1
|
Velasquez STR, Jang D, Thomas J, Grysan P, Korley LTJ, Bruns N. Advanced mechanical properties of amphiphilic polymer conetworks through hierarchical reinforcement with peptides and cellulose nanocrystals. Polym Chem 2025:d4py01283f. [PMID: 40352405 PMCID: PMC12061020 DOI: 10.1039/d4py01283f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 04/22/2025] [Indexed: 05/14/2025]
Abstract
Amphiphilic polymer conetworks (APCNs) have been explored for various applications, including soft contact lenses, biomaterials, and membranes. They combine important properties of hydrogels and elastomers, including elasticity, transparency, and the capability to swell in water. Moreover, they also swell in organic solvents. However, their mechanical properties could be improved. We developed a two-level, bio-inspired, hierarchical reinforcement of APCNs using cellulose nanocrystals (CNCs) to reinforce peptide-reinforced APCNs formed from hydrophobic poly-β-benzyl-l-aspartate-block-polydimethylsiloxane-block-poly-β-benzyl-l-aspartate (PBLA-b-PDMS-b-PBLA) triblock copolymer crosslinkers and hydrophilic poly(2-hydroxyethyl acrylate) (PHEA) chain segments. Bio-inspired peptide-polymer hybrids combine the structural hierarchy often found in natural materials with synthetic macromolecules, such as block copolymers with soft and hard segments, to enhance their mechanical properties. On the other hand, CNCs provide an additional means to dissipate mechanical energy in polymeric materials, thereby enhancing reinforcement. The key to homogeneously incorporating CNCs into the APCNs is the combination of hydrophobic CNCs (HCNCs) with peptide-blocks in the APCNs, exploiting the hydrogen bonding capability of the peptides to disperse the HCNCs. The effect of HCNCs on the ability of APCNs to swell in water and organic solvents, as well as on their thermal and mechanical properties, was characterized. Additionally, the nanostructure of the materials was analyzed via small-angle X-ray scattering (SAXS) and wide-angle X-ray scattering (WAXS). The swellability of the HCNC-containing APCNs was independent of the HCNC concentration, and all samples were highly transparent. The ideal HCNC concentration, in terms of maximal stress, strain, toughness, and reinforcement, was found to be between 6 and 15 wt%. An increase in Young's modulus of up to 500% and toughness of up to 200% was achieved. The hierarchical reinforcement also greatly strengthened the APCNs when swollen in water or n-hexane. Thus, HCNCs and peptide segments can be used to reinforce APCNs and to tailor their properties.
Collapse
Affiliation(s)
- Sara T R Velasquez
- Department of Pure and Applied Chemistry, University of Strathclyde Thomas Graham Building 295 Cathedral Street Glasgow G1 1XL UK
- Department of Chemistry and Centre for Synthetic Biology, Technical University of Darmstadt Peter-Grünberg-Straße 4 64287 Darmstadt Germany
| | - Daseul Jang
- Department of Materials Science and Engineering, University of Delaware 127 The Green 209 DuPont Hall Newark DE 19716 USA
| | - Jessica Thomas
- Department of Materials Science and Engineering, University of Delaware 127 The Green 209 DuPont Hall Newark DE 19716 USA
| | - Patrick Grysan
- Materials Research and Technology, Luxembourg Institute of Science and Technology 5 Avenue des Hauts-Fourneaux Esch-sur-Alzette L-4362 Luxembourg
| | - LaShanda T J Korley
- Department of Materials Science and Engineering, University of Delaware 127 The Green 209 DuPont Hall Newark DE 19716 USA
- Department of Chemical and Biomolecular Engineering, University of Delaware 150 Academy Street Newark DE 19716 USA
| | - Nico Bruns
- Department of Pure and Applied Chemistry, University of Strathclyde Thomas Graham Building 295 Cathedral Street Glasgow G1 1XL UK
- Department of Chemistry and Centre for Synthetic Biology, Technical University of Darmstadt Peter-Grünberg-Straße 4 64287 Darmstadt Germany
| |
Collapse
|
2
|
Biswas A, Chandel AKS, Anuradha, Vadadoriya N, Mamtani V, Jewrajka SK. Structurally Heterogeneous Amphiphilic Conetworks of Poly(vinyl imidazole) Derivatives with Potent Antimicrobial Properties and Cytocompatibility. ACS APPLIED MATERIALS & INTERFACES 2023; 15:46333-46346. [PMID: 37726206 DOI: 10.1021/acsami.3c09743] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
