1
|
Luo H, Yang X, Ding Q, Sheng B, Deng J, Yan X, Wu Y, Chen H, Hao C, Yuan S, Zeng J, Zhou W. Tensile properties and deformation by different compatibilizers in bio-based polylactide/poly(4-hydroxybutyrate) blends. Int J Biol Macromol 2024; 281:136550. [PMID: 39426776 DOI: 10.1016/j.ijbiomac.2024.136550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/21/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Blending chemically synthesized poly(4-hydroxybutyrate) (P4HB) with polylactide (PLLA) can overcome PLLA's brittleness, offering fully biobased blends. However, due to low compatibility between PLLA and P4HB, the influence of compatibilizers on the morphology, structure and tensile deformation of PLLA/P4HB blends remains to be unresolved. This article introduces reactive poly(methyl methacrylate-co-styrene-glycidyl methacrylate) (MSG) and non-reactive polyformaldehyde (POM) compatibilizers to improve the compatibility between P4HB and PLLA, achieving the maximal elongation at break exceeding 300 % at 2 wt% MSG or 3 wt% POM. MSG inhibits PLLA crystallization, extending stress stability in the silver streak stage, while POM enhances crystallization, prolonging the strain-hardening stage. Small-angle X-ray scattering (SAXS) and wide-angle X-ray scattering (WAXS) analysis show that pristine PLLA forms voids before fracture, and PLLA/P4HB blends cavitate at the yield point and develop crazes in the silver streak stage. MSG effectively transmits stress and delays cavitation, extending the silver streak stage, whereas POM forms a microcrystalline network, lowering the energy barrier for stretching-induced recrystallization. These findings could provide theoretical guidelines on selecting compatibilizers for different PLLA based blends.
Collapse
Affiliation(s)
- Haoqi Luo
- Department of Polymer Materials and Engineering, School of Physics and Materials, Nanchang University, 330031 Nanchang, PR China
| | - Xiangyan Yang
- Department of Polymer Materials and Engineering, School of Physics and Materials, Nanchang University, 330031 Nanchang, PR China
| | - Qingyi Ding
- Department of Polymer Materials and Engineering, School of Physics and Materials, Nanchang University, 330031 Nanchang, PR China
| | - Bogang Sheng
- Department of Polymer Materials and Engineering, School of Physics and Materials, Nanchang University, 330031 Nanchang, PR China
| | - Jing Deng
- Department of Polymer Materials and Engineering, School of Physics and Materials, Nanchang University, 330031 Nanchang, PR China
| | - Xiaofei Yan
- Department of Polymer Materials and Engineering, School of Physics and Materials, Nanchang University, 330031 Nanchang, PR China
| | - Yang Wu
- Department of Polymer Materials and Engineering, School of Physics and Materials, Nanchang University, 330031 Nanchang, PR China
| | - Han Chen
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Chaowei Hao
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Shuaishuai Yuan
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, 266042 Qingdao, PR China.
| | - Jianrong Zeng
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201204 Shanghai, PR China; Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 201800 Shanghai, PR China.
| | - Weihua Zhou
- Department of Polymer Materials and Engineering, School of Physics and Materials, Nanchang University, 330031 Nanchang, PR China.
| |
Collapse
|
2
|
Enhanced Mechanical Properties and Anti-Inflammation of Poly(L-Lactic Acid) by Stereocomplexes of PLLA/PDLA and Surface-Modified Magnesium Hydroxide Nanoparticles. Polymers (Basel) 2022; 14:polym14183790. [PMID: 36145934 PMCID: PMC9504497 DOI: 10.3390/polym14183790] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 12/29/2022] Open
Abstract
Poly(L-lactic acid) (PLLA), as a biodegradable polymer, has attracted attention for use as a biomaterial. In order to apply PLLA as a cardiovascular stent, stronger mechanical properties and anti-inflammatory effects against acidic by-products are required. In this study, PLLA/PDLA stereocomplex microparticles (SC) were developed and surface-modified magnesium hydroxide (MH) nanoparticles with oligolactide were combined with these PLLA composites. The SC improved the mechanical properties of the PLLA composites through the formation of stereocomplex structures. The surface-modified MH nanoparticles showed enhanced mechanical properties due to the stereocomplex structures formed by PLLA chains and inhibited inflammatory responses by pH neutralization as a result of MH. Additionally, the MH nanoparticles containing PLLA composites had antibacterial effects and increased the viability of human vascular endothelial cells. This technology is expected to have great potential in the development of PLLA composite materials for the production of various medical devices, such as cardiovascular stents.
