1
|
Hou J, Wang X, Sun P, Wang F. Manipulating Toughness and Microstructure in Polyelectrolyte Complex Hydrogels with Competitive Surfactant Micelles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:986-998. [PMID: 39725639 DOI: 10.1021/acs.langmuir.4c04263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Polyelectrolyte complex (PEC) hydrogels provide a promising strategy to develop a class of physically cross-linked networks characterized by exceptional toughness and self-healing properties. However, the precise control of the microstructure and the enhancement of mechanical properties still pose challenges in the field of PEC hydrogels. Herein, we propose a strategy to manipulate the structure of PEC with competitively charged surfactant micelles, leveraging the spatially confined surface charge and excluded volume effects to overcome coacervation issues associated with the PEC, thus achieving a simple one-step preparation of macroscopically uniform and tough PEC hydrogels. Specifically, polyelectrolyte complex/surfactant micelle (PEC-SM) hybrid hydrogels were prepared by one-step copolymerization of chitosan (CS)/acrylic acid/cetyltrimethylammonium bromide (CTAB) micelles. The content of CTAB micelles was found to continuously modulate both the structure and the mechanical properties of the resulting PEC-SM hydrogel network. On one hand, reversible deformation-recovery behavior exhibited by CTAB cavity micelles through hydrophobic interactions efficiently dissipates energy; on the other hand, competition between CS chains and CTAB micelles for electrostatic binding sites with poly(acrylic acid), along with excluded volume effects of CTAB micelles, imparts a hierarchical structure upon the PEC-SM hydrogel. Rheology provided detailed insights into the viscoelastic behaviors of PEC-SM hydrogels at varying CTAB concentrations. The intermolecular interaction and heterogeneous network structure of physically cross-linked PEC-SM hydrogels with CTAB micelles were elucidated by solid-state nuclear magnetic resonance (NMR) spectroscopy. On the basis of rheology and NMR results, complemented by other characterization analyses, the physical illustration of the PEC-SM hybrid hydrogel network structure regulated by competitive surfactant micelles is presented. This work offers valuable in-depth insight into polyelectrolyte complexation and provides a foundation for the development of robust PEC hydrogel materials.
Collapse
Affiliation(s)
- Jiawen Hou
- Key Laboratory of Functional Polymer Materials of Ministry of Education and College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiaoliang Wang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Pingchuan Sun
- Key Laboratory of Functional Polymer Materials of Ministry of Education and College of Chemistry, Nankai University, Tianjin 300071, China
| | - Fenfen Wang
- Key Laboratory of Functional Polymer Materials of Ministry of Education and College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
2
|
Traeger A, Leiske MN. The Whole Is Greater than the Sum of Its Parts - Challenges and Perspectives in Polyelectrolytes. Biomacromolecules 2025; 26:5-32. [PMID: 39661745 PMCID: PMC11733940 DOI: 10.1021/acs.biomac.4c01061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/13/2024]
Abstract
Polyelectrolytes offer unique properties for biological applications due to their charged nature and high water solubility. Here, the challenges in their synthesis and characterization techniques are reviewed, emphasizing that their strong interactions with the surrounding media and counterions must be considered when working with this interesting class of materials. Their potential in complexation for gene delivery, their unique stealth and anti-fouling properties, and their more specific interactions with amino acid transporters for cancer therapy are highlighted. The underlying mechanisms responsible for their biological efficacy, including the proton sponge effect for endosomal release and their interactions with cellular membranes, are addressed. For polyelectrolytes with a high level of usage, an overview is given of their historical context. This Perspective outlines the potential of polyelectrolytes for innovative applications in the field of biomedicine. Considering the physicochemical characteristics of this class of materials, this work strives to elucidate the distinctive properties and applications of polyelectrolytes.
Collapse
Affiliation(s)
- Anja Traeger
- Institute
of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, 07743 Jena, Germany
- Jena Center
for Soft Matter (JCSM), Friedrich Schiller
University Jena, 07743 Jena, Germany
| | - Meike N. Leiske
- Macromolecular
Chemistry, University of Bayreuth, 95447 Bayreuth, Germany
- Bavarian
Polymer Institute, 95447 Bayreuth, Germany
| |
Collapse
|
3
|
Wang X, Ma Z, Xu S, Zheng D, Bai B, Zong S. Hofmeister effect induced water activation of hydrogel and its applications for the accelerated solar evaporation in brine. WATER RESEARCH 2024; 268:122709. [PMID: 39489126 DOI: 10.1016/j.watres.2024.122709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/20/2024] [Accepted: 10/26/2024] [Indexed: 11/05/2024]
Abstract
Solar-driven desalination has emerged as a promising approach to address water scarcity caused by the decreasing supply of freshwater. Reducing the enthalpy of water vaporization is crucial for enhancing the efficiency of solar-powered desalination. In this study, inspired by the Hofmeister effect, we developed a highly hydratable network hydrogel evaporator to achieve a superior evaporation rate in brine compared with pure water. The evaporator comprised a carbonized layer as the photothermal layer and a chitosan aerogel hydrogel as the hydratable matrix. The hydrogel exhibited a dramatically reduced vaporization enthalpy of 1397 J/g and a significant evaporation rate of 2.38 kg m-2 h-1 when exposed to seawater. These results demonstrated the superior performance of hydrogel compared with pure water (1.91 kg m-2 h-1). Excellent evaporation rates and outstanding salt resistance ensured efficient coordination for practical long-term desalination applications. Further investigations revealed that the remarkable evaporation performance of the carbonized chitosan (CCS) hydrogel in brine environments was attributed to its hydrability, which was regulated by Cl-. According to the Hofmeister effect, Cl- accelerated the hydration chemistry in CCS and suppressed the associated crystallinity, which resulted in a lower enthalpy of vaporisation owing to a higher amount of intermediate water. With its superior evaporation performance in brine and comprehensive theoretical simulation analysis, this study presents an achievable and economical strategy for simultaneously addressing the water and energy crises.
Collapse
Affiliation(s)
- Xuechun Wang
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of the Ministry of Education, Chang'an University, Xi'an 710054, PR China; School of Water and Environment, Chang'an University, Xi'an, 710054, PR China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, PR China
| | - Zhiye Ma
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of the Ministry of Education, Chang'an University, Xi'an 710054, PR China; School of Water and Environment, Chang'an University, Xi'an, 710054, PR China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, PR China
| | - Shuai Xu
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of the Ministry of Education, Chang'an University, Xi'an 710054, PR China; School of Water and Environment, Chang'an University, Xi'an, 710054, PR China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, PR China
| | - Dan Zheng
- School of Chemical and Blasting Engineering, Anhui University of Science and Technology, Huainan, 232001, PR China
| | - Bo Bai
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of the Ministry of Education, Chang'an University, Xi'an 710054, PR China; School of Water and Environment, Chang'an University, Xi'an, 710054, PR China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, PR China.