We report the construction of amphiphilic conetwork (APCN)-based surfaces with potent antimicrobial activity and biofilm inhibition ability. The construction strategy is based on the separation of lipophilic alkyl groups (>C6) from the cationic network to obtain good antibacterial properties. The reaction of partially alkylated poly(vinyl imidazole) with the activated halide compounds followed by coating a glass or poly(dimethylsiloxane) (PDMS) sheet leads to the formation of the APCN surface. The dangling alkyl chains, crosslinking junctions, and unreacted vinyl imidazole groups are heterogeneously distributed in the APCNs. The swelling, mechanical property, and phase morphology of the APCN films have been evaluated. Bacterial cell disrupting potency of the APCN coatings increases with increasing alkyl chain length from C6 to C18 with somewhat more of an effect on Escherichia coli as compared to Bacillus subtilis bacteria. The minimum inhibitory amount of the APCNs on glass and a hydrophobic PDMS surface is in the range of 0.02-0.04 mg/cm2 depending on the chain length of the alkyl and the degree of quaternization. The effect of the type of crosslinker for the construction of the conetwork on the antimicrobial property has been evaluated to elucidate the exclusive design of the APCNs. The APCN-based coatings provide potent biocidal activity without much negatively affecting the hemocompatibility and cytocompatibility. These APCNs provide a good model system for comparative evaluation of the biocidal property and structural effect on the biocidal activity.
Collapse
Affiliation(s)
- Arka Biswas
- Membrane Science and Separation Technology Division, Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), G. B. Marg, Bhavnagar, Gujarat 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Arvind K Singh Chandel
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Anuradha
- Membrane Science and Separation Technology Division, Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), G. B. Marg, Bhavnagar, Gujarat 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nikita Vadadoriya
- Analytical and Environmental Science Division and centralized Instrument Facility, Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), G. B. Marg, Bhavnagar, Gujarat 364002, India
| | - Vijay Mamtani
- Desalination & Membrane Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Suresh K Jewrajka
- Membrane Science and Separation Technology Division, Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), G. B. Marg, Bhavnagar, Gujarat 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
3
|
Arul MR, Zhang C, Alahmadi I, Moss IL, Banasavadi-Siddegowda YK, Abdulmalik S, Illien-Junger S, Kumbar SG. Novel Injectable Fluorescent Polymeric Nanocarriers for Intervertebral Disc Application. J Funct Biomater 2023; 14:52. [PMID: 36826851 PMCID: PMC9961171 DOI: 10.3390/jfb14020052] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Damage to intervertebral discs (IVD) can lead to chronic pain and disability, and no current treatments can fully restore their function. Some non-surgical treatments have shown promise; however, these approaches are generally limited by burst release and poor localization of diverse molecules. In this proof-of-concept study, we developed a nanoparticle (NP) delivery system to efficiently deliver high- and low-solubility drug molecules. Nanoparticles of cellulose acetate and polycaprolactone-polyethylene glycol conjugated with 1-oxo-1H-pyrido [2,1-b][1,3]benzoxazole-3-carboxylic acid (PBC), a novel fluorescent dye, were prepared by the oil-in-water emulsion. Two drugs, a water insoluble indomethacin (IND) and a water soluble 4-aminopyridine (4-AP), were used to study their release patterns. Electron microscopy confirmed the spherical nature and rough surface of nanoparticles. The particle size analysis revealed a hydrodynamic radius ranging ~150-162 nm based on dynamic light scattering. Zeta potential increased with PBC conjugation implying their enhanced stability. IND encapsulation efficiency was almost 3-fold higher than 4-AP, with release lasting up to 4 days, signifying enhanced solubility, while the release of 4-AP continued for up to 7 days. Nanoparticles and their drug formulations did not show any apparent cytotoxicity and were taken up by human IVD nucleus pulposus cells. When injected into coccygeal mouse IVDs in vivo, the nanoparticles remained within the nucleus pulposus cells and the injection site of the nucleus pulposus and annulus fibrosus of the IVD. These fluorescent nano-formulations may serve as a platform technology to deliver therapeutic agents to IVDs and other tissues that require localized drug injections.
