1
|
Zeng Z, Li Z, Li Q, Song G, Huo M. Strong and Tough Nanostructured Hydrogels and Organogels Prepared by Polymerization-Induced Self-Assembly. SMALL METHODS 2023; 7:e2201592. [PMID: 36965093 DOI: 10.1002/smtd.202201592] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/20/2023] [Indexed: 06/09/2023]
Abstract
In nature, the hierarchical structure of biological tissues endows them with outstanding mechanics and elaborated functions. However, it remains a great challenge to construct biomimetic hydrogels with well-defined nanostructures and good mechanical properties. Herein, polymerization-induced self-assembly (PISA) is for the first time exploited as a general strategy for nanostructured hydrogels and organogels with tailored nanodomains and outstanding mechanical properties. As a proof-of-concept, PISA of BAB triblock copolymer is used to fabricate hydrogels with precisely regulated spherical nanodomains. These nanostructured hydrogels are strong, tough, stretchable, and recoverable, with mechanical properties correlating to their nanostructure. The outstanding mechanical properties are ascribed to the unique network architecture, where the entanglements of the hydrophilic chains act as slip links that transmit the tension to the micellar crosslinkers, while the micellar crosslinkers dissipate the energy via reversible deformation and irreversible detachment of the constituting polymers. The general feasibility of the PISA strategy toward nanostructured gels is confirmed by the successful fabrication of nanostructured hydrogels, alcogels, poly(ethylene glycol) gels, and ionogels with various PISA formulations. This work has provided a general platform for the design and fabrication of biomimetic hydrogels and organogels with tailorable nanostructures and mechanics and will inspire the design of functional nanostructured gels.
Collapse
Affiliation(s)
- Zhong Zeng
- Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Ziyun Li
- Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Qili Li
- Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Guangjie Song
- CAS Key Laboratory of Engineering Plastics and CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China
| | - Meng Huo
- Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| |
Collapse
|
2
|
Liu G, Larson RG, Li L, Luo H, He X, Niu Y, Li G. Influence of Chain Entanglement on Rheological and Mechanical Behaviors of Polymerized Ionic Liquids. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
3
|
Xie R, Lapkriengkri I, Pramanik NB, Mukherjee S, Blankenship JR, Albanese K, Wang H, Chabinyc ML, Bates CM. Hydrogen-Bonding Bottlebrush Networks: Self-Healing Materials from Super-Soft to Stiff. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Zhang X, Wei W, Xiong H. Hierarchical Dynamics of Nonsticky Molecular Nanoparticle-Tethered Polymers: End and Topology Effects. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
5
|
Ghosh A, Samanta S, Ge S, Sokolov AP, Schweizer KS. Influence of Attractive Functional Groups on the Segmental Dynamics and Glass Transition in Associating Polymers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ashesh Ghosh
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- Materials Research Laboratory, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Subarna Samanta
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Sirui Ge
- Department of Material Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Alexei P. Sokolov
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Kenneth S. Schweizer
- Department of Materials Science & Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department of Chemical & Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
6
|
Wu S, Chen Q. Advances and New Opportunities in the Rheology of Physically and Chemically Reversible Polymers. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01605] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Shilong Wu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Quan Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|
7
|
Mahmad Rasid I, Do C, Holten-Andersen N, Olsen BD. Effect of sticker clustering on the dynamics of associative networks. SOFT MATTER 2021; 17:8960-8972. [PMID: 34553209 DOI: 10.1039/d1sm00392e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Recent experimental and theoretical work has shown that sticker clustering can be used to enhance properties such as toughness and creep resistance of polymer networks. While it is clear that the changes in properties are related to a change in network topology, the mechanistic relationship is still not well understood. In this work, the effect of sticker clustering was investigated by comparing the dynamics of random copolymers with those where the stickers are clustered at the ends of the chain in the unentangled regime using both linear mechanics and diffusion measurements. Copolymers of N,N-dimethyl acrylamide (DMA) and pendant histidine groups were synthesized using reversible addition-fragmentation chain transfer (RAFT) polymerization. The clustered polymers were synthesized using a bifunctional RAFT agent, such that the midblock consisted of PDMA and the two end blocks were random copolymers of DMA and the histidine-functionalized monomer. Upon addition of Ni ions, transient metal-coordinate crosslinks are formed as histidine-Ni complexes. Combined studies of rheology, neutron scattering and self-diffusion measurements using forced Rayleigh scattering revealed changes to the network topology and stress relaxation modes. The network topology is proposed to consist of aggregates of the histidine-Ni complexes bridged by the non-associative midblock. Therefore, stress relaxation requires the cooperative dissociation of multiple bonds, resulting in increased relaxation times. The increased relaxation times, however, were accompanied by faster diffusion. This is attributed to the presence of defects such as elastically inactive chain loops. This study demonstrates that the effects of cooperative sticker dissociation can be observed even in the presence of a significant fraction of loop defects which are known to alter the nonlinear properties of conventional telechelic polymers.