| | - Shichao Zong
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of the Ministry of Education, Chang'an University, Xi'an 710054, PR China; School of Water and Environment, Chang'an University, Xi'an, 710054, PR China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, PR China
| |
Collapse
|
4
|
Roy PS. Complex Coacervate-Based Materials for Biomedicine: Recent Advancements and Future Prospects. Ind Eng Chem Res 2024; 63:5414-5487. [DOI: 10.1021/acs.iecr.3c03830] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Affiliation(s)
- Partha Sarathi Roy
- Division of Pharmaceutical Sciences, Health Sciences Building, University of Missouri─Kansas City, 2464 Charlotte St., Kansas City, Missouri 64108-2718, United States
- Department of Pharmaceutics/Medicinal Chemistry, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, 751 Brookside Rd., Stockton, California 95211, United States
| |
Collapse
|
5
|
Eneh C, Nixon K, Lalwani SM, Sammalkorpi M, Batys P, Lutkenhaus JL. Solid-Liquid-Solution Phases in Poly(diallyldimethylammonium)/Poly(acrylic acid) Polyelectrolyte Complexes at Varying Temperatures. Macromolecules 2024; 57:2363-2375. [PMID: 38495383 PMCID: PMC10938883 DOI: 10.1021/acs.macromol.4c00258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 03/19/2024]
Abstract
The coacervation and complexation of oppositely charged polyelectrolytes are dependent on numerous environmental and preparatory factors, but temperature is often overlooked. Temperature effects remain unclear because the temperature dependence of both the dielectric constant and polymer-solvent interaction parameter can yield lower and/or upper critical solution phase behaviors for PECs. Further, secondary interactions, such as hydrogen bonding, can affect the temperature response of a PEC. That is, mixtures of oppositely charged polyelectrolytes can exhibit phase separation upon lowering and/or increasing the mixture's temperature. Here, the phase behavior of poly(diallylmethylammonium)/poly(acrylic acid) (PDADMA/PAA) complexes under varying KBr ionic strengths, mixing ratios, and temperatures at a fixed pH (in which PAA hydrogen bonding can occur) is examined. At room temperature, the PDADMA/PAA PECs exhibit four different phase states: precipitate, coexisting precipitate and coacervate, solid-like gel, and coacervate. Variable-temperature optical microscopy reveals the upper critical solution temperature (UCST) at which each phase transitioned to a solution state. Interestingly, the UCST value is highly dependent on the original phase of the PEC, in which solid-like precipitates exhibit higher UCST values. Large-scale all-atom molecular dynamics (MD) simulations support that precipitates exhibit kinetic trapping, which may contribute to the higher UCST values observed in the experiment. Taken together, this study highlights the significance of temperature on the phase behavior of PECs, which may play a larger role in stimuli-responsive materials, membraneless organelles, and separations applications.
Collapse
Affiliation(s)
- Chikaodinaka
I. Eneh
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Kevin Nixon
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Suvesh Manoj Lalwani
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Maria Sammalkorpi
- Department
of Chemistry and Materials Science, Aalto
University, P.O. Box 16100, Aalto 00076, Finland
- Department
of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, Aalto 00076, Finland
- Academy
of Finland Center of Excellence in Life-Inspired Hybrid Materials
(LIBER), Aalto University, P.O. Box 16100, Aalto 00076, Finland
| | - Piotr Batys
- Jerzy
Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, Krakow 30-239, Poland
| | - Jodie L. Lutkenhaus
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
- Department
of Materials Science and Engineering, Texas
A&M University, College Station, Texas 77840, United States
| |
Collapse
|
6
|
Muthukumar M. Fluctuations, structure, and size inside coacervates. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:79. [PMID: 37682368 DOI: 10.1140/epje/s10189-023-00335-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023]
Abstract
Aqueous solutions of oppositely charged macromolecules exhibit the ubiquitous phenomenon of coacervation. This subject is of considerable current interest due to numerous biotechnological applications of coacervates and the general premise of biomolecular condensates. Towards a theoretical foundation of structural features of coacervates, we present a field-theoretic treatment of coacervates formed by uniformly charged flexible polycations and polyanions in an electrolyte solution. We delineate different regimes of polymer concentration fluctuations and structural features of coacervates based on the concentrations of polycation and polyanion, salt concentration, and experimentally observable length scales. We present closed-form formulas for correlation length of polymer concentration fluctuations, scattering structure factor, and radius of gyration of a labelled polyelectrolyte chain inside a concentrated coacervate. Using random phase approximation suitable for concentrated polymer systems, we show that the inter-monomer electrostatic interaction is screened by interpenetration of all charged polymer chains and that the screening length depends on the individual concentrations of the polycation and the polyanion, as well as the salt concentration. Our calculations show that the scattering intensity decreases monotonically with scattering wave vector at higher salt concentrations, while it exhibits a peak at intermediate scattering wave vector at lower salt concentrations. Furthermore, we predict that the dependence of the radius of gyration of a labelled chain on its degree of polymerization generally obeys the Gaussian chain statistics. However, the chain is modestly swollen, the extent of which depending on polyelectrolyte composition, salt concentration, and the electrostatic features of the polycation and polyanion such as the degree of ionization.
Collapse
Affiliation(s)
- Murugappan Muthukumar
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA, 01003, USA.
| |
Collapse
|
7
|
Gutfreund P, Higy C, Fragneto G, Tschopp M, Felix O, Decher G. Molecular conformation of polyelectrolytes inside Layer-by-Layer assembled films. Nat Commun 2023; 14:4076. [PMID: 37429844 DOI: 10.1038/s41467-023-39801-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/29/2023] [Indexed: 07/12/2023] Open
Abstract
Among all methods available for the preparation of multifunctional nanostructured composite materials with remarkable functional properties, Layer-by-Layer (LbL) assembly is currently one of the most widely used techniques due to its environmental friendliness, its ease of use and its versatility in combining a plethora of available colloids and macromolecules into finely tuned multicomponent architectures with nanometer scale control. Despite the importance of these systems in emerging technologies, their nanoscopic 3D structure, and thus the ability to predict and understand the device performance, is still largely unknown. In this article, we use neutron scattering to determine the average conformation of individual deuterated polyelectrolyte chains inside LbL assembled films. In particular, we determine that in LbL-films composed of poly(sodium 4-styrenesulfonate) (PSS) and poly(allylamine hydrochloride) (PAH) multilayers prepared from 2 M sodium chloride solutions the PSS chains exhibit a flattened coil conformation with an asymmetry factor of around seven. Albeit this highly non-equilibrium state of the polymer chain, its density profiles follow Gaussian distributions occupying roughly the same volume as in the bulk complex.