Collapse
|
3
|
Bicomponent PLA Nanofiber Nonwovens as Highly Efficient Filtration Media for Particulate Pollutants and Pathogens. MEMBRANES 2021; 11:membranes11110819. [PMID: 34832049 PMCID: PMC8622781 DOI: 10.3390/membranes11110819] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 11/17/2022]
Abstract
Herein, a novel form of bicomponent nanofiber membrane containing stereo-complex polylactic acid (SC-PLA) was successfully produced by the side-by-side electrospinning of Poly (L-lactic acid) (PLLA) and Poly (D-lactic acid) (PDLA). We demonstrate that through these environmentally sustainable materials, highly efficient nanofiber assemblies for filtration can be constructed at very low basis weight. The physical and morphological structure, crystalline structure, hydrophobicity, porous structure, and filtration performance of the fibrous membranes were thoroughly characterized. It was shown that the fabricated polylactic acid (PLA) side-by-side fiber membrane had the advantages of excellent hydrophobicity, small average pore size, high porosity, high filtration efficiency, low pressure drop as well as superior air permeability. At the very low basis weight of 1.1 g/m2, the filtration efficiency and pressure drop of the prepared side-by-side membrane reached 96.2% and 30 Pa, respectively. Overall, this biomass-based, biodegradable filtration material has the potential to replace the fossil fuel-based polypropylene commercial meltblown materials for the design and development in filtration, separation, biomedical, personal protection and other fields.
Collapse
|
4
|
Im SH, Im DH, Park SJ, Chung JJ, Jung Y, Kim SH. Stereocomplex Polylactide for Drug Delivery and Biomedical Applications: A Review. Molecules 2021; 26:2846. [PMID: 34064789 PMCID: PMC8150862 DOI: 10.3390/molecules26102846] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023] Open
Abstract
Polylactide (PLA) is among the most common biodegradable polymers, with applications in various fields, such as renewable and biomedical industries. PLA features poly(D-lactic acid) (PDLA) and poly(L-lactic acid) (PLLA) enantiomers, which form stereocomplex crystals through racemic blending. PLA emerged as a promising material owing to its sustainable, eco-friendly, and fully biodegradable properties. Nevertheless, PLA still has a low applicability for drug delivery as a carrier and scaffold. Stereocomplex PLA (sc-PLA) exhibits substantially improved mechanical and physical strength compared to the homopolymer, overcoming these limitations. Recently, numerous studies have reported the use of sc-PLA as a drug carrier through encapsulation of various drugs, proteins, and secondary molecules by various processes including micelle formation, self-assembly, emulsion, and inkjet printing. However, concerns such as low loading capacity, weak stability of hydrophilic contents, and non-sustainable release behavior remain. This review focuses on various strategies to overcome the current challenges of sc-PLA in drug delivery systems and biomedical applications in three critical fields, namely anti-cancer therapy, tissue engineering, and anti-microbial activity. Furthermore, the excellent potential of sc-PLA as a next-generation polymeric material is discussed.
Collapse
Affiliation(s)
- Seung Hyuk Im
- NBIT, KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea; (S.H.I.); (S.J.P.)
- enoughU Inc., 114 Goryeodae-ro, Seongbuk-gu, Seoul 02856, Korea
| | - Dam Hyeok Im
- Department of Mechanical Engineering, Graduate School, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Korea;
| | - Su Jeong Park
- NBIT, KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea; (S.H.I.); (S.J.P.)
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (J.J.C.); (Y.J.)
| | - Justin Jihong Chung
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (J.J.C.); (Y.J.)
| | - Youngmee Jung
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (J.J.C.); (Y.J.)
- School of Electrical and Electronic Engineering, Yonsei-KIST Convergence Research Institute, Yonsei University, Seoul 03722, Korea
| | - Soo Hyun Kim
- NBIT, KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea; (S.H.I.); (S.J.P.)
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (J.J.C.); (Y.J.)