Collapse
Affiliation(s)
- Irina Mahmad Rasid
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.
| | - Changwoo Do
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - Niels Holten-Andersen
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.
| | - Bradley D Olsen
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.
| |
Collapse
|
8
|
Yang H, Wu S, Chen Q. How to Choose a Secondary Interaction to Improve Stretchability of Associative Polymers? Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01283] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Huanhuan Yang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022 Changchun, China
- University of Science and Technology of China, 230026 Hefei, China
| | - Shilong Wu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022 Changchun, China
| | - Quan Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022 Changchun, China
- University of Science and Technology of China, 230026 Hefei, China
| |
Collapse
|
9
|
Ge S, Samanta S, Tress M, Li B, Xing K, Dieudonné-George P, Genix AC, Cao PF, Dadmun M, Sokolov AP. Critical Role of the Interfacial Layer in Associating Polymers with Microphase Separation. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00275] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sirui Ge
- Department of Material Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Subarna Samanta
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Martin Tress
- Peter Debye Institute for Soft Matter Physics, Leipzig University, Leipzig 04103, Germany
| | - Bingrui Li
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Kunyue Xing
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | | | - Anne-Caroline Genix
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, F-34095 Montpellier, France
| | - Peng-Fei Cao
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Mark Dadmun
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Alexei P. Sokolov
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| |
Collapse
|
10
|
Liu S, Cao X, Huang C, Weiss RA, Zhang Z, Chen Q. Brittle-to-Ductile Transition of Sulfonated Polystyrene Ionomers. ACS Macro Lett 2021; 10:503-509. [PMID: 35549231 DOI: 10.1021/acsmacrolett.1c00018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This study examines the brittle-to-ductile transition of sulfonated polystyrene ionomers (SPS) with different counterions. The polystyrene precursor was unentangled and had two ionic groups per chain on average. Thus, its terminal relaxation time was comparable to the lifetime of the associating ionic groups. Three types of ionomer samples were used to tune the association lifetime: (1) fully neutralized SPS with different alkali-metal counterions, (2) fully neutralized SPS with mixed sodium and cesium counterions, and (3) partially neutralized SPS with sodium or cesium counterions. For all three systems, the brittle-to-ductile transition could be represented by a diagram of two Weissenberg numbers, Wi and WiR, defined with respect to the terminal and Rouse relaxation times, respectively. A flowable region existed at sufficiently low Wi, independent of WiR. At higher Wi, a brittle-to-ductile transition of the ionomer melt occurred above a critical value of WiR. To achieve ductility during the application of rapid elongational flow, the Rouse-type motions should be sufficiently slow relative to the rate of ion-dissociation, so that the strain-induced breakup of the ionic cross-links would not cause very strong chain retraction that may further lead to the macroscopic fracture.
Collapse
Affiliation(s)
- Shuang Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022 Changchun, China
- University of Science and Technology of China, 230026 Hefei, China
| | - Xiao Cao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022 Changchun, China
- University of Science and Technology of China, 230026 Hefei, China
| | - Chongwen Huang
- Department of Polymer Engineering, University of Akron, Akron, Ohio 44325, United States
| | - R. A. Weiss
- Department of Polymer Engineering, University of Akron, Akron, Ohio 44325, United States
| | - Zhijie Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022 Changchun, China
| | - Quan Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022 Changchun, China
- University of Science and Technology of China, 230026 Hefei, China
| |
Collapse
|
11
|
Abstract
We combine ideas from polymer and glassy liquid physics to construct a new model for the bond-breaking time scale of attractive sticker groups in associating copolymer liquids that form transient networks. The activated event is argued to be a two-step process, involving first the release of the nonsticker dynamic caging constraints that defines the primary alpha relaxation, followed by attractive stickers surmounting an association free-energy barrier subject to a local frictional resistance which can be strongly affected by relaxation-diffusion decoupling. The ideas embedded in the model produce a consistent and good description of the bond-breaking time scale for diverse polymer chemistries and architectures as a function of temperature and fraction of sticky groups. Chemically sensible values for association free energies are deduced. In strong contrast, the existing phenomenological models are shown to incur qualitative failures.
Collapse
|
12
|
Qiu X, Xue H, Xu L, Wang R, Qiu S, He Q, Bu W. Synthesis and hierarchical self-assembly of luminescent platinum( ii)-containing telechelic metallopolymers. Polym Chem 2021. [DOI: 10.1039/d1py00835h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Luminescent telechelic metallopolymers functionalized with platinum(ii) complexes can self-assemble into flowerlike micelles, and the resulting flowers can further form vesicle-like architectures in solution.