Collapse
Affiliation(s)
- Philipp Gutfreund
- Institut Laue-Langevin, 71 avenue des Martyrs, 38042, Grenoble, France.
| | - Christophe Higy
- Institut Laue-Langevin, 71 avenue des Martyrs, 38042, Grenoble, France
- Institut Charles Sadron, Université de Strasbourg, 67034, Strasbourg, France
| | - Giovanna Fragneto
- Institut Laue-Langevin, 71 avenue des Martyrs, 38042, Grenoble, France
- European Spallation Source ERIC, P.O. Box 176, 22100, Lund, Sweden
| | - Michel Tschopp
- Institut Charles Sadron, Université de Strasbourg, 67034, Strasbourg, France
| | - Olivier Felix
- Institut Charles Sadron, Université de Strasbourg, 67034, Strasbourg, France
| | - Gero Decher
- Institut Charles Sadron, Université de Strasbourg, 67034, Strasbourg, France
| |
Collapse
|
8
|
Zhang C, Liu X, Gong J, Zhao Q. Liquid sculpture and curing of bio-inspired polyelectrolyte aqueous two-phase systems. Nat Commun 2023; 14:2456. [PMID: 37117170 PMCID: PMC10147642 DOI: 10.1038/s41467-023-38236-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/21/2023] [Indexed: 04/30/2023] Open
Abstract
Aqueous two-phase systems (ATPS) provide imperative interfaces and compartments in biology, but the sculpture and conversion of liquid structures to functional solids is challenging. Here, inspired by phase evolution of mussel foot proteins ATPS, we tackle this problem by designing poly(ionic liquids) capable of responsive condensation and phase-dependent curing. When mixed with poly(dimethyl diallyl ammonium chloride), the poly(ionic liquids) formed liquid condensates and ATPS, which were tuned into bicontinuous liquid phases under stirring. Selective, rapid curing of the poly(ionic liquids)-rich phase was facilitated under basic conditions (pH 11), leading to the liquid-to-gel conversion and structure sculpture, i.e., the evolution from ATPS to macroporous sponges featuring bead-and-string networks. This mechanism enabled the selective embedment of carbon nanotubes in the poly(ionic liquids)-rich phase, which showed exceptional stability in harsh conditions (10 wt% NaCl, 80 oC, 3 days) and high (2.5 kg/m2h) solar thermal desalination of concentrated salty water under 1-sun irradiation.
Collapse
Affiliation(s)
- Chongrui Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Xufei Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Jiang Gong
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Qiang Zhao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China.
| |
Collapse
|
9
|
Digby ZA, Chen Y, Akkaoui K, Schlenoff JB. Bulk Biopolyelectrolyte Complexes from Homopolypeptides: Solid "Salt Bridges". Biomacromolecules 2023; 24:1453-1462. [PMID: 36753621 DOI: 10.1021/acs.biomac.2c01456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Salt bridges, pairings between oppositely charged amino acids, are dispersed throughout proteins to assist folding and interactions. Biopolyelectrolyte complexes (BioPECs) were made between the homopolypeptides poly-l-arginine (PLR) and poly-l-lysine (PLK) with sodium triphosphate (STPP), as well as from polypeptide-only combinations. Viscoelastic measurements on these high salt bridge density materials showed many were solid, even glassy, in nature. Although the polypeptide-phosphate complexes had similar moduli at room temperature, the PLR-STPP complex displayed an unusual melting event above 70 °C not seen in PLK-STPP. This event was supported with differential scanning calorimetry. Infrared spectroscopy showed the PLK-STPP system contained β-sheets, while PLR-STPP did not. Stoichiometric, macroscopic BioPECs of PLR and PLK with poly-l-aspartic acid (PLD) and poly-l-glutamic acid (PLE) were made. PLR-PLD was found to undergo a melting event similar to that in PLR-STPP. ATR-FTIR studies showed that BioPECs made with PLD do not contain β-sheets, while those composed of PLE do. This work illustrates an expanded palette of unique properties from these biomaterials, such as strong viscoelastic differences between PECs containing PLE and PLD, even though they differ by only one carbon on the side chain.
Collapse
Affiliation(s)
- Zachary A Digby
- Department of Chemistry and Biochemistry The Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Yuhui Chen
- Department of Chemistry and Biochemistry The Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Khalil Akkaoui
- Department of Chemistry and Biochemistry The Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Joseph B Schlenoff
- Department of Chemistry and Biochemistry The Florida State University, Tallahassee, Florida 32306-4390, United States
| |
Collapse
|
10
|
Xue B, Lai Y, Liu Y, Li M, Li X, Yin P. The Counterion-Mediated Controllable Coacervation of Nano-Ions with Polyelectrolytes. J Colloid Interface Sci 2023; 641:853-860. [PMID: 36966574 DOI: 10.1016/j.jcis.2023.03.105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/22/2023]
Abstract
Nano-ions can complex with polyelectrolytes for coacervates with hierarchical structures; however, the rational design of functional coacervations is still rare due to the poor understanding of their structure-property relationship from their complex interaction. Herein, 1 nm anionic metal oxide clusters, PW12O403-, with well-defined, mono-disperse structures are applied to complex with cationic polyelectrolyte and the system shows tunable coacervation via the alternation of counterions (H+ and Na+) of PW12O403-. Suggested from Fourier transform infrared spectroscopy (FT-IR) and isothermal titration studies, the interaction between PW12O403- and cationic polyelectrolytes can be modulated by the bridging effect of counterions via hydrogen bonding or ion-dipole interaction to carbonyl groups of polyelectrolytes. The condensed structures of the complexed coacervates are explored by small angle X-ray and neutron scattering techniques, respectively. The coacervate with H+ as counterions shows both crystallized and discrete PW12O403- clusters, with a loose polymer-cluster network in comparison to the system of Na+ which shows a dense packing structure with aggregated nano-ions filling the meshes of polyelectrolyte networks. The bridging effect of counterions helps understand the super-chaotropic effect observed in nano-ion system and provides avenues for the design of metal oxide cluster-based functional coacervates.
Collapse
|
11
|
A mini-review on bio-inspired polymer self-assembly: single-component and interactive polymer systems. Emerg Top Life Sci 2022; 6:593-607. [PMID: 36254846 DOI: 10.1042/etls20220057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/17/2022] [Accepted: 09/29/2022] [Indexed: 12/30/2022]
Abstract
Biology demonstrates meticulous ways to control biomaterials self-assemble into ordered and disordered structures to carry out necessary bioprocesses. Empowering the synthetic polymers to self-assemble like biomaterials is a hallmark of polymer physics studies. Unlike protein engineering, polymer science demystifies self-assembly by purposely embedding particular functional groups into the backbone of the polymer while isolating others. The polymer field has now entered an era of advancing materials design by mimicking nature to a very large extend. For example, we can make sequence-specific polymers to study highly ordered mesostructures similar to studying proteins, and use charged polymers to study liquid-liquid phase separation as in membraneless organelles. This mini-review summarizes recent advances in studying self-assembly using bio-inspired strategies on single-component and multi-component systems. Sequence-defined techniques are used to make on-demand hybrid materials to isolate the effects of chirality and chemistry in synthetic block copolymer self-assembly. In the meantime, sequence patterning leads to more hierarchical assemblies comprised of only hydrophobic and hydrophilic comonomers. The second half of the review discusses complex coacervates formed as a result of the associative charge interactions of oppositely charged polyelectrolytes. The tunable phase behavior and viscoelasticity are unique in studying liquid macrophase separation because the slow polymer relaxation comes primarily from charge interactions. Studies of bio-inspired polymer self-assembly significantly impact how we optimize user-defined materials on a molecular level.
