1
|
Zheng B, Zhou B, Hu J, Zheng CA, Chen K, Yang S, Richtering W, Harbottle D, Hunter TN, Zhang H. Bioinspired Microgel-Loaded Smart Membrane Filtration with the Thermo- and Ion-Dual Responsive Water Gate for Selective Lead(II) Separation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:45497-45510. [PMID: 39152901 DOI: 10.1021/acsami.4c08830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
Lead (Pb2+) is a ubiquitous pollutant. Membrane filtration represents one of the most common water treatment methods, but nanofiltration and ultrafiltration require high transmembrane pressure, while microfiltration has larger pore sizes than ions, making them unfavorable for direct ion removal at low cost. Selective and direct separation of Pb2+ via membrane filtration at high efficiency without sacrificing the flux of clean water still remains challenging. Herein, inspired by the Pb2+-tolerable oleander that enriches and prevents Pb2+ in roots from permeating the plant body, a smart Pb2+-adsorptive filtration membrane with a temperature- and ion-tunable water gate was prepared by loading dual-responsive poly(N-isopropylacrylamido-co-acrylamido-benzo-18-crown-6) (PNB-5-20) microgels onto a commercial membrane. The PNB-5-20 microgel exhibits pronounced temperature-responsive swelling/deswelling (hydrodynamic diameter, 650-330 nm) with a volume phase transition temperature (VPTT) at ∼33 °C. Moreover, the microgel shows a high Pb2+-adsorption capacity (qmax, 85.4 mg/g) and good selectivity (distribution coefficient Kd ∼ 1000 mL/g) thanks to its complexation with the crown ether, as well as good Pb2+ responsiveness, having the VPTT positively shifted to 40 °C in the presence of Pb2+ with enhanced swelling behaviors. Functionalized with PNB-5-20, the smart membrane integrates Pb2+ detection, adsorption, and tunable water drainage in a single device. The membrane selectively recognizes Pb2+ in the polluted water with the gates in membrane pores switching from "open" to "closed", intercepting and adsorbing Pb2+ with water permeation reduced. Once purified, the gates can be "re-opened" by increasing the temperature. Construction of such an intelligent membrane filtration device with a tunable water gate and excellent Pb2+ recognition and adsorption performance will greatly simplify the remediation of Pb2+-polluted water.
Collapse
Affiliation(s)
- Botuo Zheng
- College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou 350007, China
| | - Bingnan Zhou
- College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou 350007, China
| | - Jing Hu
- College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou 350007, China
| | - Cun-Ai Zheng
- College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou 350007, China
| | - Kaixuan Chen
- College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou 350007, China
| | - Shuai Yang
- College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou 350007, China
| | - Walter Richtering
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, Aachen 52056, Germany, European Union
| | - David Harbottle
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, U.K
| | - Timothy N Hunter
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, U.K
| | - Huagui Zhang
- College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou 350007, China
| |
Collapse
|
2
|
Li Y, Li Y, Prince E, Weitz JI, Panyukov S, Ramachandran A, Rubinstein M, Kumacheva E. Fibrous hydrogels under biaxial confinement. Nat Commun 2022; 13:3264. [PMID: 35672320 PMCID: PMC9174476 DOI: 10.1038/s41467-022-30980-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/19/2022] [Indexed: 11/09/2022] Open
Abstract
Confinement of fibrous hydrogels in narrow capillaries is of great importance in biological and biomedical systems. Stretching and uniaxial compression of fibrous hydrogels have been extensively studied; however, their response to biaxial confinement in capillaries remains unexplored. Here, we show experimentally and theoretically that due to the asymmetry in the mechanical properties of the constituent filaments that are soft upon compression and stiff upon extension, filamentous gels respond to confinement in a qualitatively different manner than flexible-strand gels. Under strong confinement, fibrous gels exhibit a weak elongation and an asymptotic decrease to zero of their biaxial Poisson's ratio, which results in strong gel densification and a weak flux of liquid through the gel. These results shed light on the resistance of strained occlusive clots to lysis with therapeutic agents and stimulate the development of effective endovascular plugs from gels with fibrous structures for stopping vascular bleeding or suppressing blood supply to tumors.
