1
|
Murphy EA, Chen YQ, Albanese K, Blankenship JR, Abdilla A, Bates MW, Zhang C, Bates CM, Hawker CJ. Efficient Creation and Morphological Analysis of ABC Triblock Terpolymer Libraries. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Elizabeth A. Murphy
- Materials Research Laboratory, University of California, Santa Barbara, California93106, United States
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California93106, United States
| | - Yan-Qiao Chen
- Materials Research Laboratory, University of California, Santa Barbara, California93106, United States
| | - Kaitlin Albanese
- Materials Research Laboratory, University of California, Santa Barbara, California93106, United States
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California93106, United States
| | - Jacob R. Blankenship
- Materials Research Laboratory, University of California, Santa Barbara, California93106, United States
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California93106, United States
| | - Allison Abdilla
- Materials Research Laboratory, University of California, Santa Barbara, California93106, United States
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California93106, United States
| | - Morgan W. Bates
- Materials Research Laboratory, University of California, Santa Barbara, California93106, United States
| | - Cheng Zhang
- Materials Research Laboratory, University of California, Santa Barbara, California93106, United States
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland4072, Australia
| | - Christopher M. Bates
- Materials Research Laboratory, University of California, Santa Barbara, California93106, United States
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California93106, United States
- Department of Chemical Engineering, and University of California, Santa Barbara, California93106, United States
- Materials Department, University of California, Santa Barbara, California93106, United States
| | - Craig J. Hawker
- Materials Research Laboratory, University of California, Santa Barbara, California93106, United States
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California93106, United States
- Materials Department, University of California, Santa Barbara, California93106, United States
| |
Collapse
|
2
|
Zhang J, Jin B, Tang G, Luo Y, Li X. Core–Shell Copolymers with Brush-on-Hyperbranched Arm Architecture: Synthesis, Dual Thermoresponsive Behaviors, and Nanocarriers. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jun Zhang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Bixin Jin
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Gang Tang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yunjun Luo
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
- Key Laboratory of High Energy Density Materials, Ministry of Education, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaoyu Li
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
- Key Laboratory of High Energy Density Materials, Ministry of Education, Beijing Institute of Technology, Beijing 100081, China
- Experimental Center of Advanced Materials, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
3
|
Dextran based amphiphilic self-assembled biopolymeric macromolecule synthesized via RAFT polymerization as indomethacin carrier. Int J Biol Macromol 2021; 183:718-726. [PMID: 33930447 DOI: 10.1016/j.ijbiomac.2021.04.145] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 12/28/2022]
Abstract
This work demonstrates a facile pathway to develop a biopolymer based amphiphilic macromolecule through reversible addition-fragmentation chain transfer (RAFT) polymerization, using dextran (a biopolymer) as starting material. Also, a new hydrophobic monomer [2-methyl-acrylic acid 1-benzyl-1H-[1,2,3] triazol-4-ylmethyl ester (MABTE)] has been synthesized using methacrylic acid via "click" approach. The resultant copolymer displays controlled radical polymerization characteristics: narrow polydispersity (Ð) and controlled molecular weight as obtained through advanced polymer chromatography (APC) analysis. In aqueous solution, the copolymer can proficiently be self-assembled to provide micellar structure, which has been evidenced from field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) analyses. The in-vitro cytotoxicity study illustrates the nontoxic nature of the copolymer up to 100 μg/mL polymer concentration. The copolymer has been found to be worthy as an efficient carrier for the sustained release of hydrophobic drug: Indomethacin (IND).
Collapse
|
4
|
Barbon SM, Song JA, Chen D, Zhang C, Lequieu J, Delaney KT, Anastasaki A, Rolland M, Fredrickson GH, Bates MW, Hawker CJ, Bates CM. Architecture Effects in Complex Spherical Assemblies of (AB) n-Type Block Copolymers. ACS Macro Lett 2020; 9:1745-1752. [PMID: 35653677 DOI: 10.1021/acsmacrolett.0c00704] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Molecular architecture plays a key role in the self-assembly of block copolymers, but few studies have systematically examined the influence of chain connectivity on tetrahedrally close-packed (TCP) sphere phases. Here, we report a versatile material platform comprising two blocks with substantial conformational asymmetry, A = poly(trifluoroethyl acrylate) and B = poly(dodecyl acrylate), and use it to compare the phase behavior of AB diblocks, ABA triblocks, and (AB)n radial star copolymers with n = 3 or 4. Each architecture forms TCP sphere phases at minority A block compositions (fA < 0.5), namely, σ and A15, but with differences in the location of order-order phase boundaries that are not anticipated by mean-field self-consistent field theory simulations. These results expand the palette of polymer architectures that readily self-assemble into complex TCP structures and suggest important design considerations when targeting specific phases of interest.