Collapse
Affiliation(s)
- Michael R. Arul
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT 06030, USA
| | - Changli Zhang
- Department of Orthopedic Surgery, Emory University, Atlanta, GA 30308, USA
| | - Ibtihal Alahmadi
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Isaac L. Moss
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT 06030, USA
| | | | - Sama Abdulmalik
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT 06030, USA
| | | | - Sangamesh G. Kumbar
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
4
|
Gerdt P, Studer A. Alternating Terpolymers through Cyclopolymerization and Subsequent Orthogonal Functionalization. Angew Chem Int Ed Engl 2022; 61:e202206964. [PMID: 35622377 PMCID: PMC9796892 DOI: 10.1002/anie.202206964] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Indexed: 01/07/2023]
Abstract
A method for the synthesis of functionalized alternating copolymers by reversible deactivation radical polymerization was developed. Copolymerization by reversible addition-fragmentation chain transfer of hexenyl vinyl ether with a novel fluorinated divinyl monomer yields alternating cyclopolymers that can be chemoselectively modified by three distinct orthogonal functionalization reactions. Along the thiol-ene click reaction and amidation, a third functionalization was achieved via NHC-catalyzed transesterification or acylation resulting in a small library of ABC-type alternating terpolymers.
Collapse
Affiliation(s)
- Philipp Gerdt
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 36, 48149, Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 36, 48149, Münster, Germany
| |
Collapse
|
5
|
Gerdt P, Studer A. Alternating Terpolymers through Cyclopolymerization and Subsequent Orthogonal Functionalization. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Philipp Gerdt
- Westfälische Wilhelms-Universität Münster Fachbereich 12 Chemie und Pharmazie: Westfalische Wilhelms-Universitat Munster Fachbereich 12 Chemie und Pharmazie Chemistry and pharmacy GERMANY
| | - Armido Studer
- Westfalische Wilhelms-Universitat Munster Organisch-Chemisches Institut Corrensstrasse 40 48149 Münster GERMANY
| |
Collapse
|
6
|
Wilhelm SA, Maricanov M, Brandt V, Katzenberg F, Tiller JC. Amphiphilic polymer conetworks with ideal and non-ideal swelling behavior demonstrated by small angle X-ray scattering. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
7
|
Moon JD, Sujanani R, Geng Z, Freeman BD, Segalman RA, Hawker CJ. Versatile Synthetic Platform for Polymer Membrane Libraries Using Functional Networks. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02414] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Joshua D. Moon
- Materials Department, University of California, Santa Barbara, California 93106, United States
| | - Rahul Sujanani
- John J. McKetta Jr. Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zhishuai Geng
- Materials Department, University of California, Santa Barbara, California 93106, United States
| | - Benny D. Freeman
- John J. McKetta Jr. Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Rachel A. Segalman
- Materials Department, University of California, Santa Barbara, California 93106, United States
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Craig J. Hawker
- Materials Department, University of California, Santa Barbara, California 93106, United States
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
8
|
