1
|
Kang D, Zhang Y, Yu DG, Kim I, Song W. Integrating synthetic polypeptides with innovative material forming techniques for advanced biomedical applications. J Nanobiotechnology 2025; 23:101. [PMID: 39939886 PMCID: PMC11823111 DOI: 10.1186/s12951-025-03166-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/25/2025] [Indexed: 02/14/2025] Open
Abstract
Polypeptides are highly valued in biomedical science for their biocompatibility and biodegradability, making them valuable in drug delivery, tissue engineering, and antibacterial dressing. The diverse design of polymer chains and self-assembly techniques allow different side chains and secondary structures, enhancing their biomedical potential. However, the traditional solid powder form of polypeptides presents challenges in skin applications, shipping, and recycling, limiting their practical utility. Recent advancements in material forming methods and polypeptide synthesis have produced biomaterials with uniform, distinct shapes, improving usability. This review outlines the progress in polypeptide synthesis and material-forming methods over the past decade. The main synthesis techniques include solid-phase synthesis and ring-opening polymerization of N-carboxyanhydrides while forming methods like electrospinning, 3D printing, and coating are explored. Integrating structural design with these methods is emphasized, leading to diverse polypeptide materials with unique shapes. The review also identifies research hotspots using VOSviewer software, which are visually presented in circular packing images. It further discusses emerging applications such as drug delivery, wound healing, and tissue engineering, emphasizing the crucial role of material shape in enhancing performance. The review concludes by exploring future trends in developing distinct polypeptide shapes for advanced biomedical applications, encouraging further research.
Collapse
Affiliation(s)
- Dandan Kang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Yu Zhang
- School of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, P. R. China.
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Il Kim
- School of Chemical Engineering, Pusan National University, Busan, 46241, Republic of Korea.
| | - Wenliang Song
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China.
| |
Collapse
|
2
|
Ibrahim MIA, Solimando X, Stefan L, Pickaert G, Babin J, Arnal-Herault C, Roizard D, Jonquières A, Bodiguel J, Averlant-Petit MC. A lysine-based 2:1-[α/aza]-pseudopeptide series used as additives in polymeric membranes for CO 2 capture: synthesis, structural studies, and application †. RSC Adv 2023; 13:10051-10067. [PMID: 37006376 PMCID: PMC10052764 DOI: 10.1039/d3ra00409k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/05/2023] [Indexed: 03/30/2023] Open
Abstract
The current study presents for the first time the synthesis of a new 2:1-[α/aza]-pseudopeptide series possessing charged amino acids (i.e., lysine) and aims at studying the influences of chirality, backbone length, and the nature of the lysine side chains on the conformation of the 2:1-[α/aza]-oligomers in solution using NMR, FTIR spectroscopy and molecular dynamic calculations. The spectroscopic results emphasized the conservation of the β-turn conformation adopted by the trimers regardless of the chirality which demonstrated a noticeable effect on the conformation of homochiral hexamer (8c) compared with the hetero-analogue (8d). The molecular dynamic calculations predicted that the chirality and the side chain of the lysine residues caused a little distortion from the classical β-turn conformation in the case of short trimer sequences (7c and 7d), while the chirality and the backbone length exerted more distortion on the β-turn adopted by the longer hexamer sequences (8c and 8d). The large disturbance in hexamers from classical β-turn was attributed to increasing the flexibility and the possibility of molecules to adopt a more energetically favorable conformation stabilized by non-classical β-turn intramolecular hydrogen bonds. Thus, alternating d- and l-lysine amino acids in the 2:1-[α/aza]-hexamer (8d) decreases the high steric hindrance between the lysine side chains, as in the homo analogue (8c), and the distortion is less recognized. Finally, short sequences of aza-pseudopeptides containing lysine residues improve CO2 separation when used as additives in Pebax® 1074 membranes. The best membrane performances were obtained with a pseudopeptidic dimer as an additive (6b′; deprotected lysine side chain), with an increase in both ideal selectivity αCO2/N2 (from 42.8 to 47.6) and CO2 permeability (from 132 to 148 Barrer) compared to the virgin Pebax® 1074 membrane. A new 2:1-[α/aza]-pseudopeptide series based charged lysine amino acid was synthesized. Influences of chirality, backbone length, and lysine side chains on the oligomers conformation were investigated in solution using NMR, FTIR and MD calculations.![]()
Collapse
Affiliation(s)
- Mohamed I. A. Ibrahim
- Université de Lorraine, CNRS, LCPMF-54000 NancyFrance
- National Institute of Oceanography and Fisheries, NIOFEgypt
- Hiroshima Synchrotron Radiation Center, Hiroshima University2-313 Kagamiyama, Higashi-HiroshimaHiroshima 739-0046Japan
| | | | - Loïc Stefan
- Université de Lorraine, CNRS, LCPMF-54000 NancyFrance
| | | | - Jérôme Babin