Collapse
Affiliation(s)
- Yang Li
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, M5S 3E5, Canada
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Yunfeng Li
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, ON, M5S 3H6, Canada
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Elisabeth Prince
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, ON, M5S 3H6, Canada
- Department of Chemistry, Massachusetts Institute of Technology, 88 Ames Street, Apartment 306, Cambridge, MA, 02142, USA
| | - Jeffrey I Weitz
- Thrombosis and Atherosclerosis Research Institute, 237 Barton Street East, Hamilton, L8L 2 × 2, ON, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
- Department of Medicine, McMaster University, 1200 Main Street West, Hamilton, ON, L8N 3Z5, Canada
| | - Sergey Panyukov
- P. N. Lebedev Physics Institute, Russian Academy of Sciences, 53 Leninskiy Prospekt, Moscow, 119991, Russian Federation
| | - Arun Ramachandran
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, M5S 3E5, Canada.
| | - Michael Rubinstein
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA.
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA.
- Department of Chemistry, Duke University, Durham, NC, 27708, USA.
- Department of Physics, Duke University, Durham, NC, 27708, USA.
- World Primer Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 001-0021, Japan.
| | - Eugenia Kumacheva
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, M5S 3E5, Canada.
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, ON, M5S 3H6, Canada.
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, M5S 3G9, Canada.
| |
Collapse
|
3
|
Büning D, Ennen-Roth F, Netke T, Schumacher J, Ulbricht M. Microfiltration of polymeric microgels as soft model colloids through sterile filter membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Suvarnapathaki S, Nguyen MA, Goulopoulos AA, Lantigua D, Camci-Unal G. Engineering calcium peroxide based oxygen generating scaffolds for tissue survival. Biomater Sci 2021; 9:2519-2532. [PMID: 33565527 PMCID: PMC11442008 DOI: 10.1039/d0bm02048f] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Oxygen supply is essential for the long-term viability and function of tissue engineered constructs in vitro and in vivo. The integration with the host blood supply as the primary source of oxygen to cells requires 4 to 5 weeks in vivo and involves neovascularization stages to support the delivery of oxygenated blood to cells. Consequently, three-dimensional (3D) encapsulated cells during this process are prone to oxygen deprivation, cellular dysfunction, damage, and hypoxia-induced necrosis. Here we demonstrate the use of calcium peroxide (CaO2) and polycaprolactone (PCL), as part of an emerging paradigm of oxygen-generating scaffolds that substitute the host oxygen supply via hydrolytic degradation. The 35-day in vitro study showed predictable oxygen release kinetics that achieved 5% to 29% dissolved oxygen with increasing CaO2 loading. As a biomaterial, the iterations of 0 mg, 40 mg, and 60 mg of CaO2 loaded scaffolds yielded modular mechanical behaviors, ranging from 5-20 kPa in compressive strength. The other controlled physiochemical features included swelling capacities of 22-33% and enzymatic degradation rates of 0.8% to 60% remaining mass. The 3D-encapsulation experiments of NIH/3T3 fibroblasts, L6 rat myoblasts, and primary cardiac fibroblasts in these scaffolds showed enhanced cell survival, proliferation, and function under hypoxia. During continuous oxygen release, the scaffolds maintained a stable tissue culture system between pH 8 to 9. The broad basis of this work supports prospects in the expansion of robust and clinically translatable tissue constructs.