Werber JR, Peterson C, Van Zee NJ, Hillmyer MA. Functionalized Polymersomes from a Polyisoprene-Activated Polyacrylamide Precursor. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:490-498. [PMID: 33369411 DOI: 10.1021/acs.langmuir.0c03157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Self-assembled polymer nanoparticles have tremendous potential in biomedical and environmental applications. For all applications, tailored polymer chemistries are critical. In this study, we demonstrate a precursor approach in which an activated, organic solvent-soluble block polymer precursor is modified through mild postpolymerization modifications to access new polymer structures. We synthesized and characterized poly(isoprene)-block-poly(di-Boc acrylamide) diblock polymers. This activated-acrylamide-based polymer was then reacted with amines or reductants in the absence of catalysts to yield the hydrophilic blocks polyacrylamide, poly(hydroxypropylene), and poly(N-ethyl acrylamide). The resulting amphiphilic block polymers self-assembled in water to form polymersomes, as confirmed by cryo-electron microscopy and confocal microscopy. The approach also enables simple functionalization with specialized ligands, which we demonstrated by tagging polymers with an amino-fluorophore and imaging by confocal microscopy. We expect that the methodologies established in this study will open doors to new and useful solution nanostructures with surface chemistries that can be optimized for various applications.
Collapse
Affiliation(s)
- Jay R Werber
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Colin Peterson
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Nicholas J Van Zee
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Marc A Hillmyer
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
9
|
Mugemana C, Martin A, Grysan P, Dieden R, Ruch D, Dubois P. Scratch‐Healing Surface‐Attached Coatings from
Metallo
‐Supramolecular Polymer Conetworks. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.202000331] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Clément Mugemana
- Luxembourg Institute of Science and Technology Materials Research and Technology Department 5 rue Bommel – ZAE Robert Steichen Hautcharage L‐4940 Luxembourg
| | - Anouk Martin
- Luxembourg Institute of Science and Technology Materials Research and Technology Department 5 rue Bommel – ZAE Robert Steichen Hautcharage L‐4940 Luxembourg
| | - Patrick Grysan
- Luxembourg Institute of Science and Technology Materials Research and Technology Department 5 rue Bommel – ZAE Robert Steichen Hautcharage L‐4940 Luxembourg
| | - Reiner Dieden
- Luxembourg Institute of Science and Technology Materials Research and Technology Department 5 rue Bommel – ZAE Robert Steichen Hautcharage L‐4940 Luxembourg
| | - David Ruch
- Luxembourg Institute of Science and Technology Materials Research and Technology Department 5 rue Bommel – ZAE Robert Steichen Hautcharage L‐4940 Luxembourg
| | - Philippe Dubois
- Center of Innovation and Research in Materials Polymers Laboratory of Polymeric and Composite Materials Université de Mons Place du Parc Mons 23B‐7000 Belgium
| |
Collapse
|
10
|
Benski L, Viran I, Katzenberg F, Tiller JC. Small‐Angle X‐Ray Scattering Measurements on Amphiphilic Polymer Conetworks Swollen in Orthogonal Solvents. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.202000292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lena Benski
- Department of Bio‐ and Chemical Engineering TU Dortmund Emil‐Figge‐Straße 66 Dortmund 44227 Germany