Collapse
|
12
|
Kim S, Lee WB, de Souza NR, Choi SH. QENS study on local segmental dynamics of polyelectrolytes in complex coacervates. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Nguyen M, Sherck N, Shen K, Edwards CER, Yoo B, Köhler S, Speros JC, Helgeson ME, Delaney KT, Shell MS, Fredrickson GH. Predicting Polyelectrolyte Coacervation from a Molecularly Informed Field-Theoretic Model. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- My Nguyen
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Nicholas Sherck
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Kevin Shen
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Chelsea E. R. Edwards
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Brian Yoo
- BASF Corporation, Tarrytown, New York 10591, United States
| | | | - Joshua C. Speros
- California Research Alliance (CARA) by BASF, Berkeley, California 94720, United States
| | - Matthew E. Helgeson
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Kris T. Delaney
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - M. Scott Shell
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Glenn H. Fredrickson
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
- Department of Materials, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
14
|
An Overview of Coacervates: The Special Disperse State of Amphiphilic and Polymeric Materials in Solution. COLLOIDS AND INTERFACES 2022. [DOI: 10.3390/colloids6030045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Individual amphiphiles, polymers, and colloidal dispersions influenced by temperature, pH, and environmental conditions or interactions between their oppositely charged pairs in solvent medium often produce solvent-rich and solvent-poor phases in the system. The solvent-poor denser phase found either on the top or the bottom of the system is called coacervate. Coacervates have immense applications in various technological fields. This review comprises a concise introduction, focusing on the types of coacervates, and the influence of different factors in their formation, structures, and stability. In addition, their physicochemical properties, thermodynamics of formation, and uses and multifarious applications are also concisely presented and discussed.
Collapse
|
15
|
Eneh CI, Kastinen T, Oka S, Batys P, Sammalkorpi M, Lutkenhaus JL. Quantification of Water-Ion Pair Interactions in Polyelectrolyte Multilayers Using a Quartz Crystal Microbalance Method. ACS POLYMERS AU 2022; 2:287-298. [PMID: 35971421 PMCID: PMC9374166 DOI: 10.1021/acspolymersau.2c00008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
![]()
Water existing within
thin polyelectrolyte multilayer (PEM) films
has significant influence on their physical, chemical, and thermal
properties, having implications for applications including energy
storage, smart coatings, and biomedical systems. Ionic strength, salt
type, and terminating layer are known to influence PEM swelling. However,
knowledge of water’s microenvironment within a PEM, whether
that water is affiliated with intrinsic or extrinsic ion pairs, remains
lacking. Here, we examine the influence of both assembly and post-assembly
conditions on the water–ion pair interactions of poly(styrene
sulfonate)/poly(diallyldimethylammonium) (PSS/PDADMA) PEMs in NaCl
and KBr. This is accomplished by developing a methodology in which
quartz crystal microbalance with dissipation monitoring is applied
to estimate the number of water molecules affiliated with an ion pair
(i), as well as the hydration coefficient, πsaltH2O. PSS/PDADMA PEMs are assembled in varying ionic strengths of either
NaCl and KBr and then exposed post-assembly to increasing ionic strengths
of matching salt type. A linear relationship between the total amount
of water per intrinsic ion pair and the post-assembly salt concentration
was obtained at post-assembly salt concentrations >0.5 M, yielding
estimates for both i and πsaltH2O. We observe higher
values of i and πsaltH2O in KBr-assembled PEMs due
to KBr being more effective in doping the assembly because of KBr’s
more chaotropic nature as compared to NaCl. Lastly, when PSS is the
terminating layer, i decreases in value due to PSS’s
hydrophobic nature. Classical and ab initio molecular
dynamics provide a microstructural view as to how NaCl and KBr interact
with individual polyelectrolytes and the involved water shells. Put
together, this study provides further insight into the understanding
of existing water microenvironments in PEMs and the effects of both
assembly and post-assembly conditions.
Collapse
Affiliation(s)
- Chikaodinaka I Eneh
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77840, United States
| | - Tuuva Kastinen
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, 00076 Aalto, Finland.,Faculty of Engineering and Natural Sciences, Chemistry & Advanced Materials, Tampere University, P.O. Box 541, 33014 Tampere, Finland.,Academy of Finland Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, 00076 Aalto, Finland
| | - Suyash Oka
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77840, United States
| | - Piotr Batys
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow 30-239, Poland
| | - Maria Sammalkorpi
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, 00076 Aalto, Finland.,Academy of Finland Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, 00076 Aalto, Finland.,Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
| | - Jodie L Lutkenhaus
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77840, United States.,Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77840, United States
| |
Collapse
|
16
|
Nanocellulose-based nanogels for sustained drug delivery: Preparation, characterization and in vitro evaluation. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Zhang P, Wang ZG. Supernatant Phase in Polyelectrolyte Complex Coacervation: Cluster Formation, Binodal, and Nucleation. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00340] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pengfei Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620, China
| | - Zhen-Gang Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
18
|
Shutava T, Jansen C, Livanovich K, Pankov V, Janiak C. Metal organic framework/polyelectrolyte composites for water vapor sorption applications. Dalton Trans 2022; 51:7053-7067. [PMID: 35393994 DOI: 10.1039/d2dt00518b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal-organic framework (MOF) core particles of MIL-101(Cr), aluminum fumarate (Basolite® A520), MIL-53-TDC, zirconium fumarate, and UiO-66 were modified by adsorption of thin polyelectrolyte (PE)-based shells without deterioration of their crystal structure. By applying different PEs and depositing a single layer (MOF/PE) or one to three layer-by-layer assembled bilayers (MOF/LbL), the mass percent of shell material in the composite was varied from 0.6-2.5% to 50%. Under a constant relative pressure of water vapor, the moisture uptake by a MOF/PE and a MOF/LbL is rather comparable with its S-shaped curvature to that of pristine MOFs. The relevant differences, such as a shift of the ascending adsorption part to lower/higher relative pressure or an increase/decrease in water uptake in selected regions, are associated with the core-shell structure and related to the morphological changes of the MOF powders. The hydrophilic surface promotes the formation of liquid menisci at the points of contact between particles and accelerates the moisture uptake and loss. A decrease in water sorption under an atmosphere with high humidity by some composites can be associated with the inhibition of liquid water condensation by the more hydrophobic shells.
