1
|
Xue X, Li C, Shangguan Z, Gao C, Chenchai K, Liao J, Zhang X, Zhang G, Zhang D. Intrinsically Stretchable and Healable Polymer Semiconductors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305800. [PMID: 38115748 PMCID: PMC10885676 DOI: 10.1002/advs.202305800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/02/2023] [Indexed: 12/21/2023]
Abstract
In recent decades, polymer semiconductors, extensively employed as charge transport layers in devices like organic field-effect transistors (OFETs), have undergone thorough investigation due to their capacity for large-area solution processing, making them promising for mass production. Research efforts have been twofold: enhancing the charge mobilities of polymer semiconductors and augmenting their mechanical properties to meet the demands of flexible devices. Significant progress has been made in both realms, propelling the practical application of polymer semiconductors in flexible electronics. However, integrating excellent semiconducting and mechanical properties into a single polymer still remains a significant challenge. This review intends to introduce the design strategies and discuss the properties of high-charge mobility stretchable conjugated polymers. In addition, another key challenge faced in this cutting-edge field is maintaining stable semiconducting performance during long-term mechanical deformations. Therefore, this review also discusses the development of healable polymer semiconductors as a promising avenue to improve the lifetime of stretchable device. In conclusion, challenges and outline future research perspectives in this interdisciplinary field are highlighted.
Collapse
Affiliation(s)
- Xiang Xue
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory for Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cheng Li
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory for Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhichun Shangguan
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory for Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chenying Gao
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory for Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kaiyuan Chenchai
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory for Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junchao Liao
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory for Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xisha Zhang
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory for Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guanxin Zhang
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory for Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Deqing Zhang
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory for Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Kuwabara J, Kanbara T. Synthesis of Organic Optoelectronic Materials Using Direct C-H Functionalization. Chempluschem 2024; 89:e202300400. [PMID: 37823322 DOI: 10.1002/cplu.202300400] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/13/2023]
Abstract
Small molecules and polymers with conjugated structures can be used as organic optoelectronic materials. These molecules have conventionally been synthesized by cross-coupling reactions; however, in recent years, direct functionalization of C-H bonds has been used to synthesize organic optoelectronic materials. Representative reactions include direct arylation reactions (C-H/C-X couplings, with X being halogen or pseudo-halogen) and cross-dehydrogenative coupling (C-H/C-H cross-coupling) reactions. Although these reactions are convenient for short-step synthesis, they require regioselectivity in the C-H bonds and suppression of undesired homo-coupling side reactions. This review introduces examples of the synthesis of organic optoelectronic materials using two types of direct C-H functionalization reactions. In addition, we summarize our recent activities in the development of direct C-H functionalization reactions using fluorobenzenes as substrates. This review covers the reaction mechanism and material properties of the resulting products.
Collapse
Affiliation(s)
- Junpei Kuwabara
- Tsukuba Research Center for Energy Materials Science (TREMS), Institute of Pure and Applied Sciences, University of Tsukuba, 1 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
- Institute of Pure and Applied Sciences, University of Tsukuba, 1 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| | - Takaki Kanbara
- Institute of Pure and Applied Sciences, University of Tsukuba, 1 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| |
Collapse
|
3
|
Castillo GE, Thompson BC. Room Temperature Synthesis of a Well-Defined Conjugated Polymer Using Direct Arylation Polymerization (DArP). ACS Macro Lett 2023; 12:1339-1344. [PMID: 37722008 DOI: 10.1021/acsmacrolett.3c00396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
While a major improvement to the sustainability of conjugated polymer synthesis, traditional direct arylation polymerization (DArP) still requires high temperatures (typically >100 °C), necessitating a significant energy input requirement. Performing DArP at reduced or ambient temperatures would represent an improvement to the sustainability of the reaction. Here we describe the first report of a well-defined conjugated polymer synthesized by DArP at room temperature. Previous efforts toward room temperature DArP relied on the use of a near-stoichiometric silver reagent, an expensive coinage metal, which makes the reaction less cost-effective and sustainable. Here, room temperature polymerizations of 3,4-ethylenedioxythiophene (EDOT) and 9,9-dioctyl-2,7-diiodofluorene were optimized and provided molar mass (Mn) up to 11 kg/mol PEDOTF, and performing the reaction at the standard ambient temperature of 25 °C provided Mn up to 15 kg/mol. Model studies using other C-H monomers of varying electron density copolymerized with 9,9-dioctyl-2,7-diiodofluorene provided insight into the scope of the room temperature polymerization, suggesting that performing room temperature DArP is highly dependent on the electron richness of the C-H monomer.