| | - Ismail Viran
- Department of Bio‐ and Chemical Engineering TU Dortmund Emil‐Figge‐Straße 66 Dortmund 44227 Germany
| | - Frank Katzenberg
- Department of Bio‐ and Chemical Engineering TU Dortmund Emil‐Figge‐Straße 66 Dortmund 44227 Germany
| | - Joerg C. Tiller
- Department of Bio‐ and Chemical Engineering TU Dortmund Emil‐Figge‐Straße 66 Dortmund 44227 Germany
| |
Collapse
|
11
|
Pásztor S, Becsei B, Szarka G, Thomann Y, Thomann R, Mühlhaupt R, Iván B. The Scissors Effect in Action: The Fox-Flory Relationship between the Glass Transition Temperature of Crosslinked Poly(Methyl Methacrylate) and Mc in Nanophase Separated Poly(Methyl Methacrylate)- l-Polyisobutylene Conetworks. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4822. [PMID: 33126719 PMCID: PMC7663353 DOI: 10.3390/ma13214822] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/19/2020] [Accepted: 10/24/2020] [Indexed: 12/15/2022]
Abstract
The glass transition temperature (Tg) is one of the most important properties of polymeric materials. In order to reveal whether the scissors effect, i.e., the Fox-Flory relationship between Tg and the average molecular weight between crosslinking points (Mc), reported only in one case for polymer conetworks so far, is more generally effective or valid only for a single case, a series of poly(methyl methacrylate)-l-polyisobutylene (PMMA-l-PIB) conetworks was prepared and investigated. Two Tgs were found for the conetworks by DSC. Fox-Flory type dependence between Tg and Mc of the PMMA component (Tg = Tg,∞ - K/Mc) was observed. The K constants for the PMMA homopolymer and for the PMMA in the conetworks were the same in the margin of error. AFM images indicated disordered bicontinuous, mutually nanoconfined morphology with average domain sizes of 5-20 nm, but the correlation between Tg and domain sizes was not found. These new results indicate that the macrocrosslinkers act like molecular scissors (scissors effect), and the Tg of PMMA depend exclusively on the Mc in the conetworks. Consequently, these findings mean that the scissors effect is presumably a general phenomenon in nanophase-separated polymer conetworks, and this finding could be utilized in designing, processing, and applications of these novel materials.
Collapse
Affiliation(s)
- Szabolcs Pásztor
- Polymer Chemistry Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2, H-1117 Budapest, Hungary; (B.B.); (G.S.)
| | - Bálint Becsei
- Polymer Chemistry Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2, H-1117 Budapest, Hungary; (B.B.); (G.S.)
| | - Györgyi Szarka
- Polymer Chemistry Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2, H-1117 Budapest, Hungary; (B.B.); (G.S.)
| | - Yi Thomann
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, D-79110 Freiburg, Germany; (Y.T.); (R.T.); (R.M.)
| | - Ralf Thomann
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, D-79110 Freiburg, Germany; (Y.T.); (R.T.); (R.M.)
- Freiburg Materials Research Center, University of Freiburg, Stefan-Meier-Str. 21, D-79104 Freiburg, Germany
| | - Rolf Mühlhaupt
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, D-79110 Freiburg, Germany; (Y.T.); (R.T.); (R.M.)
- Freiburg Materials Research Center, University of Freiburg, Stefan-Meier-Str. 21, D-79104 Freiburg, Germany
- Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Str. 31, D-79104 Freiburg, Germany
| | - Béla Iván
- Polymer Chemistry Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2, H-1117 Budapest, Hungary; (B.B.); (G.S.)