Collapse
Affiliation(s)
- Tatsiana Shutava
- Institute of Chemistry of New Materials, National Academy of Sciences of Belarus, 36 F. Skaryna St., Minsk 220141, Belarus.
| | - Christian Jansen
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany
| | - Kanstantsin Livanovich
- Institute of Chemistry of New Materials, National Academy of Sciences of Belarus, 36 F. Skaryna St., Minsk 220141, Belarus.
| | - Vladimir Pankov
- Belarusian State University, 4 Nezavisimosti Av., Minsk 220030, Belarus
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany
| |
Collapse
|
19
|
Liang H, de Pablo JJ. A Coarse-Grained Molecular Dynamics Study of Strongly Charged Polyelectrolyte Coacervates: Interfacial, Structural, and Dynamical Properties. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Heyi Liang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Juan J. de Pablo
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
20
|
Xiao X, Ji J, Zhao W, Nangia S, Libera M. Salt Destabilization of Cationic Colistin Complexation within Polyanionic Microgels. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xixi Xiao
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Jingjing Ji
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Wenhan Zhao
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Shikha Nangia
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Matthew Libera
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| |
Collapse
|
21
|
Gong Z, Zacharia NS, Vogt BD. Sodium dodecyl sulfate modulates the structure and rheological properties of Pluronic F108-poly(acrylic acid) coacervates). SOFT MATTER 2022; 18:340-350. [PMID: 34882160 DOI: 10.1039/d1sm01273h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Micelles formed within coacervate phases can impart functional properties, but it is unclear if this micellization provides mechanical reinforcement of the coacervate whereby the micelles act as high functionality crosslinkers. Here, we examine how sodium dodecyl sulfate (SDS) influences the structure and properties of Pluronic F108-polyacrylic acid (PAA) coacervates as SDS is known to decrease the aggregation number of Pluronic micelles. Increasing the SDS concentration leads to larger water content in the coacervate and an increase in the relative concentration of PAA to the other solids. Rheological characterization with small angle oscillatory shear (SAOS) demonstrates that these coacervates are viscoelastic liquids with the moduli decreasing with the addition of the SDS. The loss factor (tan δ) initially increases linearly with the addition of SDS, but a step function increase in the loss factor occurs near the reported CMC of SDS. However, this change in rheological properties does not appear to be correlated with any large scale structural differences in the coacervate as determined by small angle X-ray scattering (SAXS) with no signature of Pluronic micelles in the coacervate when SDS concentration is >4 mM during formation of the coacervate, which is less than that observed (6 mM SDS) in initial Pluronic F108 solution despite the higher polymer concentration in the coacervate. These results suggest that the mechanical properties of polyelectrolyte-non-ionic surfactant coacervates are driven by the efficicacy of binding between the complexing species driving the coacervate, which can be disrupted by competitive binding of the SDS to the Pluronic.
Collapse
Affiliation(s)
- Ziyuan Gong
- Department of Polymer Engineering, University of Akron, Akron, OH 44325, USA.
| | - Nicole S Zacharia
- Department of Polymer Engineering, University of Akron, Akron, OH 44325, USA.
| | - Bryan D Vogt
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
22
|
Ma Y, Ali S, Prabhu VM. Enhanced Concentration Fluctuations in Model Polyelectrolyte Coacervate Mixtures along a Salt Isopleth Phase Diagram. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c02001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yuanchi Ma
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Samim Ali
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Vivek M. Prabhu
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
23
|
Tom JK, Deniz AA. Complex dynamics of multicomponent biological coacervates. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101488] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
24
|
Concentration Dependent Single Chain Properties of Poly(sodium 4-styrenesulfonate) Subjected to Aromatic Interactions with Chlorpheniramine Maleate Studied by Diafiltration and Synchrotron-SAXS. Polymers (Basel) 2021; 13:polym13203563. [PMID: 34685324 PMCID: PMC8538281 DOI: 10.3390/polym13203563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/26/2021] [Accepted: 10/01/2021] [Indexed: 11/17/2022] Open
Abstract
The polyelectrolyte poly(sodium 4-styrenesulfonate) undergoes aromatic–aromatic interaction with the drug chlorpheniramine, which acts as an aromatic counterion. In this work, we show that an increase in the concentration in the dilute and semidilute regimes of a complex polyelectrolyte/drug 2:1 produces the increasing confinement of the drug in hydrophobic domains, with implications in single chain thermodynamic behavior. Diafiltration analysis at polymer concentrations between 0.5 and 2.5 mM show an increase in the fraction of the aromatic counterion irreversibly bound to the polyelectrolyte, as well as a decrease in the electrostatic reversible interaction forces with the remaining fraction of drug molecules as the total concentration of the system increases. Synchrotron-SAXS results performed in the semidilute regimes show a fractal chain conformation pattern with a fractal dimension of 1.7, similar to uncharged polymers. Interestingly, static and fractal correlation lengths increase with increasing complex concentration, due to the increase in the amount of the confined drug. Nanoprecipitates are found in the range of 30–40 mM, and macroprecipitates are found at a higher system concentration. A model of molecular complexation between the two species is proposed as the total concentration increases, which involves ion pair formation and aggregation, producing increasingly confined aromatic counterions in hydrophobic domains, as well as a decreasing number of charged polymer segments at the hydrophobic/hydrophilic interphase. All of these features are of pivotal importance to the general knowledge of polyelectrolytes, with implications both in fundamental knowledge and potential technological applications considering aromatic-aromatic binding between aromatic polyelectrolytes and aromatic counterions, such as in the production of pharmaceutical formulations.
Collapse
|
25
|
Friedowitz S, Qin J. Reversible ion binding for polyelectrolytes with adaptive conformations. AIChE J 2021. [DOI: 10.1002/aic.17426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Sean Friedowitz
- Department of Chemical Engineering Stanford University Stanford California USA
| | - Jian Qin
- Department of Chemical Engineering Stanford University Stanford California USA
| |
Collapse
|
26
|
Lee M, Perry SL, Hayward RC. Complex Coacervation of Polymerized Ionic Liquids in Non-aqueous Solvents. ACS POLYMERS AU 2021; 1:100-106. [PMID: 36855425 PMCID: PMC9954202 DOI: 10.1021/acspolymersau.1c00017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Oppositely charged polymerized ionic liquids (PILs) were used to form complex coacervates in two different organic solvents, 2,2,2-trifluoroethanol (TFE) and hexafluoro-2-propanol (HFIP), and the corresponding phase diagrams were constructed using UV-vis, NMR, and turbidity experiments. While previous studies on complex coacervates have focused almost exclusively on aqueous environments, the use of PILs in the current work enabled studies in solvents with substantially lower dielectric constants (27.0 for TFE, 16.7 for HFIP). The critical salt concentration required to induce complete miscibility was roughly 2-fold larger in HFIP compared with TFE, and two different PIL complexes, solidlike precipitates and liquidlike coacervates, were found in both systems. This study provides insight into the effects of low-dielectric-constant solvents on complex coacervation, which has not been widely studied because of the limited solubility of conventional polyelectrolytes in these media.
