caprolactam monomers for the subsequent ring-opening copolymerization (ROCOP) formation of these materials remains a challenge. Here we report a t-BuP4-mediated ROCOP of dimethyl-protected cyclic lysine with ε-caprolactam, followed by quaternization, affording antibacterial nylon-6 polymers bearing quaternary ammonium functionality with high molecular weight (up to 77.4 kDa). The antibacterial nylon-6 polymers exhibited good physical and mechanical properties and strong antimicrobial activities. At 25 mol % quaternary ammonium group incorporation, the nylon-6 polymer demonstrated complete killing of Staphylococcus aureus (Gram-positive) and Escherichia coli (Gram-negative). The results from this study may provide a strategy for the facile preparation of antibacterial nylon-6 polymers to addressing the public health and safety challenges.
Collapse
Affiliation(s)
- Jiawei Lian
- University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | | | | | - Wei Liu
- State Key Laboratory of catalytic Material and Reaction Engineering, Research Institute of Petroleum Progressing, SINOPEC, Beijing 100083, China
| | - Baoning Zong
- State Key Laboratory of catalytic Material and Reaction Engineering, Research Institute of Petroleum Progressing, SINOPEC, Beijing 100083, China
| | - Youhua Tao
- University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | | |
Collapse
|
27
|
Shen Y, Li D, Kou X, Wang R, Liu F, Li Z. Ultrafast ring-opening copolymerization of lactide with glycolide toward random poly(lactic-co-glycolic acid) copolymers by organophosphazene base and urea binary catalysts. Polym Chem 2022. [DOI: 10.1039/d1py01653a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The preparation of poly(lactic-co-glycolic acid) (PLGA) copolymers with controllable random microstructures remains as a challenge due to the much higher reactivity of glycolide (GA) compared to lactide (LA). In this...
Collapse
|
28
|
Chen K, Wu Y, Wu X, Zhou M, Zhou R, Wang J, Xiao X, Yuan Y, Liu R. Facile synthesis of polypeptoids bearing bulky sidechains via urea accelerated ring-opening polymerization of α-amino acid N-substituted N-carboxyanhydrides. Polym Chem 2022. [DOI: 10.1039/d1py01324f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The organocatalyst 1,3-bis[3,5-bis(trifluoromethyl)phenyl]urea (U–O) accelerates the ring-opening polymerization of α-amino acid N-substituted N-carboxyanhydrides (NNCAs) for the rapid synthesis of polypeptoids bearing bulky sidechains.
Collapse
Affiliation(s)
- Kang Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yueming Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xue Wu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Min Zhou
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Ruiyi Zhou
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Jiangzhou Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Ximian Xiao
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Yuan Yuan
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
29
|
Oberle KG, Whitman EL, Jolly CS, Webster KA, Marx BS, Howard CM, Hanger CA, Ramey EE, Zou Y, Lowe JC, Turlington M, Turlington CR. Metallopolymers in minutes via organocatalysis at room temperature. Polym Chem 2022. [DOI: 10.1039/d2py00747a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Organocatalytic ring-opening polymerization of cyclic carbonate monomers derivatized with metallocenes is described for the rapid synthesis of high Mn metallopolymers.
Collapse
Affiliation(s)
- Kjersti G. Oberle
- Hope College Department of Chemistry and Biochemistry, Holland, MI 49422, USA
| | - Elizabeth L. Whitman
- Berry College Department of Chemistry and Biochemistry, Mount Berry, GA, 30149, USA
| | - Charles S. Jolly
- Berry College Department of Chemistry and Biochemistry, Mount Berry, GA, 30149, USA
| | | | - Benjamin S. Marx
- Berry College Department of Chemistry and Biochemistry, Mount Berry, GA, 30149, USA
| | | | - Clara A. Hanger
- Berry College Department of Chemistry and Biochemistry, Mount Berry, GA, 30149, USA
| | - Erin E. Ramey
- Hope College Department of Chemistry and Biochemistry, Holland, MI 49422, USA
| | - Yutong Zou
- Hope College Department of Chemistry and Biochemistry, Holland, MI 49422, USA
| | - Jared C. Lowe
- Hope College Department of Chemistry and Biochemistry, Holland, MI 49422, USA
| | - Mark Turlington
- Berry College Department of Chemistry and Biochemistry, Mount Berry, GA, 30149, USA
| | | |
Collapse
|
30
|
Harrier DD, Guironnet D. Design rules for performing water-sensitive ring-opening polymerizations in an aqueous dispersion. Polym Chem 2022. [DOI: 10.1039/d2py00069e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The droplet viscosity, surface tension, and hydrophobicity is tuned to explore the parameters that enable successful ring-opening polymerization in an aqueous dispersion.