Collapse
Affiliation(s)
| | | | | | - Cheng Zhang
- Australian Institute for Bioengineering and Nanotechnology and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Garra P, Fouassier JP, Lakhdar S, Yagci Y, Lalevée J. Visible light photoinitiating systems by charge transfer complexes: Photochemistry without dyes. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2020.101277] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
6
|
Bailey SJ, Discekici EH, Barbon SM, Nguyen SN, Hawker CJ, de Alaniz JR. Norbornadiene Chain-End Functional Polymers as Stable, Readily Available Precursors to Cyclopentadiene Derivatives. Macromolecules 2020; 53:4917-4924. [PMID: 33177746 DOI: 10.1021/acs.macromol.0c00967] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A novel method for facile postpolymerization functionalization of synthetic polymers using terminal norbornadiene (NBD) building blocks is presented. Incorporation of the NBD functionality streamlines the synthesis of a wide array of block polymers utilizing multistep click chemistry strategies. Previously, the use of NBD-functionalized initiators produced polymers that underwent a cascade of Diels-Alder (DA) reactions to unveil a reactive cyclopentadiene (Cp) chain end. When coupled with a maleimide-bearing counterpart, a highly efficient DA cycloaddition with the terminal Cp can occur. To extend this concept to a range of polyacrylates and commercially available poly(ethylene glycol) systems, we developed a novel NBD acid building block for postpolymerization functionalization. Employing this process, we have demonstrated straightforward access to a library of block polymers that leverage this NBD click platform.
Collapse
Affiliation(s)
- Sophia J Bailey
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Emre H Discekici
- Department of Chemistry and Biochemistry and Materials Department and Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Stephanie M Barbon
- California NanoSystems Institute, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Shay N Nguyen
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Craig J Hawker
- Department of Chemistry and Biochemistry, California NanoSystems Institute, and Materials Department and Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Javier Read de Alaniz
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
7
|
Geng Z, Schauser NS, Lee J, Schmeller RP, Barbon SM, Segalman RA, Lynd NA, Hawker CJ. Role of Side-Chain Architecture in Poly(ethylene oxide)-Based Copolymers. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhishuai Geng
- Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Nicole S. Schauser
- Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Materials Department, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Jongbok Lee
- Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Department of Biological and Chemical Engineering, Hongik University, 2639, Sejong-ro, Jochiwon-eup, Sejong-si 30016, Republic of Korea
| | - Rayco Perez Schmeller
- Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Stephanie M. Barbon
- Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Rachel A. Segalman
- Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Materials Department, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Nathaniel A. Lynd
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Craig J. Hawker
- Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Materials Department, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
8
|
Sarkar R, Xie TZ, Endres KJ, Wang Z, Moorefield CN, Saunders MJ, Ghorai S, Patri AK, Wesdemiotis C, Dobrynin AV, Newkome GR. Sierpiński Pyramids by Molecular Entanglement. J Am Chem Soc 2020; 142:5526-5530. [PMID: 32131597 DOI: 10.1021/jacs.0c01168] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Planar, terpyridine-based metal complexes with the Sierpiński triangular motif and alkylated corners undergo a second self-assembly event to give megastructural Sierpiński pyramids; assembly is driven by the facile lipophilic-lipophilic association of the alkyl moieties and complementary perfect fit of the triangular building blocks. Confirmation of the 3D, pyramidal structures was verified and supported by a combination of TEM, AFM, and multiscale simulation techniques.