Collapse
Affiliation(s)
- Sanika Suvarnapathaki
- Biomedical Engineering and Biotechnology Program, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA
| | | | | | | | | |
Collapse
|
5
|
Bookhold J, Dirksen M, Wiehemeier L, Knust S, Anselmetti D, Paneff F, Zhang X, Gölzhäuser A, Kottke T, Hellweg T. Smart membranes by electron beam cross-linking of copolymer microgels. SOFT MATTER 2021; 17:2205-2214. [PMID: 33459755 DOI: 10.1039/d0sm02041a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Poly(N-isopropylacrylamide) (pNIPAM) based copolymer microgels were used to create free-standing, transferable, thermoresponsive membranes. The microgels were synthesized by copolymerization of NIPAM with N-benzylhydrylacrylamide (NBHAM). Monolayers of these colloidal gels were subsequently cross-linked using an electron gun leading to the formation of a connected monolayer. Furthermore, the cross-linked microgel layer is detached from the supporting material by dissolving the substrate. These unique systems can be used as transferable, thermoresponsive coatings and as thermoresponsive membranes. As a proof of principle for the use of such membranes we studied the ion transport through them at different temperatures revealing drastic changes when the lower critical solution temperature of the copolymer microgels is reached.
Collapse
Affiliation(s)
- Johannes Bookhold
- University Bielefeld, Department of Chemistry, Physical and Biophysical Chemistry, Universitätsstr. 25, 33615 Bielefeld, Germany.
| | - Maxim Dirksen
- University Bielefeld, Department of Chemistry, Physical and Biophysical Chemistry, Universitätsstr. 25, 33615 Bielefeld, Germany.
| | - Lars Wiehemeier
- University Bielefeld, Department of Chemistry, Physical and Biophysical Chemistry, Universitätsstr. 25, 33615 Bielefeld, Germany.
| | - Sebastian Knust
- University Bielefeld, Department of Physics, Experimental Biophysics, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Dario Anselmetti
- University Bielefeld, Department of Physics, Experimental Biophysics, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Florian Paneff
- University Bielefeld, Department of Physics, Physics of Supermolecular Systems and Surfaces, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Xianghui Zhang
- University Bielefeld, Department of Physics, Physics of Supermolecular Systems and Surfaces, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Armin Gölzhäuser
- University Bielefeld, Department of Physics, Physics of Supermolecular Systems and Surfaces, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Tilman Kottke
- University Bielefeld, Department of Chemistry, Physical and Biophysical Chemistry, Universitätsstr. 25, 33615 Bielefeld, Germany.
| | - Thomas Hellweg
- University Bielefeld, Department of Chemistry, Physical and Biophysical Chemistry, Universitätsstr. 25, 33615 Bielefeld, Germany.
| |
Collapse
|
6
|
Dirksen M, Brändel T, Großkopf S, Knust S, Bookhold J, Anselmetti D, Hellweg T. UV cross-linked smart microgel membranes as free-standing diffusion barriers and nanoparticle bearing catalytic films. RSC Adv 2021; 11:22014-22024. [PMID: 35480797 PMCID: PMC9036384 DOI: 10.1039/d1ra03528b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/15/2021] [Indexed: 01/04/2023] Open
Abstract
In this study we use poly(N-isopropylacrylamide) (PNIPAM) based copolymer microgels to create free-standing, transferable, thermoresponsive membranes. The microgels are synthesized by copolymerization of NIPAM with 2-hydroxy-4-(methacryloyloxy)–benzophenone (HMABP) and spin-coated on Si wafers. After subsequent cross-linking by UV-irradiation, the formed layers easily detach from the supporting material. We obtain free standing microgel membranes with lateral extensions of several millimetres and an average layer thickness of a few hundred nanometres. They can be transferred to other substrates. As one example for potential applications we investigate the temperature dependent ion transport through the membranes via resistance measurements revealing a sharp reversible increase in resistance when the lower critical solution temperature of the copolymer microgels is reached. In addition, prior to cross-linking, the microgels can be decorated with silver nanoparticles and cross-linked afterwards. Such free-standing nanoparticle hybrid membranes are then used as catalytic systems for the reduction of 4-nitrophenol, which is monitored by UV/Vis spectroscopy. Cross-linkable microgels are synthesized by copolymerization of NIPAM with 2-hydroxy-4-(methacryloyloxy)–benzophenone (HMABP) and are subsequently UV-cross-linked to obtain smart membranes exhibiting switchable resistance.![]()
Collapse
Affiliation(s)
- Maxim Dirksen