Collapse
Affiliation(s)
- Grace E Castillo
- Department of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089-1661, United States
| | - Barry C Thompson
- Department of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089-1661, United States
| |
Collapse
|
4
|
Zhang X, Shi Y, Dang Y, Liang Z, Wang Z, Deng Y, Han Y, Hu W, Geng Y. Direct Arylation Polycondensation of β-Fluorinated Bithiophenes to Polythiophenes: Effect of Side Chains in C–Br Monomers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xuwen Zhang
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Yibo Shi
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Yanfeng Dang
- Department of Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Ziqi Liang
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Zhongli Wang
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Yunfeng Deng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Yang Han
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Wenping Hu
- Department of Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Yanhou Geng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
5
|
Nassar GM, Chung J, Trinh CK, El-Shehawy AA, El-Barbary AA, Kang Y, Lee JS. Polymers based on thieno[3,4- c]pyrrole-4,6-dione and pyromellitic diimide by CH–CH arylation reaction for high-performance thin-film transistors. RSC Adv 2022; 12:31180-31185. [PMID: 36349028 PMCID: PMC9623454 DOI: 10.1039/d2ra04602d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
Three homopolymers were successfully synthesized by direct CH–CH arylation polymerization of thieno[3,4-c]pyrrole-4,6-dione or pyromellitic diimide derivatives affording highly purified polymers with high molecular weights (43.0–174.7 K). Thieno[3,4-c]pyrrole-4,6-dione and pyromellitic diimide derivatives are considered as electron-withdrawing units. The synthesized homopolymers P1, P2, and P3 showed band gaps in the range of 2.13–2.08 eV, respectively. The electron mobilities of the three homopolymers have been investigated. The thin film transistor for P1 prepared by the eutectic-melt-assisted nanoimprinting method achieved an electron mobility of 2.11 × 10−3 cm2 s−1 V−1. Based on the obtained results, the synthesized polymers can be used as potential electron acceptors in solar cell applications. The homopolymers P1, P2 and P3 were successfully synthesized by direct CH–CH arylation polymerization in an eco-friendly one-step coupling reaction. They present n-type properties for potential applications as acceptor polymers.![]()
Collapse
Affiliation(s)
- Gamal M. Nassar
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea
- Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Jeyon Chung
- Department of Chemistry, Institute of Nano-Science and Technology and Research Institute for Natural Sciences, Hanyang University, Wangsimni-Ro, Seongdong-Gu, Seoul, 04763, Korea
| | - Cuc Kim Trinh
- Chemical Engineering in Advanced Materials and Renewable Energy Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - Ashraf A. El-Shehawy
- Department of Chemistry, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Ahmed A. El-Barbary
- Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Youngjong Kang
- Department of Chemistry, Institute of Nano-Science and Technology and Research Institute for Natural Sciences, Hanyang University, Wangsimni-Ro, Seongdong-Gu, Seoul, 04763, Korea
| | - Jae-Suk Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea
| |
Collapse
|
6
|
Ye L, Thompson BC. Improving the efficiency and sustainability of catalysts for direct arylation polymerization (DArP). JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210524] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Liwei Ye
- Department of Chemistry and Loker Hydrocarbon Research Institute University of Southern California Los Angeles California USA
| | - Barry C. Thompson
- Department of Chemistry and Loker Hydrocarbon Research Institute University of Southern California Los Angeles California USA
| |
Collapse
|
7
|