Collapse
Affiliation(s)
- Minjung Lee
- Department
of Polymer Science and Engineering, University
of Massachusetts, Amherst, 120 Governors Drive, Amherst, Massachusetts 01003-9263, United States
| | - Sarah L. Perry
- Department
of Chemical Engineering, University of Massachusetts,
Amherst, 686 North Pleasant
Street, Amherst, Massachusetts 01003-9303, United States
| | - Ryan C. Hayward
- Department
of Polymer Science and Engineering, University
of Massachusetts, Amherst, 120 Governors Drive, Amherst, Massachusetts 01003-9263, United States,Department
of Chemical and Biological Engineering, University of Colorado Boulder, 596
UCB, Boulder, Colorado 80309, United States,
| |
Collapse
|
27
|
Le ML, Rawlings D, Danielsen SPO, Kennard RM, Chabinyc ML, Segalman RA. Aqueous Formulation of Concentrated Semiconductive Fluid Using Polyelectrolyte Coacervation. ACS Macro Lett 2021; 10:1008-1014. [PMID: 35549124 DOI: 10.1021/acsmacrolett.1c00354] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Conjugated polyelectrolytes (CPEs), which combine π-conjugated backbones with ionic side chains, are intrinsically soluble in polar solvents and have demonstrated tunability with respect to solution processability and optoelectronic performance. However, this class of polymers often suffers from limited solubility in water. Here, we demonstrate how polyelectrolyte coacervation can be utilized for aqueous processing of conjugated polymers at extremely high polymer loading. Sampling various mixing conditions, we identify compositions that enable the formation of complex coacervates of an alkoxysulfonate-substituted PEDOT (PEDOT-S) with poly(3-methyl-1-propylimidazolylacrylamide) (PA-MPI). The resulting coacervate is a viscous fluid containing 50% w/v polymer and can be readily blade-coated into films of 4 ± 0.5 μm thick. Subsequent acid doping of the film increased the electrical conductivity of the coacervate to twice that of a doped film of neat PEDOT-S. This higher conductivity of the doped coacervate film suggests an enhancement in charge carrier transport along PEDOT-S backbone, in agreement with spectroscopic data, which shows an enhancement in the conjugation length of PEDOT-S upon coacervation. This study illustrates the utilization of electrostatic interactions in aqueous processing of conjugated polymers, which will be useful in large-scale industrial processing of semiconductive materials using limited solvent and with added enhancements to optoelectronic properties.
Collapse
Affiliation(s)
- My Linh Le
- Materials Department, University of California, Santa Barbara, California 93106, United States
| | - Dakota Rawlings
- Chemical Engineering Department, University of California, Santa Barbara, California 93106, United States
| | - Scott P. O. Danielsen
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Rhiannon M. Kennard
- Materials Department, University of California, Santa Barbara, California 93106, United States
| | - Michael L. Chabinyc
- Materials Department, University of California, Santa Barbara, California 93106, United States
| | - Rachel A. Segalman
- Materials Department, University of California, Santa Barbara, California 93106, United States
- Chemical Engineering Department, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
28
|
Affiliation(s)
- Yuhui Chen
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32306, United States
| | - Mo Yang
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32306, United States
| | - Joseph B. Schlenoff
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|
29
|
Ghasemi M, Friedowitz S, Larson RG. Overcharging of polyelectrolyte complexes: an entropic phenomenon. SOFT MATTER 2020; 16:10640-10656. [PMID: 33084721 DOI: 10.1039/d0sm01466d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Overcharging in complex coacervation, in which a polyelectrolyte complex coacervate (PEC) initially containing equal moles of the cationic and anionic monomers absorbs a large excess of one type of polyelectrolyte species, is predicted using a recently developed thermodynamic model describing complexation through a combination of reversible ion binding on the chains and long-range electrostatic correlations. We show that overcharging is favored roughly equally by the translational entropy of released counterions and the binding entropy of polyelectrolytes in the polyelectrolyte complex, thus helping resolve competing explanations for overcharging in the literature. We find that the extent of overcharging is non-monotonic in the concentration of added salt and increases with both strength of ion-pairing between polyions and chain hydrophobicity. The predicted extent of overcharging of the PEC is directly compared with that of multilayers made of poly(diallyldimethylammonium), PDADMA, and poly(styrene-sulfonate), PSS, overcompensated by the polycation in two different salts: KBr and NaCl. Accounting for the specificity of salt ion interactions with the polyelectrolytes, we find good qualitative agreement between theory and experiment.
Collapse
Affiliation(s)
- Mohsen Ghasemi
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | | | |
Collapse
|
30
|
Jing B, Ferreira M, Lin K, Li R, Yavitt BM, Qiu J, Fukuto M, Zhu Y. Ultrastructure of Critical-Gel-like Polyzwitterion–Polyoxometalate Complex Coacervates: Effects of Temperature, Salt Concentration, and Shear. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Benxin Jing
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, United States
| | - Manuela Ferreira
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, United States
| | - Kehua Lin
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, United States
| | - Ruipeng Li
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Benjamin M. Yavitt
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Jie Qiu
- School of Nuclear Science and Technology and State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Masafumi Fukuto
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Yingxi Zhu
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
31
|
Abstract
A scaling model for the structure of coacervates is presented for mixtures of oppositely-charged polyelectrolytes of both symmetric and asymmetric charge-densities for different degrees of electrostatic strength and levels of added salt. At low electrostatic strengths, weak coacervates, with the energy of electrostatic interactions between charges less than the thermal energy, k B T, are liquid. At higher electrostatic strengths, strong coacervates are gels with crosslinks formed by ion pairs of opposite charges bound to each other with energy higher than k B T. Charge-symmetric coacervates are formed for mixtures of oppositely-charged polyelectrolytes with equal and opposite charge-densities. While charge-symmetric weak coacervates form a semidilute polymer solution with a correlation length equal to the electrostatic blob size, charge-symmetric strong coacervates form reversible gels with a correlation length on the order of the distance between bound ion pairs. Charge-asymmetric coacervates are formed from mixtures of oppositely-charged polyelectrolytes with different charge-densities. While charge-asymmetric weak coacervates form double solutions with two correlation lengths and qualitatively different chain conformations of polycations and polyanions, charge-asymmetric strong coacervates form bottlebrush and star-like gels. Unlike liquid coacervates, for which an increase in the concentration of added salt screens electrostatic interactions, causing structural rearrangement and eventually leads to their dissolution, the salt does not affect the structure of strong coacervates until ion pairs dissociate and the gel disperses.
Collapse
Affiliation(s)
- Scott P O Danielsen
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, United States
| | - Sergey Panyukov
- P. N. Lebedev Physics Institute, Russian Academy of Sciences, Moscow 117924, Russia
| | - Michael Rubinstein
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, United States
- Departments of Biomedical Engineering, Physics, and Chemistry, Duke University, Durham, NC 27708, United States
| |
Collapse
|
32
|
Fares HM, Marras AE, Ting JM, Tirrell MV, Keating CD. Impact of wet-dry cycling on the phase behavior and compartmentalization properties of complex coacervates. Nat Commun 2020; 11:5423. [PMID: 33110067 PMCID: PMC7592044 DOI: 10.1038/s41467-020-19184-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 10/02/2020] [Indexed: 11/16/2022] Open
Abstract
Wet-dry cycling on the early Earth is thought to have facilitated production of molecular building blocks of life, but its impact on self-assembly and compartmentalization remains largely unexplored. Here, we investigate dehydration/rehydration of complex coacervates, which are membraneless compartments formed by phase separation of polyelectrolyte solutions. Solution compositions are identified for which tenfold water loss results in maintenance, disappearance, or appearance of coacervate droplets. Systems maintaining coacervates throughout the dehydration process are further evaluated to understand how their compartmentalization properties change with drying. Although added total RNA concentrations increase tenfold, RNA concentration within coacervates remains steady. Exterior RNA concentrations rise, and exchange rates for encapsulated versus free RNAs increase with dehydration. We explain these results in light of the phase diagram, with dehydration-driven ionic strength increase being particularly important in determining coacervate properties. This work shows that wet-dry cycling can alter the phase behavior and protocell-relevant functions of complex coacervates. Wet-dry cycling is thought to have enabled the production of molecular building blocks of life. Here, the authors investigate the impact of dehydration/rehydration on RNA-containing complex coacervates, which are membraneless compartments formed by phase separation of polyelectrolyte solutions.