- Department of Chemistry, Physical and Biophysical Chemistry
- University Bielefeld
- D-33615 Bielefeld
- Germany
| | - Timo Brändel
- Department of Chemistry, Physical and Biophysical Chemistry
- University Bielefeld
- D-33615 Bielefeld
- Germany
| | - Sören Großkopf
- Department of Chemistry, Physical and Biophysical Chemistry
- University Bielefeld
- D-33615 Bielefeld
- Germany
| | - Sebastian Knust
- Department of Physics, Experimental Biophysics
- University Bielefeld
- D-33615 Bielefeld
- Germany
| | - Johannes Bookhold
- Department of Chemistry, Physical and Biophysical Chemistry
- University Bielefeld
- D-33615 Bielefeld
- Germany
| | - Dario Anselmetti
- Department of Physics, Experimental Biophysics
- University Bielefeld
- D-33615 Bielefeld
- Germany
| | - Thomas Hellweg
- Department of Chemistry, Physical and Biophysical Chemistry
- University Bielefeld
- D-33615 Bielefeld
- Germany
| |
Collapse
|
7
|
Hoppe Alvarez L, Rudov AA, Gumerov RA, Lenssen P, Simon U, Potemkin II, Wöll D. Controlling microgel deformation via deposition method and surface functionalization of solid supports. Phys Chem Chem Phys 2021; 23:4927-4934. [PMID: 33620358 DOI: 10.1039/d0cp06355j] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Soft matter at solid-liquid interfaces plays an important role in multiple scientific disciplines as well as in various technological fields. For microgels, representing highly interesting soft matter systems, we demonstrate that the preparation method, i.e. the way how the microgel is applied to the specific surface, plays a key role. Focusing on the three most common sample preparation methods (spin-coating, drop-casting and adsorption from solution), we performed a comparative study of the deformation behavior of microgels at the solid-liquid interface on three different surfaces with varying hydrophilicities. For in situ visualization of the deformation of pNIPMAM microgels, we conducted highly sensitive 3D super resolution fluorescence microscopy methods. We furthermore performed complementary molecular dynamics simulations to determine the driving force responsible for the deformation depending on the surface and the deposition method. The combination of experiments and simulations revealed that the simulated equilibrium structure obtained after simulation of the completely dry microgel after deposition is retained after rehydration and subsequent fluorescent imaging.
Collapse
Affiliation(s)
- Laura Hoppe Alvarez
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52056 Aachen, Germany.
| | - Andrey A Rudov
- Physics Department, Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow 119991, Russian Federation and DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstraße 50, D-52056 Aachen, Germany
| | - Rustam A Gumerov
- Physics Department, Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow 119991, Russian Federation and DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstraße 50, D-52056 Aachen, Germany
| | - Pia Lenssen
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52056 Aachen, Germany.
| | - Ulrich Simon
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1 a, D-52056 Aachen, Germany
| | - Igor I Potemkin
- Physics Department, Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow 119991, Russian Federation and DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstraße 50, D-52056 Aachen, Germany and National Research South Ural State University, Chelyabinsk 454080, Russian Federation
| | - Dominik Wöll
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52056 Aachen, Germany.
| |
Collapse
|
8
|
Richtering W, Alberg I, Zentel R. Nanoparticles in the Biological Context: Surface Morphology and Protein Corona Formation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002162. [PMID: 32856393 DOI: 10.1002/smll.202002162] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/20/2020] [Indexed: 06/11/2023]
Abstract
A recent paper demonstrated that the formation of a protein corona is not a general property of all types of nanosized objects. In fact, it varies between a massive aggregation of plasma proteins onto the nanoparticle down to traces (e.g., a few proteins per 10 nanoparticles), which can only be determined by mass spectrometry in comparison to appropriate negative controls and background subtraction. Here, differences between various types of nanosized objects are discussed in order to determine general structure-property-relations from a physico-chemical viewpoint. It is highlighted that "not all nanoparticles are alike" and shown that their internal morphology, especially the difference between a strongly hydrated/swollen shell versus a sharp "hard" surface and its accessibility, is most relevant for biomedical applications.