- Université de Lorraine, CNRS, LCPMF-54000 NancyFrance
| | | | - Denis Roizard
- Université de Lorraine, CNRS, LRGPF-54000 NancyFrance
| | | | | | | |
Collapse
|
3
|
Algarni F, Musteata VE, Falca G, Chisca S, Hadjichristidis N, Nunes SP. Thermo-Responsive Membranes from Blends of PVDF and PNIPAM- b-PVDF Block Copolymers with Linear and Star Architectures. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01372] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Fatimah Algarni
- Physical Science and Engineering Division, Catalysis Center, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
| | - Valentina Elena Musteata
- Biological and Environmental Science and Engineering Division, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
| | - Gheorghe Falca
- Biological and Environmental Science and Engineering Division, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
| | - Stefan Chisca
- Biological and Environmental Science and Engineering Division, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
| | - Nikos Hadjichristidis
- Physical Science and Engineering Division, Catalysis Center, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
| | - Suzana P. Nunes
- Biological and Environmental Science and Engineering Division, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
| |
Collapse
|
4
|
Kloos J, Joosten N, Schenning A, Nijmeijer K. Self-assembling liquid crystals as building blocks to design nanoporous membranes suitable for molecular separations. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118849] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Sutisna B, Janssens SD, Giussani A, Vázquez-Cortés D, Fried E. Block copolymer-nanodiamond coassembly in solution: towards multifunctional hybrid materials. NANOSCALE 2021; 13:1639-1651. [PMID: 33399605 DOI: 10.1039/d0nr07441a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Polymer-nanodiamond composites are excellent candidates for the fabrication of multifunctional hybrid materials. They integrate polymer flexibility and exceptional properties of nanodiamonds (NDs), such as biocompatibility, mechanical strength, color centers, and chemically-tailored surfaces. However, their development is hindered by the challenge of ensuring that NDs are homogeneously distributed in the composites. Here, we exploit colloidal coassembly between poly(isoprene-b-styrene-b-2-vinyl pyridine) (ISV) block copolymers (BCPs) and NDs to avoid ND self-agglomeration and direct ND spatial distribution. NDs were first air oxidized at 450 °C to obtain stable dispersions in dimethylacetamide (DMAc). By adding ISV into the dispersions, patchy hybrid micelles were formed due to H-bonds between NDs and ISV. The ISV-ND coassembly in DMAc was then used to fabricate nanocomposite films with a uniform sub-50 nm ND distribution, which has never been previously reported for an ND loading (φND) of more than 50 wt%. The films exhibit good transparency due to their well-defined nanostructures and smoothness and also exhibit an improved UV-absorption and hydrophilicity compared to neat ISV. More intriguingly, at a φND of 22 wt%, ISV and NDs coassemble into a network-like superstructure with well-aligned ND strings via a dialysis method. Transmission electron microscopy and dynamic light scattering measurements suggest a complex interplay between polymer-polymer, polymer-solvent, polymer-ND, ND-solvent, and ND-ND interactions during the formation of structures. Our work may provide an important foundation for the development of hierarchically ordered nanocomposites based on BCP-ND coassembly, which is beneficial for a wide spectrum of applications from biotechnology to quantum devices.
Collapse
Affiliation(s)
- Burhannudin Sutisna
- Mathematics, Mechanics, and Materials Unit (MMMU), Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan.
| | | | | | | | | |
Collapse
|
6
|
Sutisna B, Musteata V, Pulido B, Puspasari T, Smilgies DM, Hadjichristidis N, Nunes SP. High flux membranes, based on self-assembled and H-bond linked triblock copolymer nanospheres. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.04.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
7
|
Schöttner S, Brodrecht M, Uhlein E, Dietz C, Breitzke H, Tietze AA, Buntkowsky G, Gallei M. Amine-Containing Block Copolymers for the Bottom-Up Preparation of Functional Porous Membranes. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02758] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Martin Brodrecht
- Eduard-Zintl-Institute of Inorganic and Physical Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, D-64287 Darmstadt, Germany
| | | | - Christian Dietz
- Institute of Materials Science, Physics of Surfaces, Technische Universität Darmstadt, Alarich-Weiss-Str. 2, D-64287 Darmstadt, Germany
| | - Hergen Breitzke
- Eduard-Zintl-Institute of Inorganic and Physical Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, D-64287 Darmstadt, Germany
| | - Alesia A. Tietze
- Department of Chemistry and Molecular Biology, Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Kemigården 4, 412 96 Gothenburg, Sweden
| | - Gerd Buntkowsky
- Eduard-Zintl-Institute of Inorganic and Physical Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, D-64287 Darmstadt, Germany
| | - Markus Gallei
- Organic Macromolecular Chemistry, Saarland University, Campus Saarbrücken C4.2, D-66123 Saarbrücken, Germany
| |
Collapse
|