Collapse
Affiliation(s)
- Hadi M Fares
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA.,NASA Postdoctoral Program, Universities Space Research Association, Columbia, MD, 21046, USA
| | - Alexander E Marras
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA.,Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Jeffrey M Ting
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA.,Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA.,3M Company, 3M Center, Saint Paul, MN, 55144, USA
| | - Matthew V Tirrell
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA.,Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Christine D Keating
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
33
|
Meng S, Ting JM, Wu H, Tirrell MV. Solid-to-Liquid Phase Transition in Polyelectrolyte Complexes. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00930] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Siqi Meng
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Jeffrey M. Ting
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Hao Wu
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Matthew V. Tirrell
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
34
|
Ghasemi M, Friedowitz S, Larson RG. Analysis of Partitioning of Salt through Doping of Polyelectrolyte Complex Coacervates. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00797] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Mohsen Ghasemi
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Sean Friedowitz
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Ronald G. Larson
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
35
|
Guzmán E, Fernández-Peña L, Ortega F, Rubio RG. Equilibrium and kinetically trapped aggregates in polyelectrolyte–oppositely charged surfactant mixtures. Curr Opin Colloid Interface Sci 2020. [DOI: 10.1016/j.cocis.2020.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
36
|
Prabhu VM, Ali S, Bleuel M, Mao Y, Ma Y. Ultra-small angle neutron scattering to study droplet formation in polyelectrolyte complex coacervates. Methods Enzymol 2020; 646:261-276. [PMID: 33453928 DOI: 10.1016/bs.mie.2020.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Associating soft matter such as surfactants, polymers, proteins, and liposomes, may form structures with dimensions not readily accessible by optical methods. Scattering methods can provide detailed information about the mechanism of associative phase separation including nucleation density, size, and shape. Ultra-small angle neutron scattering, a reciprocal space method, provides sensitivity to submicron to micron-scale structures in a non-invasive manner and described in the context of nucleation and growth of dilute droplets formed by a temperature jump into the meta-stable region of polyelectrolyte complex coacervates.
Collapse
Affiliation(s)
- Vivek M Prabhu
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, United States.
| | - Samim Ali
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, United States
| | - Markus Bleuel
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, United States; Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD, United States
| | - Yimin Mao
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, United States; Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD, United States
| | - Yuanchi Ma
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, United States
| |
Collapse
|
37
|
Zhou L, Shi H, Li Z, He C. Recent Advances in Complex Coacervation Design from Macromolecular Assemblies and Emerging Applications. Macromol Rapid Commun 2020; 41:e2000149. [DOI: 10.1002/marc.202000149] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/29/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Lili Zhou
- Department of Materials Science and Engineering National University of Singapore 9 Engineering Drive 1 Singapore 117576 Singapore
| | - Huihui Shi
- Department of Materials Science and Engineering National University of Singapore 9 Engineering Drive 1 Singapore 117576 Singapore
| | - Zibiao Li
- Institute of Materials Research and Engineering A:STAR (Agency for Science, Technology and Research) 2 Fusionopolis Way, Innovis, #08‐03 Singapore 138634 Singapore
| | - Chaobin He
- Department of Materials Science and Engineering National University of Singapore 9 Engineering Drive 1 Singapore 117576 Singapore
- Institute of Materials Research and Engineering A:STAR (Agency for Science, Technology and Research) 2 Fusionopolis Way, Innovis, #08‐03 Singapore 138634 Singapore
| |
Collapse
|
38
|
Akkaoui K, Yang M, Digby ZA, Schlenoff JB. Ultraviscosity in Entangled Polyelectrolyte Complexes and Coacervates. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00133] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Khalil Akkaoui
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32308-4390, United States
| | - Mo Yang
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32308-4390, United States
| | - Zachary A. Digby
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32308-4390, United States
| | - Joseph B. Schlenoff
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32308-4390, United States
| |
Collapse
|
39
|
Abstract
Most of the currently used products for repairing and conditioning hair rely on the deposition of complex formulations, based on mixtures involving macromolecules and surfactants, onto the surface of hair fibers. This leads to the partial covering of the damaged areas appearing in the outermost region of capillary fibers, which enables the decrease of the friction between fibers, improving their manageability and hydration. The optimization of shampoo and conditioner formulations necessitates a careful examination of the different physicochemical parameters related to the conditioning mechanism, e.g., the thickness of the deposits, its water content, topography or frictional properties. This review discusses different physicochemical aspects which impact the understanding of the most fundamental bases of the conditioning process.
Collapse
|
40
|
Sun J, Perry SL, Schiffman JD. Electrospinning Nanofibers from Chitosan/Hyaluronic Acid Complex Coacervates. Biomacromolecules 2019; 20:4191-4198. [DOI: 10.1021/acs.biomac.9b01072] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Juanfeng Sun
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Sarah L. Perry
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Jessica D. Schiffman
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
41
|
Harrison TD, Yunyaeva O, Borecki A, Hopkins CC, de Bruyn JR, Ragogna PJ, Gillies ER. Phosphonium Polyelectrolyte Complexes for the Encapsulation and Slow Release of Ionic Cargo. Biomacromolecules 2019; 21:152-162. [PMID: 31502452 DOI: 10.1021/acs.biomac.9b01115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Polyelectrolyte complexation, the combination of anionically and cationically charged polymers through ionic interactions, can be used to form hydrogel networks. These networks can be used to encapsulate and release cargo, but the release of cargo is typically rapid, occurring over a period of hours to a few days and they often exhibit weak, fluid-like mechanical properties. Here we report the preparation and study of polyelectrolyte complexes (PECs) from sodium hyaluronate (HA) and poly[tris(hydroxypropyl)(4-vinylbenzyl)phosphonium chloride], poly[triphenyl(4-vinylbenzyl)phosphonium chloride], poly[tri(n-butyl)(4-vinylbenzyl)phosphonium chloride], or poly[triethyl(4-vinylbenzyl)phosphonium chloride]. The networks were compacted by ultracentrifugation, then their composition, swelling, rheological, and self-healing properties were studied. Their properties depended on the structure of the phosphonium polymer and the salt concentration, but in general, they exhibited predominantly gel-like behavior with relaxation times greater than 40 s and self-healing over 2-18 h. Anionic molecules, including fluorescein, diclofenac, and adenosine-5'-triphosphate, were encapsulated into the PECs with high loading capacities of up to 16 wt %. Fluorescein and diclofenac were slowly released over 60 days, which was attributed to a combination of hydrophobic and ionic interactions with the dense PEC network. The cytotoxicities of the polymers and their corresponding networks with HA to C2C12 mouse myoblast cells was investigated and found to depend on the structure of the polymer and the properties of the network. Overall, this work demonstrates the utility of polyphosphonium-HA networks for the loading and slow release of ionic drugs and that their physical and biological properties can be readily tuned according to the structure of the phosphonium polymer.
