1
|
Vinci V, Flachard D, Henke H, Bouchet R, Drockenmuller E. Enhancing the Performances of Lithium Batteries through Functionalization of Porous Polyolefin Separators with Cross-Linked Single-Ion Polymer Electrolytes. ACS APPLIED MATERIALS & INTERFACES 2025; 17:25742-25753. [PMID: 40241287 DOI: 10.1021/acsami.5c02134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Lithium-ion batteries (LiBs) require advanced separators to meet the growing demands of high energy density, safety, and durability. However, conventional polyolefin separators often suffer from poor electrolyte wettability and limited ionic conductivity, hindering the overall battery performance. This study presents a scalable approach for the surface functionalization of porous polyolefin separators using single-ion statistical copolymers bearing lithium sulfonate or lithium trifluoromethanesulfonamidosulfonyl groups. These copolymers are deposited via a wet coating process followed by UV cross-linking, achieving durable and uniform functionalization without compromising the separator's porous structure. The functionalized separators exhibit significantly enhanced wettability, electrolyte uptake, and effective ionic conductivity. Electrochemical performance tests of LiBs reveal stable interfacial resistance, improved cycle life, and better rate capabilities owing to the effectiveness of the covalently bonded ionic groups in promoting selective lithium-ion transport. This approach combines simplicity, scalability, and robust chemical stability, offering a promising solution for next-generation LiBs by addressing the key limitations of commercial separators.
Collapse
Affiliation(s)
- Valentin Vinci
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI, 38000 Grenoble, France
| | - Dimitri Flachard
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI, 38000 Grenoble, France
- Université Claude Bernard Lyon 1, CNRS, Ingénierie des Matériaux Polymères, UMR 5223, Villeurbanne F-69622, France
| | - Helena Henke
- Université Claude Bernard Lyon 1, CNRS, Ingénierie des Matériaux Polymères, UMR 5223, Villeurbanne F-69622, France
| | - Renaud Bouchet
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI, 38000 Grenoble, France
| | - Eric Drockenmuller
- Université Claude Bernard Lyon 1, CNRS, Ingénierie des Matériaux Polymères, UMR 5223, Villeurbanne F-69622, France
| |
Collapse
|
2
|
Qian J, Dong F, Chen X, Xu X, Zhang D, Li F, Gao Y, Sun H, Pang L, Tang X, Wang D. Facile Preparation of Polysiloxane-Modified Asphalt Binder Exhibiting Enhanced Performance. Polymers (Basel) 2023; 15:3795. [PMID: 37765649 PMCID: PMC10536769 DOI: 10.3390/polym15183795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/02/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
The development of polymer-modified asphalt (asphalt = asphalt binder) is significant because the polymer modifier can improve the performance of asphalt mixture and meet the requirements of the modern asphalt pavement. Herein, we present a novel polysiloxane-modified asphalt with enhanced performance, formed by simply mixing hydroxy-terminated polysiloxane (HO-PDMS) into base asphalt at 140 °C. The interaction mechanism of HO-PDMS in base asphalt was characterized by FT-IR, GPC, and DSC. It reveals that HO-PDMS polymers have been chemically bonded into the asphalt, and, thus, the resultant asphalt exhibits optimal compatibility and storage stability. The results based on fluorescence microscopy and a segregation test prove that HO-PDMS has good compatibility with base asphalt. Moreover, by virtue of the intriguing properties of polysiloxane, the present asphalt possesses improved low- and high-temperature properties, higher thermal stability, and enhanced hydrophobicity compared to conventional asphalt when using an appropriate dosage of HO-PDMS. DSC indicated that the Tg of modified asphalt (-12.8 °C) was obviously lower than that of base asphalt (-7.1 °C). DSR shows that the rutting parameter of modified asphalt was obviously higher than that of base asphalt. BBR shows that modified asphalt exhibited the lowest stiffness modulus and the highest creep rate with an HO-PDMS dosage of 6% and 4%, respectively. These results demonstrate that polysiloxane-modified asphalt can be promisingly utilized in realistic asphalt pavement with specific requirements, particularly high-/low-temperature resistance.