Collapse
Affiliation(s)
- Walter Richtering
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074, Aachen, Germany
| | - Irina Alberg
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Rudolf Zentel
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| |
Collapse
|
9
|
|
10
|
Anakhov MV, Gumerov RA, Richtering W, Pich A, Potemkin II. Scavenging One of the Liquids versus Emulsion Stabilization by Microgels in a Mixture of Two Immiscible Liquids. ACS Macro Lett 2020; 9:736-742. [PMID: 35648562 DOI: 10.1021/acsmacrolett.0c00191] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It is known that microgels can serve as soft, permeable and stimuli-responsive alternative of solid colloidal particles to stabilize oil-water emulsions. The driving force for the adsorption of the microgels on interface of two immiscible liquids is a shielding of unfavorable oil-water contacts by adsorbed subchains, that is, the decrease of the surface tension between the liquids. Such phenomenon usually proceeds if volume fractions of the two liquids are comparable with each other and the microgel concentration is not high enough. The natural question arises: what is going on with the system in the opposite case of strongly asymmetric mixture (one of the liquids (oil) has a very small fraction) or high microgel concentration (the overall volume of the microgels exceeds the volume of the minor oil component)? Here we demonstrate that the microgels uptake the oil whose concentration within the microgels can be orders of magnitude higher than outside, leading to the additional microgel swelling (in comparison with the swelling in water). Thus, the microgels can serve as scavengers and concentrators of liquids dissolved in water. At first glance, this effect seems counterintuitive. However, it has a clear physical reason related to the incompatibility of oil and water. Absorption of the oil by microgels reduces unfavorable oil-water contacts by microgel segments: the microgels have a higher concentration of the segments at the periphery, forming a shell. The microgels with uptaken oil are stable toward aggregation at very small oil concentration in the mixture. However, an increase in the oil concentration can lead to aggregation of the microgels into dimers, trimers, and so on. The increasing concentration of oil mediates the attraction between the microgels: the oil in the aggregates appears to be localized in-between the microgels instead of their interior, which is accompanied by the release of the elastic stress of the microgels. A further increase in the oil concentration results in a growth of the size of the oil droplets between the microgels and the number of the microgels at the droplet's periphery, that is, the emulsion is formed.
Collapse
Affiliation(s)
- Mikhail V. Anakhov
- Physics Department, Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow 119991, Russian Federation
| | - Rustam A. Gumerov
- Physics Department, Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow 119991, Russian Federation
- DWI - Leibniz Institute for Interactive Materials e.V., Forckenbeckstraße 50, Aachen 52056, Germany
| | - Walter Richtering
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, Aachen 52056, Germany
| | - Andrij Pich
- DWI - Leibniz Institute for Interactive Materials e.V., Forckenbeckstraße 50, Aachen 52056, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
- Aachen Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| | - Igor I. Potemkin
- Physics Department, Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow 119991, Russian Federation
- DWI - Leibniz Institute for Interactive Materials e.V., Forckenbeckstraße 50, Aachen 52056, Germany
- National Research South Ural State University, Chelyabinsk 454080, Russian Federation
| |
Collapse
|
11
|
Gumerov RA, Gau E, Xu W, Melle A, Filippov SA, Sorokina AS, Wolter NA, Pich A, Potemkin II. Amphiphilic PVCL/TBCHA microgels: From synthesis to characterization in a highly selective solvent. J Colloid Interface Sci 2020; 564:344-356. [DOI: 10.1016/j.jcis.2019.12.123] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 12/26/2019] [Accepted: 12/27/2019] [Indexed: 10/25/2022]