Collapse
Affiliation(s)
- Tristan D Harrison
- Department of Chemistry and the Centre for Advanced Materials and Biomaterials Research , The University of Western Ontario , 1151 Richmond Street , London , Ontario , Canada N6A 5B7
| | - Olga Yunyaeva
- Department of Chemistry and the Centre for Advanced Materials and Biomaterials Research , The University of Western Ontario , 1151 Richmond Street , London , Ontario , Canada N6A 5B7
| | - Aneta Borecki
- Department of Chemistry and the Centre for Advanced Materials and Biomaterials Research , The University of Western Ontario , 1151 Richmond Street , London , Ontario , Canada N6A 5B7
| | - Cameron C Hopkins
- Department of Physics and Astronomy and the Centre for Advanced Materials and Biomaterials Research , The University of Western Ontario , 1151 Richmond Street , London , Ontario , Canada N6A 3K7
| | - John R de Bruyn
- Department of Physics and Astronomy and the Centre for Advanced Materials and Biomaterials Research , The University of Western Ontario , 1151 Richmond Street , London , Ontario , Canada N6A 3K7
| | - Paul J Ragogna
- Department of Chemistry and the Centre for Advanced Materials and Biomaterials Research , The University of Western Ontario , 1151 Richmond Street , London , Ontario , Canada N6A 5B7
| | - Elizabeth R Gillies
- Department of Chemistry and the Centre for Advanced Materials and Biomaterials Research , The University of Western Ontario , 1151 Richmond Street , London , Ontario , Canada N6A 5B7.,Department of Chemical and Biochemical Engineering , The University of Western Ontario , 1151 Richmond Street , London , Ontario , Canada N6A 5B9
| |
Collapse
|
42
|
Zhang Y, Xu H, Xu W, Zhang C, Shi J, Tong B, Cai Z, Dong Y. Conformational sensitivity of tetraphenyl-1,3-butadiene derivatives with aggregation-induced emission characteristics. Sci China Chem 2019. [DOI: 10.1007/s11426-019-9576-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
43
|
Fan Y, Wang Y. Applications of small-angle X-ray scattering/small-angle neutron scattering and cryogenic transmission electron microscopy to understand self-assembly of surfactants. Curr Opin Colloid Interface Sci 2019. [DOI: 10.1016/j.cocis.2019.02.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
44
|
Rumyantsev AM, de Pablo JJ. Liquid Crystalline and Isotropic Coacervates of Semiflexible Polyanions and Flexible Polycations. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00797] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Artem M. Rumyantsev
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Juan J. de Pablo
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Center for Molecular Engineering, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
45
|
Boas M, Vasilyev G, Vilensky R, Cohen Y, Zussman E. Structure and Rheology of Polyelectrolyte Complexes in the Presence of a Hydrogen-Bonded Co-Solvent. Polymers (Basel) 2019; 11:polym11061053. [PMID: 31212925 PMCID: PMC6630629 DOI: 10.3390/polym11061053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/06/2019] [Accepted: 06/12/2019] [Indexed: 11/25/2022] Open
Abstract
Intermolecular interactions as well as macromolecular conformation affect the rheological and microstructural properties of polyelectrolyte complexes (PECs) solutions. The properties of semi-dilute solutions of weakly charged PECs can be controlled by the degree of ionization and solvent composition. In this work, we examined the effect of ethanol as a co-solvent on PECs composed of poly(allylamine hydrochloride) (PAH) and poly(acrylic acid) (PAA) at low pH. The aqueous PECs solution was turbid, indicating formation of large aggregates, whereas PECs solution in water/ethanol (60:40 w/w) was transparent, implying no aggregation, and demonstrated higher relative viscosity than the aqueous solution, implying pronounced network formation. Imaging PECs solution by transmission electron microscopy (TEM) demonstrated aggregation, whereas the solution prepared with the mixed solvent revealed almost no phase contrast. Small-angle X-ray scattering (SAXS) of PECs in the aqueous solution indicated the presence of aggregates, while PECs in mixed solvent demonstrated a swelled macromolecular conformation with diminished aggregation. PECs with no ionic interactions in the mixed solvent assumes a homogenous network structure, which enables PECs solution processing by electrospinning.
Collapse
Affiliation(s)
- Mor Boas
- NanoEngineering Group, Faculty of Mechanical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel.
| | - Gleb Vasilyev
- NanoEngineering Group, Faculty of Mechanical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel.
| | - Rita Vilensky
- NanoEngineering Group, Faculty of Mechanical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel.
| | - Yachin Cohen
- Faculty of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel.
| | - Eyal Zussman
- NanoEngineering Group, Faculty of Mechanical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel.
| |
Collapse
|
46
|
Diddens D, Baschnagel J, Johner A. Microscopic Structure of Compacted Polyelectrolyte Complexes: Insights from Molecular Dynamics Simulations. ACS Macro Lett 2019; 8:123-127. [PMID: 35619419 DOI: 10.1021/acsmacrolett.8b00630] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We utilize atomistic molecular dynamics (MD) simulations to study local structural changes inside a polyelectrolyte complex consisting of poly(styrenesulfonate) (PSS) and poly(diallyldimethylammonium) (PDADMA) upon densification, in analogy to ultracentrifugation in experiments. In particular, we focus on the water content and on the reinforcement of the PSS-PDADMA network for various external accelerations. We demonstrate that apart from the formation of mesoscopic pores observed experimentally also the microscopic structure and the local relaxation processes likely affect the unique rheological properties of compacted polyelectrolyte complexes, as densification increases both the number of PSS-PDADMA coordinations and the intermixing of PSS and PDADMA. These processes slow down local rearrangements, thus further stabilizing the compacted state. We find that the concept of binary PSS-PDADMA salt bonds-relevant for theoretical models-is not strictly valid in the dense limit.
Collapse
Affiliation(s)
- Diddo Diddens
- Institut Charles Sadron, Université de Strasbourg, CNRS UPR22, 23 Rue du Loess, Strasbourg 67034 Cedex 2, France
| | - Jörg Baschnagel
- Institut Charles Sadron, Université de Strasbourg, CNRS UPR22, 23 Rue du Loess, Strasbourg 67034 Cedex 2, France
| | - Albert Johner
- Institut Charles Sadron, Université de Strasbourg, CNRS UPR22, 23 Rue du Loess, Strasbourg 67034 Cedex 2, France
| |
Collapse
|
47
|
Yang M, Shi J, Schlenoff JB. Control of Dynamics in Polyelectrolyte Complexes by Temperature and Salt. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02577] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Mo Yang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Jianbing Shi
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Joseph B. Schlenoff
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|
48
|
Affiliation(s)
- Hadi M. Fares
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Qifeng Wang
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Mo Yang
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Joseph B. Schlenoff
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32306-4390, United States
| |
Collapse
|