Chua MH, Png ZM, Zhu Q, Xu J. Synthesis of Conjugated Polymers via Transition Metal Catalysed C-H Bond Activation. Chem Asian J 2021; 16:2896-2919. [PMID: 34390547 DOI: 10.1002/asia.202100749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/04/2021] [Indexed: 11/10/2022]
Abstract
Transition metal catalysed C-H bond activation chemistry has emerged as an exciting and promising approach in organic synthesis. This allows us to synthesize a wider range of functional molecules and conjugated polymers in a more convenient and more atom economical way. The formation of C-C bonds in the construction of pi-conjugated systems, particularly for conjugated polymers, has benefited much from the advances in C-H bond activation chemistry. Compared to conventional transition-metal catalysed cross-coupling polymerization such as Suzuki and Stille cross-coupling, pre-functionalization of aromatic monomers, such as halogenation, borylation and stannylation, is no longer required for direct arylation polymerization (DArP), which involve C-H/C-X cross-coupling, and oxidative direct arylation polymerization (Ox-DArP), which involves C-H/C-H cross-coupling protocols driven by the activation of monomers' C(sp2 )-H bonds. Furthermore, poly(annulation) via C-H bond activation chemistry leads to the formation of unique pi-conjugated moieties as part of the polymeric backbone. This review thus summarises advances to date in the synthesis of conjugated polymers utilizing transition metal catalysed C-H bond activation chemistry. A variety of conjugated polymers via DArP including poly(thiophene), thieno[3,4-c]pyrrole-4,6-dione)-containing, fluorenyl-containing, benzothiadiazole-containing and diketopyrrolopyrrole-containing copolymers, were summarized. Conjugated polymers obtained through Ox-DArP were outlined and compared. Furthermore, poly(annulation) using transition metal catalysed C-H bond activation chemistry was also reviewed. In the last part of this review, difficulties and perspective to make use of transition metal catalysed C-H activation polymerization to prepare conjugated polymers were discussed and commented.
Collapse
Affiliation(s)
- Ming Hui Chua
- Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, 138634, Singapore, Singapore
| | - Zhuang Mao Png
- Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, 138634, Singapore, Singapore
| | - Qiang Zhu
- Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, 138634, Singapore, Singapore
| | - Jianwei Xu
- Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, 138634, Singapore, Singapore.,Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
| |
Collapse
|
8
|
Kubo T, Young MS, Souther KD, Hannigan MD, McNeil AJ. Air‐tolerant
poly(3‐hexylthiophene) synthesis via
catalyst‐transfer
polymerization. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20200788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Tomohiro Kubo
- Department of Chemistry and Macromolecular Science and Engineering Program University of Michigan Ann Arbor Michigan USA
| | - Morgan S. Young
- Department of Chemistry and Macromolecular Science and Engineering Program University of Michigan Ann Arbor Michigan USA
| | - Kendra D. Souther
- Department of Chemistry and Macromolecular Science and Engineering Program University of Michigan Ann Arbor Michigan USA
| | - Matthew D. Hannigan
- Department of Chemistry and Macromolecular Science and Engineering Program University of Michigan Ann Arbor Michigan USA
| | - Anne J. McNeil
- Department of Chemistry and Macromolecular Science and Engineering Program University of Michigan Ann Arbor Michigan USA
| |
Collapse
|
9
|
Baig N, Shetty S, Al-Mousawi S, Alameddine B. Conjugated microporous polymers using a copper-catalyzed [4 + 2] cyclobenzannulation reaction: promising materials for iodine and dye adsorption. Polym Chem 2021. [DOI: 10.1039/d1py00193k] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A new design strategy is disclosed to synthesize conjugated microporous polymers using a Cu-catalyzed [4 + 2] cyclobenzannulation reaction. The polymers reveal BET surface areas up to 794 m2 g−1 and promising uptake of iodine and methylene blue.