| |
Collapse
|
12
|
Stumphauser T, Kasza G, Domján A, Wacha A, Varga Z, Thomann Y, Thomann R, Pásztói B, Trötschler TM, Kerscher B, Mülhaupt R, Iván B. Nanoconfined Crosslinked Poly(ionic liquid)s with Unprecedented Selective Swelling Properties Obtained by Alkylation in Nanophase-Separated Poly(1-vinylimidazole)- l-poly(tetrahydrofuran) Conetworks. Polymers (Basel) 2020; 12:E2292. [PMID: 33036354 PMCID: PMC7599712 DOI: 10.3390/polym12102292] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/03/2020] [Accepted: 10/05/2020] [Indexed: 01/13/2023] Open
Abstract
Despite the great interest in nanoconfined materials nowadays, nanocompartmentalized poly(ionic liquid)s (PILs) have been rarely investigated so far. Herein, we report on the successful alkylation of poly(1-vinylimidazole) with methyl iodide in bicontinuous nanophasic poly(1-vinylimidazole)-l-poly(tetrahydrofuran) (PVIm-l-PTHF) amphiphilic conetworks (APCNs) to obtain nanoconfined methylated PVImMe-l-PTHF poly(ionic liquid) conetworks (PIL-CNs). A high extent of alkylation (~95%) was achieved via a simple alkylation process with MeI at room temperature. This does not destroy the bicontinuous nanophasic morphology as proved by SAXS and AFM, and PIL-CNs with 15-20 nm d-spacing and poly(3-methyl-1-vinylimidazolium iodide) PIL nanophases with average domain sizes of 8.2-8.4 nm are formed. Unexpectedly, while the swelling capacity of the PIL-CN dramatically increases in aprotic polar solvents, such as DMF, NMP, and DMSO, reaching higher than 1000% superabsorbent swelling degrees, the equilibrium swelling degrees decrease in even highly polar protic (hydrophilic) solvents, like water and methanol. An unprecedented Gaussian-type relationship was found between the ratios of the swelling degrees versus the polarity index, indicating increased swelling for the nanoconfined PVImMe-l-PTHF PIL-CNs in solvents with a polarity index between ~6 and 9.5. In addition to the nanoconfined structural features, the unique selective superabsorbent swelling behavior of the PIL-CNs can also be utilized in various application fields.
Collapse
Affiliation(s)
- Tímea Stumphauser
- Polymer Chemistry Research Group, Institute of Materials and Environment Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
- George Hevesy PhD School of Chemistry, Institute of Chemistry, Faculty of Science, Eötvös Loránd University, Pázmány Péter sétány 2, H-1117 Budapest, Hungary
| | - György Kasza
- Polymer Chemistry Research Group, Institute of Materials and Environment Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| | - Attila Domján
- NMR Research Laboratory, Instrumentation Center, Research Centre for Natural Sciences, Magyar TudóSok Körútja 2, H-1117 Budapest, Hungary
| | - András Wacha
- Biological Nanochemistry Research Group, Institute of Materials and Environment Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary
| | - Zoltán Varga
- Biological Nanochemistry Research Group, Institute of Materials and Environment Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary
| | - Yi Thomann
- Freiburg Materials Research Center, University of Freiburg, Stefan-Meier-Str. 21, D-79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, D-79110 Freiburg, Germany
| | - Ralf Thomann
- Freiburg Materials Research Center, University of Freiburg, Stefan-Meier-Str. 21, D-79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, D-79110 Freiburg, Germany
| | - Balázs Pásztói
- Polymer Chemistry Research Group, Institute of Materials and Environment Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
- George Hevesy PhD School of Chemistry, Institute of Chemistry, Faculty of Science, Eötvös Loránd University, Pázmány Péter sétány 2, H-1117 Budapest, Hungary
| | - Tobias M Trötschler
- Freiburg Materials Research Center, University of Freiburg, Stefan-Meier-Str. 21, D-79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, D-79110 Freiburg, Germany
- Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Str. 31, D-79104 Freiburg, Germany
| | - Benjamin Kerscher
- Freiburg Materials Research Center, University of Freiburg, Stefan-Meier-Str. 21, D-79104 Freiburg, Germany
- Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Str. 31, D-79104 Freiburg, Germany
| | - Rolf Mülhaupt
- Freiburg Materials Research Center, University of Freiburg, Stefan-Meier-Str. 21, D-79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, D-79110 Freiburg, Germany
- Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Str. 31, D-79104 Freiburg, Germany
| | - Béla Iván