Collapse
Affiliation(s)
- Rajarshi Sarkar
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Ting-Zheng Xie
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Kevin J Endres
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Zilu Wang
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Charles N Moorefield
- Dendronex LLC, 109 Runway Drive, Reese Technology Center, Lubbock, Texas 79416, United States
| | - Mary Jane Saunders
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida 33431, United States
| | - Suman Ghorai
- NCTR-ORA Nanotechnology Core Facility, National Center for Toxicological Research, U.S. Food & Drug Administration, HFT-30, 3900 NCTR Road, Jefferson, Arkansas 72079, United States
| | - Anil K Patri
- NCTR-ORA Nanotechnology Core Facility, National Center for Toxicological Research, U.S. Food & Drug Administration, HFT-30, 3900 NCTR Road, Jefferson, Arkansas 72079, United States
| | - Chrys Wesdemiotis
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States.,Department of Chemistry, The University of Akron, Akron, Ohio 44325, United States
| | - Andrey V Dobrynin
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - George R Newkome
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States.,Department of Chemistry, The University of Akron, Akron, Ohio 44325, United States.,Center for Molecular Biology and Biotechnology, Florida Atlantic University, 5353 Parkside Drive, Jupiter, Florida 33458, United States
| |
Collapse
|
9
|
Wang Y, Clay A, Nguyen M. ATRP by continuous feeding of activators: Limiting the end-group loss in the polymerizations of methyl methacrylate and styrene. POLYMER 2020. [DOI: 10.1016/j.polymer.2019.122097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Zhou F, Zhang J, Xie PF, Li Y. Acrylate copolymer-based super oil absorption resins: effects of steric hindrance of the monomer. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00997-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Wang Y. ATRP of Methyl Acrylate by Continuous Feeding of Activators Giving Polymers with Predictable End-Group Fidelity. Polymers (Basel) 2019; 11:E1238. [PMID: 31357403 PMCID: PMC6724064 DOI: 10.3390/polym11081238] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/21/2019] [Accepted: 07/23/2019] [Indexed: 12/31/2022] Open
Abstract
Atom transfer radical polymerization (ATRP) of methyl acrylate (MA) was carried out by continuous feeding of Cu(I) activators. Typically, the solvent, the monomer, the initiator, and the CuBr2/Me6TREN deactivator are placed in a Schlenk flask (Me6TREN: tris[2-(dimethylamino)ethyl]amine), while the CuBr/Me6TREN activator is placed in a gas-tight syringe and added to the reaction mixture at a constant addition rate by using a syringe pump. As expected, the polymerization started when Cu(I) was added and stopped when the addition was completed, and polymers with a narrow molecular weight distribution were obtained. The polymerization rate could be easily adjusted by changing the activator feeding rate. More importantly, the loss of chain end-groups could be precisely predicted since each loss of Br from the chain end resulted in the irreversible oxidation of one Cu(I) to Cu(II). The Cu(I) added to the reaction system may undergo many oxidation/reduction cycles in ATRP equilibrium, but would finally be oxidized to Cu(II) irreversibly. Thus, the loss of chain end-groups simply equals the total amount of Cu(I) added. This technique provides a neat way to synthesize functional polymers with known end-group fidelity.
Collapse
Affiliation(s)
- Yu Wang
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA 70504, USA.
| |
Collapse
|
12
|
Chen Y, Sun Z, Li H, Dai Y, Hu Z, Huang H, Shi Y, Li Y, Chen Y. Molecular Bottlebrushes Featuring Brush-on-Brush Architecture. ACS Macro Lett 2019; 8:749-753. [PMID: 35619534 DOI: 10.1021/acsmacrolett.9b00399] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Molecular bottlebrushes featuring brush-on-brush (BoB) architecture were prepared by combining azide-alkyne click chemistry, ring-opening polymerization (ROP), and atom transfer radical polymerization (ATRP). Primary side chains of diblock copolymers with a poly(ε-caprolactone) (PCL) block and a poly(α-bromo-ε-caprolactone) (P(CL-Br)) block were synthesized by ROP and then grafted onto PCL backbone by the click reaction. Then the secondary side chains of poly(oligo(ethylene glycol) acrylate) (POEGA) were grafted from the P(CL-Br) block by ATRP, yielding an amphiphilic core/shell structure. Imaging of individual macromolecules by atomic force microscopy (AFM) demonstrated dramatically thickened wormlike formation with distinct hairy side chains. Interestingly, for the BoB molecular bottlebrushes with enough long primary and secondary side chains, sufficient tension can be generated along the backbone and thus lead to its cleavage.
Collapse
Affiliation(s)
- Yi Chen
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Research Center for Functional Biomaterials Engineering and Technology Guangdong, Sun Yat-Sen University, Guangzhou 510275, China
| | - Ziyang Sun
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Research Center for Functional Biomaterials Engineering and Technology Guangdong, Sun Yat-Sen University, Guangzhou 510275, China
| | - Huaan Li
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Research Center for Functional Biomaterials Engineering and Technology Guangdong, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yunkai Dai
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Research Center for Functional Biomaterials Engineering and Technology Guangdong, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhitao Hu
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Research Center for Functional Biomaterials Engineering and Technology Guangdong, Sun Yat-Sen University, Guangzhou 510275, China
| | - Huahua Huang
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Research Center for Functional Biomaterials Engineering and Technology Guangdong, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yi Shi
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Research Center for Functional Biomaterials Engineering and Technology Guangdong, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yuanchao Li
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Research Center for Functional Biomaterials Engineering and Technology Guangdong, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yongming Chen
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Research Center for Functional Biomaterials Engineering and Technology Guangdong, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|