- Korea Institute of Science and Technology (KIST) Europe, Campus E 7.1, 66123 Saarbrueken, Germany
| |
Collapse
|
5
|
Affiliation(s)
- Jonathan M. Millican
- Macromolecular Chemistry II, Bavarian Polymer Institute, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| | - Seema Agarwal
- Macromolecular Chemistry II, Bavarian Polymer Institute, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| |
Collapse
|
6
|
Li R, Wu Y, Bai Z, Guo J, Chen X. Effect of molecular weight of polyethylene glycol on crystallization behaviors, thermal properties and tensile performance of polylactic acid stereocomplexes. RSC Adv 2020; 10:42120-42127. [PMID: 35516761 PMCID: PMC9057859 DOI: 10.1039/d0ra08699a] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 11/10/2020] [Indexed: 12/19/2022] Open
Abstract
In this work, the poly(d-lactic acid)–polyethylene glycol–poly(d-lactic acid) (PDLA–PEG–PDLA) triblock copolymer as a novel modification agent was incorporated into poly(l-lactic acid) (PLLA) to improve the thermal and mechanical properties of PLLA. The influences of molecular weight of PEG in the triblock copolymer on the structure, crystallization behaviors, heat resistance and tensile properties of PDLA–PEG–PDLA/PLLA blends were investigated by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), differential scanning calorimetry (DSC), polarized optical microscopy (POM), thermogravimetric analysis (TGA) and tensile testing. The results from FTIR, XRD and DSC confirm the formation of a polylactide stereocomplex in the PLLA blends. The structure and properties of the stereocomplex crystals are different from those of pure PLLA. The melting temperature (Tm) of the stereocrystal is near 200 °C, which is significantly higher than that of the homogeneous crystal of PLLA. The effect of molecular weight of PEG on the crystal morphology of PLLA blends is also obvious. The improvement of tensile properties for PLLA blends is attributed to the crystal morphological features, which will potentially enhance the utility of the PLLA based polymer. In this work, the poly(d-lactic acid)–polyethylene glycol–poly(d-lactic acid) (PDLA–PEG–PDLA) triblock copolymer as a novel modification agent was incorporated into poly(l-lactic acid) (PLLA) to improve the thermal and mechanical properties of PLLA.![]()
Collapse
Affiliation(s)
- Ruilong Li
- Key Laboratory of Advanced Materials Technology Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
- China
| | - Yifan Wu
- Key Laboratory of Advanced Materials Technology Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
- China
| | - Zhuyu Bai
- Key Laboratory of Advanced Materials Technology Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
- China
| | - Jianbing Guo
- Sichuan Jiahe Copoly Technology Co., Ltd
- Chengdu 610015
- China
- National Engineering Research Center for Compounding and Modification of Polymer Materials
- Guiyang 550014
| | - Xiaolang Chen
- Key Laboratory of Advanced Materials Technology Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
- China
| |
Collapse
|
7
|
|
8
|
Liang Y, Sui M, He M, Wei Z, Zhang W. A Strategy of In Situ Catalysis and Nucleation of Biocompatible Zinc Salts of Amino Acids towards Poly(l-lactide) with Enhanced Crystallization Rate. Polymers (Basel) 2019; 11:polym11050790. [PMID: 31052541 PMCID: PMC6572479 DOI: 10.3390/polym11050790] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/21/2019] [Accepted: 04/21/2019] [Indexed: 11/20/2022] Open
Abstract
The intrinsic drawback of slow crystallization rate of poly(l-lactide) (PLLA) inevitably deteriorates its final properties of the molded articles. In this work, we proposed a new strategy towards poly(l-lactide) with enhanced crystallization rate by ring opening polymerization (ROP) of l-lactide (l-LA) catalyzed by biocompatible zinc salts of amino acids. For the first time we developed a one-pot facile method of zinc salts of amino acids acting dual roles of catalysis of l-LA polymerization and in situ nucleation of the as-prepared PLLA. Nine zinc salts of different amino acids, including three kinds of amino acids ligands (alanine, phenylalanine, and proline) with l/d-enantiomers and their equimolar racemic mixtures, were first prepared and tested as catalysts of l-LA polymerization. A partial racemization was observed for zinc salts of amino acids whereas no racemization was detected for the reference stannous octoate. The polymerization mechanism study showed that the interaction of zinc salts of amino acids and benzyl alcohol forms the actual initiator for l-LA polymerization. Isothermal crystallization kinetics analysis showed that the residual zinc salts of amino acids exhibited a significant nucleation effect on PLLA, evidenced by the promotion of the crystallization rate, depending on the amino acid ligand and its configuration. Meanwhile, the residual zinc salts of amino acids did not compromise the thermal stability of the pristine PLLA.
Collapse
Affiliation(s)
- Yuan Liang
- School of Materials Science and Engineering, Jilin University, Changchun 130022, China.
| | - Meili Sui
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Maomao He
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Zhiyong Wei
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Wanxi Zhang
- School of Materials Science and Engineering, Jilin University, Changchun 130022, China.
| |
Collapse
|
9
|
Fang J, Zhang L, Li C. Polyamide 6 composite with highly improved mechanical properties by PEI-CNT grafted glass fibers through interface wetting, infiltration and crystallization. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.03.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Im SH, Park SJ, Chung JJ, Jung Y, Kim SH. Creation of polylactide vascular scaffolds with high compressive strength using a novel melt-tube drawing method. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.01.067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|