- Polymer Chemistry Research Group, Institute of Materials and Environment Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| |
Collapse
|
13
|
Mugemana C, Grysan P, Dieden R, Ruch D, Bruns N, Dubois P. Self‐Healing Metallo‐Supramolecular Amphiphilic Polymer Conetworks. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.201900432] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Clément Mugemana
- Materials Research and Technology DepartmentLuxembourg Institute of Science and Technology 5 rue Bommel–ZAE Robert Steichen L‐4940 Hautcharage Luxembourg
| | - Patrick Grysan
- Materials Research and Technology DepartmentLuxembourg Institute of Science and Technology 5 rue Bommel–ZAE Robert Steichen L‐4940 Hautcharage Luxembourg
| | - Reiner Dieden
- Materials Research and Technology DepartmentLuxembourg Institute of Science and Technology 5 rue Bommel–ZAE Robert Steichen L‐4940 Hautcharage Luxembourg
| | - David Ruch
- Materials Research and Technology DepartmentLuxembourg Institute of Science and Technology 5 rue Bommel–ZAE Robert Steichen L‐4940 Hautcharage Luxembourg
| | - Nico Bruns
- Thomas Graham BuildingDepartment of Pure and Applied ChemistryUniversity of Strathclyde 295 Cathedral Street Glasgow G1 1BX UK
| | - Philippe Dubois
- Center of Innovation and Research in Materials PolymersLaboratory of Polymeric and Composite MaterialsUniversité de Mons Place du Parc 23B‐7000 Mons Belgium
| |
Collapse
|
14
|
Ulrich S, Osypova A, Panzarasa G, Rossi RM, Bruns N, Boesel LF. Pyranine-Modified Amphiphilic Polymer Conetworks as Fluorescent Ratiometric pH Sensors. Macromol Rapid Commun 2019; 40:e1900360. [PMID: 31523877 DOI: 10.1002/marc.201900360] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/21/2019] [Indexed: 01/04/2023]
Abstract
The fluorescent dye 8-hydroxypyrene-1,3,6-trisulfonate (pyranine) combines high photostability with ratiometric pH detection in the physiological range, making it a prime candidate for optical sensors in biomedical applications, such as pH-based chronic wound monitoring. However, pyranine's high water solubility and the difficulty of covalent attachment pose severe limitations in terms of leaching from sensor matrices. Herein, pyranine-modified nanophase-separated amphiphilic polymer conetworks (APCNs) are reported as fluorescent ratiometric pH sensors. The thin, freestanding APCN membranes composed of one hydrophilic and one hydrophobic polymer provide an optically transparent, flexible, and stable ideal matrix that enables contact between dye and aqueous environment. An active ester-based conjugation approach results in a highly homogeneous and stable pyranine modification of the APCN's hydrophilic phase. This concept effectively solves the leaching challenge for pyranine without compromising its functionality, which is demonstrated by ratiometric pH detection in the range of pH 5-9.
Collapse
Affiliation(s)
- Sebastian Ulrich
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland.,Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Alina Osypova
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland
| | - Guido Panzarasa
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland
| | - René M Rossi
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland
| | - Nico Bruns
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland.,Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow, G1 1XL, UK
| | - Luciano F Boesel
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland
| |
Collapse
|
15
|
Ida S, Morimura M, Kitanaka H, Hirokawa Y, Kanaoka S. Swelling and mechanical properties of thermoresponsive/hydrophilic conetworks with crosslinked domain structures prepared from various triblock precursors. Polym Chem 2019. [DOI: 10.1039/c9py01417a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Thermoresponsive conetworks with crosslinked domain structures were designed by the crosslinking of triblock polymers for responsive gel functioning without external water.
Collapse
Affiliation(s)
- Shohei Ida
- Department of Materials Science
- The University of Shiga Prefecture
- Hikone
- Japan
| | - Miki Morimura
- Department of Materials Science
- The University of Shiga Prefecture
- Hikone
- Japan
| | - Hironobu Kitanaka
- Department of Materials Science
- The University of Shiga Prefecture
- Hikone
- Japan
| | - Yoshitsugu Hirokawa
- Department of Materials Science
- The University of Shiga Prefecture
- Hikone
- Japan
| | - Shokyoku Kanaoka
- Department of Materials Science
- The University of Shiga Prefecture
- Hikone
- Japan
| |
Collapse
|