Collapse
Affiliation(s)
- Noorullah Baig
- Department of Mathematics and Natural Sciences
- Gulf University for Science and Technology
- Kuwait
- Functional Materials Group – CAMB
- GUST
| | - Suchetha Shetty
- Department of Mathematics and Natural Sciences
- Gulf University for Science and Technology
- Kuwait
- Functional Materials Group – CAMB
- GUST
| | | | - Bassam Alameddine
- Department of Mathematics and Natural Sciences
- Gulf University for Science and Technology
- Kuwait
- Functional Materials Group – CAMB
- GUST
| |
Collapse
|
10
|
Ye L, Hooshmand T, Thompson BC. “In-water” direct arylation polymerization (DArP) under aerobic emulsion conditions. Polym Chem 2021. [DOI: 10.1039/d1py01321a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
To address the issue of generating large amounts of organic waste from conjugated polymer synthesis, the first direct arylation polymerization (DArP) protocol under emulsion conditions is disclosed with a 10-fold reduction of organic solvent utilized.
Collapse
Affiliation(s)
- Liwei Ye
- Department of Chemistry and Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089-1661, USA
| | - Tanin Hooshmand
- Department of Chemistry and Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089-1661, USA
| | - Barry C. Thompson
- Department of Chemistry and Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089-1661, USA
| |
Collapse
|
11
|
Li XC, Xue Y, Song W, Yan Y, Min J, Liu F, Liu X, Lai WY, Huang W. Highly Regioselective Direct C-H Arylation: Facile Construction of Symmetrical Dithienophthalimide-Based π-Conjugated Molecules for Optoelectronics. RESEARCH 2020; 2020:9075697. [PMID: 33015637 PMCID: PMC7510346 DOI: 10.34133/2020/9075697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/26/2020] [Indexed: 11/20/2022]
Abstract
Controllable direct C-H arylation with high regioselectivity is highly desirable yet remains a formidable challenge. Herein, a facile regioselective direct C-H arylation is developed for efficient construction of a variety of symmetrical dithienophthalimide-based π-conjugated molecules. The resulting methodology is applicable to a wide range of substrates, from electron-rich units to electron-deficient units with large steric end groups. Aryl halides have been confirmed to be able to couple with dithienophthalimide (DTI) via direct C-H arylation, showing high regioselectivity. Varying the functional end groups onto the DTI core has been demonstrated to fine tune the emission colors to cover most of the visible spectra. The results suggest a facile strategy towards highly selective direct C-H arylation, opening the prospects towards efficient construction of π-conjugated molecules for various potential optoelectronic applications.
Collapse
Affiliation(s)
- Xiang-Chun Li
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Yibo Xue
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Wan Song
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Yu Yan
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Jie Min
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Fang Liu
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Xu Liu
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Wen-Yong Lai
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.,Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.,Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| |
Collapse
|
12
|
Facile access to conjugated polymers under aerobic conditions via Pd-Catalyzed direct arylation and aryl amination polycondensation. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122927] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Song AX, Zeng XX, Ma BB, Xu C, Liu FS. Direct (Hetero)arylation of Heteroarenes Catalyzed by Unsymmetrical Pd-PEPPSI-NHC Complexes under Mild Conditions. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00494] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- A-Xiang Song
- School of Chemistry and Chemical Engineering, Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan, Guangdong 528458, People’s Republic of China
| | - Xiao-Xiao Zeng
- School of Chemistry and Chemical Engineering, Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan, Guangdong 528458, People’s Republic of China
| | - Bei-Bei Ma
- School of Chemistry and Chemical Engineering, Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan, Guangdong 528458, People’s Republic of China
| | - Chang Xu
- School of Chemistry and Chemical Engineering, Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan, Guangdong 528458, People’s Republic of China
| | - Feng-Shou Liu
- School of Chemistry and Chemical Engineering, Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan, Guangdong 528458, People’s Republic of China
| |
Collapse
|
14
|
Baig N, Shetty S, Al-Mousawi S, Alameddine B. Synthesis of conjugated polymers via cyclopentannulation reaction: promising materials for iodine adsorption. Polym Chem 2020. [DOI: 10.1039/d0py00286k] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A new class of conjugated polymers is prepared by means of a versatile palladium-catalyzed cyclopentannulation reaction using a series of specially designed diethynyl aryl synthons with the commercially available 9,10-dibromoanthracene DBA monomer.