Collapse
Affiliation(s)
- Danielle D. Harrier
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana-Champaign, Urbana, IL, 61801, USA
| | - Damien Guironnet
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
31
|
Ma Q, Jiang Y, Lin J, Zhang X, Shao H, Liao S. Organocatalytic orthogonal ATRP and ring-opening polymerization using a single dual-function photocatalyst. Polym Chem 2022. [DOI: 10.1039/d2py00633b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Organocatalytic orthogonal atom transfer radical polymerization and ring-opening polymerization have been achieved using a single designer dual-function photocatalyst.
Collapse
Affiliation(s)
- Qiang Ma
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yu Jiang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Junqiang Lin
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Xun Zhang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Hui Shao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Saihu Liao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
- Beijing National Laboratory for Molecular Science, Beijing 100190, China
| |
Collapse
|
32
|
Li K, Li Z, Duan S, Shen Y, Li Z. Organobase/urea catalyzed ring opening polymerization of 3‐methyl‐1, 4‐dioxan‐2‐one to prepare chemically recyclable poly(ether ester). JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Kai Li
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering Qingdao University of Science and Technology Qingdao China
| | - Zheng Li
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering Qingdao University of Science and Technology Qingdao China
| | - Shiwei Duan
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering Qingdao University of Science and Technology Qingdao China
| | - Yong Shen
- College of Chemical Engineering Qingdao University of Science and Technology Qingdao China
| | - Zhibo Li
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering Qingdao University of Science and Technology Qingdao China
- College of Chemical Engineering Qingdao University of Science and Technology Qingdao China
| |
Collapse
|
33
|
Garcia Espinosa LD, Williams-Pavlantos K, Turney KM, Wesdemiotis C, Eagan JM. Degradable Polymer Structures from Carbon Dioxide and Butadiene. ACS Macro Lett 2021; 10:1254-1259. [PMID: 35549034 DOI: 10.1021/acsmacrolett.1c00523] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The utilization of carbon dioxide as a polymer feedstock is an ongoing challenge. This report describes the catalytic conversion of carbon dioxide and an olefin comonomer, 1,3-butadiene, into a polymer structure that arises from divergent propagation mechanisms. Disubstituted unsaturated δ-valerolactone 1 (EVL) was homopolymerized by the bifunctional organocatalyst 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) to produce a hydrolytically degradable polymer. Isolation and characterization of reaction intermediates using 1H, 13C, COSY, HSQC, and MS techniques revealed a vinylogous 1,4-conjugate addition dimer forms in addition to polymeric materials. Polymer number-average molecular weights up to 3760 g/mol and glass transition temperatures in the range of 25-52 °C were measured by GPC and DSC, respectively. The polymer microstructure was characterized by 1H, 13C, FTIR, MALDI-TOF MS, and ESI tandem MS/MS. The olefin/CO2-derived materials depolymerized by hydrolysis at 80 °C in 1 M NaOH. This method and the observed chemical structures expand the materials and properties that can be obtained from carbon dioxide and olefin feedstocks.
Collapse
Affiliation(s)
- Luis D. Garcia Espinosa
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325-3909, United States
| | | | - Keaton M. Turney
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Chrys Wesdemiotis
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325-3909, United States
- Department of Chemistry, The University of Akron, Akron, Ohio 44325-3909, Unites States
| | - James M. Eagan
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325-3909, United States
| |
Collapse
|
34
|
Liang J, Ye S, Wang W, Fan C, Wang S, Han D, Liu W, Cui Y, Hao L, Xiao M, Meng Y. Performance tailorable terpolymers synthesized from carbon dioxide, phthalic anhydride and propylene oxide using Lewis acid-base dual catalysts. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101558] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
35
|
Li C, Dang YF, Wang B, Pan L, Li YS. Constructing ABA- and ABCBA-Type Multiblock Copolyesters with Structural Diversity by Organocatalytic Self-Switchable Copolymerization. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00767] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Chen Li
- Tianjin Key Laboratory of Composite & Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yan-Feng Dang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin 300072, China
| | - Bin Wang
- Tianjin Key Laboratory of Composite & Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Li Pan