|
12
|
Hoppe Alvarez L, Eisold S, Gumerov RA, Strauch M, Rudov AA, Lenssen P, Merhof D, Potemkin II, Simon U, Wöll D. Deformation of Microgels at Solid-Liquid Interfaces Visualized in Three-Dimension. NANO LETTERS 2019; 19:8862-8867. [PMID: 31642321 DOI: 10.1021/acs.nanolett.9b03688] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Solid-liquid interfaces play an important role for functional devices. Hence, a detailed understanding of the interaction of soft matter objects with solid supports and of the often concomitant structural deformations is of great importance. We address this topic in a combined experimental and simulation approach. We investigated thermoresponsive poly(N-isopropylmethacrylamide) microgels (μGs) at different surfaces in an aqueous environment. As super-resolution fluorescence imaging method, three-dimensional direct stochastical optical reconstruction microscopy (dSTORM) allowed for visualizing μGs in their three-dimensional (3D) shape, for example, in a "fried-egg" conformation depending on the hydrophilicity of the surface (strength of adsorption). The 3D shape, as defined by point clouds obtained from single-molecule localizations, was analyzed. A new fitting algorithm yielded an isosurface of constant density which defines the deformation of μGs at the different surfaces. The presented methodology quantifies deformation of objects with fuzzy surfaces and allows for comparison of their structures, whereby it is completely independent from the data acquisition method. Finally, the experimental data are complemented with mesoscopic computer simulations in order to (i) rationalize the experimental results and (ii) to track the evolution of the shape with changing surface hydrophilicity; a good correlation of the shapes obtained experimentally and with computer simulations was found.
Collapse
Affiliation(s)
- Laura Hoppe Alvarez
- Institute of Physical Chemistry , RWTH Aachen University , Landoltweg 2 , D-52056 Aachen , Germany
| | - Sabine Eisold
- Institute of Inorganic Chemistry , RWTH Aachen University , Landoltweg 1 a , D-52056 Aachen , Germany
| | - Rustam A Gumerov
- Physics Department , Lomonosov Moscow State University , Leninskie Gory 1-2 , Moscow 119991 , Russian Federation
- DWI - Leibniz-Institute for Interactive Materials , Forckenbeckstraße 50 , D-52056 Aachen , Germany
| | - Martin Strauch
- Institute of Imaging and Computer Vision , RWTH Aachen University , Kopernikusstraße 16 , 52074 Aachen , Germany
| | - Andrey A Rudov
- Physics Department , Lomonosov Moscow State University , Leninskie Gory 1-2 , Moscow 119991 , Russian Federation
- DWI - Leibniz-Institute for Interactive Materials , Forckenbeckstraße 50 , D-52056 Aachen , Germany
| | - Pia Lenssen
- Institute of Physical Chemistry , RWTH Aachen University , Landoltweg 2 , D-52056 Aachen , Germany
| | - Dorit Merhof
- Institute of Imaging and Computer Vision , RWTH Aachen University , Kopernikusstraße 16 , 52074 Aachen , Germany
| | - Igor I Potemkin
- Physics Department , Lomonosov Moscow State University , Leninskie Gory 1-2 , Moscow 119991 , Russian Federation
- DWI - Leibniz-Institute for Interactive Materials , Forckenbeckstraße 50 , D-52056 Aachen , Germany
- National Research South Ural State University , Chelyabinsk 454080 , Russian Federation
| | - Ulrich Simon
- Institute of Inorganic Chemistry , RWTH Aachen University , Landoltweg 1 a , D-52056 Aachen , Germany
| | - Dominik Wöll
- Institute of Physical Chemistry , RWTH Aachen University , Landoltweg 2 , D-52056 Aachen , Germany
| |
Collapse
|
13
|
Gavrilov AA, Richtering W, Potemkin II. Polyelectrolyte Microgels at a Liquid–Liquid Interface: Swelling and Long-Range Ordering. J Phys Chem B 2019; 123:8590-8598. [DOI: 10.1021/acs.jpcb.9b07725] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Alexey A. Gavrilov