Collapse
Affiliation(s)
- Xiandeng Qiu
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Hua Xue
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Lin Xu
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Ran Wang
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Shengchao Qiu
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Qun He
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Weifeng Bu
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| |
Collapse
|
13
|
Liu S, Wu S, Chen Q. Using Coupling Motion of Connecting Ions in Designing Telechelic Ionomers. ACS Macro Lett 2020; 9:917-923. [PMID: 35648601 DOI: 10.1021/acsmacrolett.0c00256] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Conventional telechelic ionomers have one ion fixed at each end, enabling the chains to form a physical network. Here we report a type of telechelic ionomers with a distribution of the number of ions at the chain ends, which endows them with very rich rheological properties. We synthesized the ionomer samples via a two-step polymerization. Namely, we synthesized a precursor chain first and then polymerized a few ion-containing monomers at its two ends. An average number of ion-containing monomers per chain end, m, varies from 0 to 3.0. Linear viscoelasticity of these samples can be well explained through considering the Poisson distribution of m, and the hierarchical relaxation of the chains ends according to the number of connecting ions that exhibit the coupling motion.
Collapse
Affiliation(s)
- Shuang Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022, People's Republic of China.,University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Shilong Wu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022, People's Republic of China
| | - Quan Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022, People's Republic of China.,University of Science and Technology of China, Hefei 230026, People's Republic of China
| |
Collapse
|
14
|
Zhang R, Zhang C, Yang Z, Wu Q, Sun P, Wang X. Hierarchical Dynamics in a Transient Polymer Network Cross-Linked by Orthogonal Dynamic Bonds. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00407] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Rongchun Zhang
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Chi Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education and College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Zhijun Yang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education and College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Qiang Wu
- Key Laboratory of Functional Polymer Materials of the Ministry of Education and College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Pingchuan Sun
- Key Laboratory of Functional Polymer Materials of the Ministry of Education and College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, P. R. China
| | - Xiaoliang Wang
- Key Laboratory of High-Performance Polymer Materials and Technology of Ministry of Education, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|
15
|
Wu S, Yang H, Huang S, Chen Q. Relationship between Reaction Kinetics and Chain Dynamics of Vitrimers Based on Dioxaborolane Metathesis. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02162] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Shilong Wu
- Chinese Academy of Sciences, Changchun Institute of Applied Chemistry, State Key Lab of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Renmin Street 5625, Changchun 130022, Jilin, China
| | - Huanhuan Yang
- Chinese Academy of Sciences, Changchun Institute of Applied Chemistry, State Key Lab of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Renmin Street 5625, Changchun 130022, Jilin, China
| | - Shaoyong Huang
- Chinese Academy of Sciences, Changchun Institute of Applied Chemistry, State Key Lab of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Renmin Street 5625, Changchun 130022, Jilin, China
| | - Quan Chen
- Chinese Academy of Sciences, Changchun Institute of Applied Chemistry, State Key Lab of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Renmin Street 5625, Changchun 130022, Jilin, China
| |
Collapse
|
16
|
Golkaram M, Loos K. A Critical Approach to Polymer Dynamics in Supramolecular Polymers. Macromolecules 2019; 52:9427-9444. [PMID: 31894159 PMCID: PMC6933822 DOI: 10.1021/acs.macromol.9b02085] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/01/2019] [Indexed: 12/15/2022]
Abstract
Over the past few years, the concurrent (1) development of polymer synthesis and (2) introduction of new mathematical models for polymer dynamics have evolved the classical framework for polymer dynamics once established by Doi-Edwards/de Gennes. Although the analysis of supramolecular polymer dynamics based on linear rheology has improved a lot recently, there are a large number of insecurities behind the conclusions, which originate from the complexity of these novel systems. The interdependent effect of supramolecular entities (stickers) and chain dynamics can be overwhelming depending on the type and location of stickers as well as the architecture and chemistry of polymers. This Perspective illustrates these parameters and strives to determine what is still missing and has to be improved in the future works.
Collapse
Affiliation(s)
- Milad Golkaram
- Macromolecular Chemistry
and New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747
AG Groningen, The Netherlands
| | - Katja Loos
- Macromolecular Chemistry
and New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747
AG Groningen, The Netherlands
| |
Collapse
|
17
|
Affiliation(s)
- Xiao Cao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xinyue Yu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jian Qin
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Quan Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|
18
|
Yolsal U, Wang M, Royer JR, Shaver MP. Rheological Characterization of Polymeric Frustrated Lewis Pair Networks. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00271] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Utku Yolsal
- School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
- School of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Meng Wang
- School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - John R. Royer
- School of Physics and Astronomy, University of Edinburgh, King’s Buildings, Peter Guthrie Tait Road, Edinburgh EH9 3FD, U.K
| | - Michael P. Shaver
- School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
- School of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| |
Collapse
|