- Tianjin Key Laboratory of Composite & Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yue-Sheng Li
- Tianjin Key Laboratory of Composite & Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
36
|
Ramesh MS, Rajaram S. Organocatalyzed regio-regular polymerization of α-aryl trimethylene carbonate. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
37
|
Macrocycles in dual role: ancillary ligands in metal complexes and organocatalysts for the ring-opening polymerization of lactide. J INCL PHENOM MACRO 2021. [DOI: 10.1007/s10847-021-01045-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
38
|
Zhu N, Behzadi S, Si G, Tan C. Sidearm effect in (thio)urea/alkoxide‐mediated ring‐opening polymerization of cyclic esters. POLYM INT 2021. [DOI: 10.1002/pi.6169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ningning Zhu
- Department of Polymer Science and Engineering University of Science and Technology of China Hefei China
| | - Shabnam Behzadi
- Department of Polymer Science and Engineering University of Science and Technology of China Hefei China
| | - Guifu Si
- Department of Polymer Science and Engineering University of Science and Technology of China Hefei China
| | - Chen Tan
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education Institutes of Physical Science and Information Technology, Anhui University Hefei China
| |
Collapse
|
39
|
Zhu X, Wang R, Kou X, Liu F, Shen Y. Organocatalytic Ring‐Opening Alternating Copolymerization of Epoxides and Cyclic Anhydrides by a Simple Organobase/Urea Binary Catalyst. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Xingji Zhu
- State Key Laboratory Base of Eco‐Chemical Engineering; College of Chemical Engineering Qingdao University of Science and Technology Qingdao 266042 China
| | - Rui Wang
- State Key Laboratory Base of Eco‐Chemical Engineering; College of Chemical Engineering Qingdao University of Science and Technology Qingdao 266042 China
| | - Xinhui Kou
- Analyses and testing center, Qingdao University of Science and Technology Qingdao 266042 China
| | - Fusheng Liu
- State Key Laboratory Base of Eco‐Chemical Engineering; College of Chemical Engineering Qingdao University of Science and Technology Qingdao 266042 China
| | - Yong Shen
- State Key Laboratory Base of Eco‐Chemical Engineering; College of Chemical Engineering Qingdao University of Science and Technology Qingdao 266042 China
| |
Collapse
|
40
|
Liu Y, Wu J, Hu X, Zhu N, Guo K. Advances, Challenges, and Opportunities of Poly(γ-butyrolactone)-Based Recyclable Polymers. ACS Macro Lett 2021; 10:284-296. [PMID: 35570792 DOI: 10.1021/acsmacrolett.0c00813] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The discovery and prosperous growth of synthetic polymers have presented both significant advantages and daunting challenges in the last century. To address the issues of environmental pollution and fossil consumption, recyclable, degradable, and/or biobased polymers have been given much attention in the polymer science community. This viewpoint focuses on the emerging fully chemical recyclable poly(γ-butyrolactone)-based polymers. The breakthrough from nonpolymerizable to efficient polymerization is highlighted by the benefits of the development of a series of catalysis for ring-opening polymerization of γ-butyrolactone. Subsequently, the design of γ-butyrolactone derivatives and synthesis of more recyclable polymers are summarized together with the discussions about the structure and property relationship. Finally, the remaining challenges and promising opportunities are suggested in order to provide insights into the further direction for sustainable polymers.
Collapse
Affiliation(s)
- Yihuan Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| | - Jiaqi Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| | - Xin Hu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| | - Ning Zhu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| |
Collapse
|
41
|
Ji M, Wu M, Han J, Zhang F, Peng H, Guo L. Recent Advances in Organocatalytic Ring-opening Polymerization. CURR ORG CHEM 2021. [DOI: 10.2174/1385272824999200917151344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
As compared with widely used polyolefin materials, aliphatic polyesters have
been primarily used in electronics, packaging, and biomedicine owing to its unique biocompatibility
and degradability. At present, ring-opening polymerization (ROP) of lactone is the
main method to synthesize polyesters. Two types of catalysts, including metal-based catalysts
and organocatalysts, were most researched today. However, metal-based catalysts lead
to polymer materials with metal residues, which limits its properties and applications. As a
result, organocatalysts have received great attention. In this review, the progress of organocatalytic
ring-opening polymerization in the past decades was systematically summarized.
The potential challenges and development directions in this field are also discussed.