Collapse
Affiliation(s)
- Noorullah Baig
- Department of Mathematics and Natural Sciences
- Gulf University for Science and Technology (GUST)
- Kuwait
- Functional Materials Group – CAMB
- GUST
| | - Suchetha Shetty
- Department of Mathematics and Natural Sciences
- Gulf University for Science and Technology (GUST)
- Kuwait
- Functional Materials Group – CAMB
- GUST
| | | | - Bassam Alameddine
- Department of Mathematics and Natural Sciences
- Gulf University for Science and Technology (GUST)
- Kuwait
- Functional Materials Group – CAMB
- GUST
| |
Collapse
|
15
|
Zhao C, Yang F, Xia D, Zhang Z, Zhang Y, Yan N, You S, Li W. Thieno[3,4-c]pyrrole-4,6-dione-based conjugated polymers for organic solar cells. Chem Commun (Camb) 2020; 56:10394-10408. [DOI: 10.1039/d0cc04150e] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Thieno[3,4-c]pyrrole-4,6-dione (TPD) based conjugated polymers as an electron donor, acceptor and single-component for application in organic solar cells in the past ten years have been intensively reviewed in this Feature Article.
Collapse
Affiliation(s)
- Chaowei Zhao
- Institute of Applied Chemistry
- Jiangxi Academy of Sciences
- Nanchang 330096
- P. R. China
| | - Fan Yang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Shandong Normal University
- Jinan 250014
| | - Dongdong Xia
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Organic Solids, Institute of Chemistry
- Chinese Academy of Sciences
- Beijing
- P. R. China
| | - Zhou Zhang
- Institute of Applied Chemistry
- Jiangxi Academy of Sciences
- Nanchang 330096
- P. R. China
- College of Chemistry and Environmental Science
| | - Yuefeng Zhang
- Institute of Applied Chemistry
- Jiangxi Academy of Sciences
- Nanchang 330096
- P. R. China
| | - Nanfu Yan
- Institute of Applied Chemistry
- Jiangxi Academy of Sciences
- Nanchang 330096
- P. R. China
| | - Shengyong You
- Institute of Applied Chemistry
- Jiangxi Academy of Sciences
- Nanchang 330096
- P. R. China
| | - Weiwei Li
- Institute of Applied Chemistry
- Jiangxi Academy of Sciences
- Nanchang 330096
- P. R. China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic–Inorganic Composites
| |
Collapse
|
16
|
Young C, Hammack A, Lee HJ, Jia H, Yu T, Marquez MD, Jamison AC, Gnade BE, Lee TR. Poly(1,4-phenylene vinylene) Derivatives with Ether Substituents to Improve Polymer Solubility for Use in Organic Light-Emitting Diode Devices. ACS OMEGA 2019; 4:22332-22344. [PMID: 31909316 PMCID: PMC6941186 DOI: 10.1021/acsomega.9b02396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/15/2019] [Indexed: 06/10/2023]
Abstract
New ether-substituted poly(1,4-phenylene vinylene) (PPV) derivatives were synthesized via Horner-Emmons coupling. The structures of the monomers and the resultant oligomers were confirmed by 1H and 13C NMR spectroscopies. The molecular weights of the oligomers were characterized by gel permeation chromatography, giving the number-average and weight-average molecular weights and the corresponding polydispersity indices. Measurements of UV-vis absorption and fluorescence were used to characterize the optical properties of the oligomers. Estimation of the highest occupied molecular orbital and lowest unoccupied molecular orbital energy levels and other electrochemical characteristics of the oligomers were investigated by cyclic voltammetry. Dialkyl and dialkoxy PPV oligomers were also prepared and characterized following the same instrumental methods used for the ether-substituted oligomers, providing a known reference system to judge the performance of the new conjugated oligomers. Devices were fabricated to analyze the electroluminescent characteristics of the oligomers in organic light-emitting diodes.