- Physics Department, Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | - Walter Richtering
- Institute of Physical Chemistry, RWTH Aachen University, Aachen 52056, Germany
| | - Igor I. Potemkin
- Physics Department, Lomonosov Moscow State University, Moscow 119991, Russian Federation
- DWI - Leibniz Institute for Interactive Materials, Aachen 52056, Germany
- National Research South Ural State University, Chelyabinsk 454080, Russian Federation
| |
Collapse
|
14
|
Karg M, Pich A, Hellweg T, Hoare T, Lyon LA, Crassous JJ, Suzuki D, Gumerov RA, Schneider S, Potemkin II, Richtering W. Nanogels and Microgels: From Model Colloids to Applications, Recent Developments, and Future Trends. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:6231-6255. [PMID: 30998365 DOI: 10.1021/acs.langmuir.8b04304] [Citation(s) in RCA: 374] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nanogels and microgels are soft, deformable, and penetrable objects with an internal gel-like structure that is swollen by the dispersing solvent. Their softness and the potential to respond to external stimuli like temperature, pressure, pH, ionic strength, and different analytes make them interesting as soft model systems in fundamental research as well as for a broad range of applications, in particular in the field of biological applications. Recent tremendous developments in their synthesis open access to systems with complex architectures and compositions allowing for tailoring microgels with specific properties. At the same time state-of-the-art theoretical and simulation approaches offer deeper understanding of the behavior and structure of nano- and microgels under external influences and confinement at interfaces or at high volume fractions. Developments in the experimental analysis of nano- and microgels have become particularly important for structural investigations covering a broad range of length scales relevant to the internal structure, the overall size and shape, and interparticle interactions in concentrated samples. Here we provide an overview of the state-of-the-art, recent developments as well as emerging trends in the field of nano- and microgels. The following aspects build the focus of our discussion: tailoring (multi)functionality through synthesis; the role in biological and biomedical applications; the structure and properties as a model system, e.g., for densely packed arrangements in bulk and at interfaces; as well as the theory and computer simulation.
Collapse
Affiliation(s)
- Matthias Karg
- Physical Chemistry I , Heinrich-Heine-University Duesseldorf , 40204 Duesseldorf , Germany
| | - Andrij Pich
- DWI-Leibnitz-Institute for Interactive Materials e.V. , 52056 Aachen , Germany
- Functional and Interactive Polymers, Institute for Technical and Macromolecular Chemistry , RWTH Aachen University , 52056 Aachen , Germany
| | - Thomas Hellweg
- Physical and Biophysical Chemistry , Bielefeld University , 33615 Bielefeld , Germany
| | - Todd Hoare
- Department of Chemical Engineering , McMaster University , Hamilton , Ontario L8S 4L8 , Canada
| | - L Andrew Lyon
- Schmid College of Science and Technology , Chapman University , Orange , California 92866 , United States
| | - J J Crassous
- Institute of Physical Chemistry , RWTH Aachen University , 52056 Aachen , Germany
| | | | - Rustam A Gumerov
- DWI-Leibnitz-Institute for Interactive Materials e.V. , 52056 Aachen , Germany
- Physics Department , Lomonosov Moscow State University , Moscow 119991 , Russian Federation
| | - Stefanie Schneider
- Institute of Physical Chemistry , RWTH Aachen University , 52056 Aachen , Germany
| | - Igor I Potemkin
- DWI-Leibnitz-Institute for Interactive Materials e.V. , 52056 Aachen , Germany
- Physics Department , Lomonosov Moscow State University , Moscow 119991 , Russian Federation
- National Research South Ural State University , Chelyabinsk 454080 , Russian Federation
| | - Walter Richtering
- Institute of Physical Chemistry , RWTH Aachen University , 52056 Aachen , Germany
| |
Collapse
|