Collapse
Affiliation(s)
- Mingjun Ji
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Mengqi Wu
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Jiayu Han
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Fanjun Zhang
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Hongwei Peng
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Lihua Guo
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| |
Collapse
|
42
|
Li M, Zhang S, Zhang X, Wang Y, Chen J, Tao Y, Wang X. Unimolecular Anion‐Binding Catalysts for Selective Ring‐Opening Polymerization of
O
‐carboxyanhydrides. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202011352] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Maosheng Li
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Shuai Zhang
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Xiaoyong Zhang
- Department of Chemistry KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Yanchao Wang
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Jinlong Chen
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Youhua Tao
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Xianhong Wang
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| |
Collapse
|
43
|
Li M, Zhang S, Zhang X, Wang Y, Chen J, Tao Y, Wang X. Unimolecular Anion‐Binding Catalysts for Selective Ring‐Opening Polymerization of
O
‐carboxyanhydrides. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/anie.202011352] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Maosheng Li
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Shuai Zhang
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Xiaoyong Zhang
- Department of Chemistry KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Yanchao Wang
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Jinlong Chen
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Youhua Tao
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Xianhong Wang
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| |
Collapse
|
44
|
Wang ZY, Xu GQ, Zhou L, Lv CD, Yang RL, Dong BZ, Wang QG. Isoselective Ring-opening Polymerization of Racemic Lactide Catalyzed by N-heterocyclic Olefin/(Thio)urea Organocatalysts. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2535-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
45
|
|
46
|
Li S, Lu H, Kang X, Wang P, Luo Y. DBU and TU synergistically induced ring-opening polymerization of phosphate esters: a mechanism study. NEW J CHEM 2021. [DOI: 10.1039/d0nj05422d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Biocompatible and biodegradable polyphosphoesters derived from the ring-opening polymerization (ROP) of phosphate esters have drawn increasing attention because of their potential applications in clinical and therapeutic fields.
Collapse
Affiliation(s)
- Shuang Li
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology
- Dalian 116024
- China
| | - Han Lu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology
- Dalian 116024
- China
| | - Xiaohui Kang
- College of Pharmacy, Dalian Medical University
- Dalian
- China
| | - Pan Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology
- Dalian 116024
- China
| | - Yi Luo
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology
- Dalian 116024
- China
| |
Collapse
|
47
|
Li M, Tao Y. Poly(ε-lysine) and its derivatives via ring-opening polymerization of biorenewable cyclic lysine. Polym Chem 2021. [DOI: 10.1039/d0py01387k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Minireview focused on poly(ε-lysine) and its derivatives via ring-opening polymerization of biorenewable cyclic lysine.
Collapse
Affiliation(s)
- Maosheng Li
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- People's Republic of China
| | - Youhua Tao
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- People's Republic of China
| |
Collapse
|
48
|
Zhou L, Wang Z, Xu G, Lv C, Wang Q. Structure and activity relationship studies of N-heterocyclic olefin and thiourea/urea catalytic systems: application in ring-opening polymerization of lactones. Polym Chem 2021. [DOI: 10.1039/d0py01747g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Structure–activity relationship studies of N-heterocyclic olefin and thiourea/urea catalytic systems were performed and applied to ROP of lactones.
Collapse
Affiliation(s)
- Li Zhou
- Key Laboratory of Biobased Materials
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
- China
| | - Zhenyu Wang
- Key Laboratory of Biobased Materials
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
- China
| | - Guangqiang Xu
- Key Laboratory of Biobased Materials
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
- China
| | - Chengdong Lv
- Key Laboratory of Biobased Materials
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
- China
| | - Qinggang Wang
- Key Laboratory of Biobased Materials
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
- China
| |
Collapse
|
49
|
Lian J, Li M, Wang S, Tao Y, Wang X. Organocatalytic Polymerization of Morpholine-2,5-diones toward Methionine-Containing Poly(ester amide)s: Preparation and Facile Functionalization. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c02065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jiawei Lian
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, People’s Republic of China
- University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Maosheng Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, People’s Republic of China
| | - Shixue Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, People’s Republic of China
| | - Youhua Tao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, People’s Republic of China
- University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Xianhong Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, People’s Republic of China
| |
Collapse
|
50
|
Park NH, Zubarev DY, Hedrick JL, Kiyek V, Corbet C, Lottier S. A Recommender System for Inverse Design of Polycarbonates and Polyesters. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c02127] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Nathaniel H. Park
- IBM Research−Almaden, 650 Harry Rd., San Jose, California 95120, United States
| | - Dmitry Yu. Zubarev
- IBM Research−Almaden, 650 Harry Rd., San Jose, California 95120, United States
| | - James L. Hedrick
- IBM Research−Almaden, 650 Harry Rd., San Jose, California 95120, United States
| | - Vivien Kiyek
- IBM Research−Almaden, 650 Harry Rd., San Jose, California 95120, United States
| | - Christiaan Corbet
- IBM Research−Almaden, 650 Harry Rd., San Jose, California 95120, United States
| | - Simon Lottier
- IBM Research−Almaden, 650 Harry Rd., San Jose, California 95120, United States
| |
Collapse
|