Collapse
Affiliation(s)
- Crystal
A. Young
- Department
of Chemistry and Biochemistry, University
of St. Thomas, Houston, Texas 77006, United
States
| | - Audrey Hammack
- Office
of Research, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Han Ju Lee
- Department
of Chemistry and the Texas Center for Superconductivity, University of Houston, Houston, Texas 77204, United States
| | - Huiping Jia
- Office
of Research, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Tianlang Yu
- Department
of Chemistry and the Texas Center for Superconductivity, University of Houston, Houston, Texas 77204, United States
| | - Maria D. Marquez
- Department
of Chemistry and the Texas Center for Superconductivity, University of Houston, Houston, Texas 77204, United States
| | - Andrew C. Jamison
- Department
of Chemistry and the Texas Center for Superconductivity, University of Houston, Houston, Texas 77204, United States
| | - Bruce E. Gnade
- Department
of Electrical Engineering, Southern Methodist
University, Dallas, Texas 75205, United States
| | - T. Randall Lee
- Department
of Chemistry and the Texas Center for Superconductivity, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
17
|
Phan S, Luscombe CK. Recent Advances in the Green, Sustainable Synthesis of Semiconducting Polymers. TRENDS IN CHEMISTRY 2019. [DOI: 10.1016/j.trechm.2019.08.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Kuwabara J, Kanbara T. Facile Synthesis of π-Conjugated Polymers via Direct Arylation Polycondensation. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20180249] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Junpei Kuwabara
- Tsukuba Research Center for Energy Materials Science (TREMS), Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Takaki Kanbara
- Tsukuba Research Center for Energy Materials Science (TREMS), Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| |
Collapse
|
19
|
Kuwabara J, Tsuchida W, Guo S, Hu Z, Yasuda T, Kanbara T. Synthesis of conjugated polymers via direct C–H/C–Cl coupling reactions using a Pd/Cu binary catalytic system. Polym Chem 2019. [DOI: 10.1039/c9py00232d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Selective C–H/C–Br coupling and polycondensation with C–H/C–Cl coupling afforded conjugated polymers in a short synthetic step.
Collapse
Affiliation(s)
- Junpei Kuwabara
- Tsukuba Research Center for Energy Materials Science (TREMS)
- Graduate School of Pure and Applied Sciences
- University of Tsukuba
- Tsukuba
- Japan
| | - Wataru Tsuchida
- Tsukuba Research Center for Energy Materials Science (TREMS)
- Graduate School of Pure and Applied Sciences
- University of Tsukuba
- Tsukuba
- Japan
| | - Shuyang Guo
- Tsukuba Research Center for Energy Materials Science (TREMS)
- Graduate School of Pure and Applied Sciences
- University of Tsukuba
- Tsukuba
- Japan
| | - Ziwei Hu
- Tsukuba Research Center for Energy Materials Science (TREMS)
- Graduate School of Pure and Applied Sciences
- University of Tsukuba
- Tsukuba
- Japan
| | - Takeshi Yasuda
- Research Center for Functional Materials
- National Institute for Materials Science (NIMS)
- Tsukuba
- Japan
| | - Takaki Kanbara
- Tsukuba Research Center for Energy Materials Science (TREMS)
- Graduate School of Pure and Applied Sciences
- University of Tsukuba
- Tsukuba
- Japan
| |
Collapse
|