Collapse
Affiliation(s)
- Jinhua Qian
- School of Traffic and Civil Engineering, Shandong Jiaotong University, Jinan 250357, China
| | - Fuying Dong
- School of Traffic and Civil Engineering, Shandong Jiaotong University, Jinan 250357, China
| | - Xiaohui Chen
- School of Traffic and Civil Engineering, Shandong Jiaotong University, Jinan 250357, China
| | - Xianying Xu
- School of Traffic and Civil Engineering, Shandong Jiaotong University, Jinan 250357, China
| | - Dongkang Zhang
- School of Traffic and Civil Engineering, Shandong Jiaotong University, Jinan 250357, China
| | - Fulong Li
- School of Traffic and Civil Engineering, Shandong Jiaotong University, Jinan 250357, China
| | - Yuxia Gao
- School of Traffic and Civil Engineering, Shandong Jiaotong University, Jinan 250357, China
| | - Huadong Sun
- School of Traffic and Civil Engineering, Shandong Jiaotong University, Jinan 250357, China
| | - Laixue Pang
- School of Traffic and Civil Engineering, Shandong Jiaotong University, Jinan 250357, China
| | - Xinde Tang
- Institute of Intelligent Transportation, Shandong Jiaotong University, Jinan 250357, China
| | - Dengxu Wang
- National Engineering Research Center for Colloidal Materials & Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
3
|
UV- and thermally-active small bi-functional gelator for creating gradient polymer network coatings. Biointerphases 2023; 18:011001. [PMID: 36627232 DOI: 10.1116/6.0002268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
We present a versatile one-pot synthesis method for creating surface-anchored orthogonal gradient networks using a small bi-functional gelator, 4-azidosulfonylphenethyltrimethoxysilane (4-ASPTMS). The sulfonyl azide (SAz) group of 4-ASPTMS is UV (≤254 nm) and thermally active (≥100 °C) and, thus, enables us to vary the cross-link density in orthogonal directions by controlling the activation of SAz groups via UV and temperature means. We deposit a thin layer (∼200 nm) of a mixture comprising ∼90% precursor polymer and ∼10% 4-ASPTMS in a silicon wafer. Upon UV irradiation or annealing the layers, SAz releases nitrogen by forming singlet and triplet nitrenes that concurrently react with any C-H bond in the vicinity leading to sulfonamide cross-links. Condensation among trimethoxy groups in the bulk connects 4-ASPTMS units and completes the cross-linking. Simultaneously, 4-ASPTMS near the substrate reacts with surface-bound -OH motifs that anchor the cross-linked polymer chains to the substrate. We demonstrate the generation of orthogonal gradient network coatings exhibiting cross-link density (or stiffness) gradients in orthogonal directions using such a simple process.
Collapse
|
4
|
Jung DW, Hong SC. Combinations of dual-function azide-containing crosslinkers with C-H insertion capabilities for polymeric elastomers with improved adhesion properties. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Ko Y, Truong VK, Woo SY, Dickey MD, Hsiao L, Genzer J. Counterpropagating Gradients of Antibacterial and Antifouling Polymer Brushes. Biomacromolecules 2021; 23:424-430. [PMID: 34905339 DOI: 10.1021/acs.biomac.1c01386] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report on the formation of counterpropagating density gradients in poly([2-dimethylaminoethyl] methacrylate) (PDMAEMA) brushes featuring spatially varying quaternized and betainized units. Starting with PDMAEMA brushes with constant grafting density and degree of polymerization, we first generate a density gradient of quaternized units by directional vapor reaction involving methyl iodide. The unreacted DMAEMA units are then betainized through gaseous-phase betainization with 1,3-propanesultone. The gas reaction of PDMAEMA with 1,3-propanesultone eliminates the formation of byproducts present during the liquid-phase modification. We use the counterpropagating density gradients of quaternized and betainized PDMAEMA brushes in antibacterial and antifouling studies. Completely quaternized and betainized brushes exhibit antibacterial and antifouling behaviors. Samples containing 12% of quaternized and 85% of betainized units act simultaneously as antibacterial and antifouling surfaces.
Collapse
Affiliation(s)
- Yeongun Ko
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Vi Khanh Truong
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States.,Nanobiotechnology Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Sun Young Woo
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Lilian Hsiao
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Jan Genzer
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States.,Global Station for Soft Matter, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Hokkaido 060-0808, Japan
| |
Collapse
|
6
|
Pandiyarajan CK, Genzer J. UV- and Thermally-Active Bifunctional Gelators Create Surface-Anchored Polymer Networks. Macromol Rapid Commun 2021; 42:e2100266. [PMID: 34173291 DOI: 10.1002/marc.202100266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/26/2021] [Indexed: 11/05/2022]
Abstract
A versatile one-step synthesis of surface-attached polymer networks using small bifunctional gelators (SBG), namely 4-azidosulfonylphenethyltrimethoxysilane (4-ASPTMS) and 6-azidosulfonylhexyltriethoxysilane (6-ASHTES) is reported. A thin layer (≈200 nm) of a mixture comprising ≈90% precursor polymer and 10% of 4-ASPTMS or 10% 6-ASHTES on a silicon wafer is deposited. Upon UV irradiation (≈l-254 nm) or annealing (>100 °C) layers, sulfonyl azides (SAz) release nitrogen by forming singlet and triplet nitrenes that concurrently react with any C─H bond in the vicinity resulting in sulfonamide crosslinks. Condensation among tri-alkoxy groups (i.e., methoxy or ethoxy) in bulk connects the SBG units, which completes the crosslinking. Concurrently, when such functionalities react with hydroxyl groups at the surface, which enable the covalent attachment of the crosslinked polymer chains. A systematic investigation on reaction mechanism and gel formation using spectroscopic ellipsometry (SE) and Fourier-transform infrared spectroscopy in the attenuated total reflection mode (FTIR-ATR) is performed. Analogous thermally initiated gelation for both 4-ASPTMS and 6-ASHTES is found. The 6-ASHTES is UV inactive at ≈l-254 nm, while the 4-ASPTMS is active and forms gels. The difference is attributed to the aromatic nature of 4-ASPTMS that absorb UV light at ≈l-254 nm due to π-π* transition.
Collapse
Affiliation(s)
| | - Jan Genzer
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Hokkaido, 060-0808, Japan
| |
Collapse
|
7
|
Sun W, Liu W, Wu Z, Chen H. Chemical Surface Modification of Polymeric Biomaterials for Biomedical Applications. Macromol Rapid Commun 2020; 41:e1900430. [DOI: 10.1002/marc.201900430] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 02/08/2020] [Accepted: 02/16/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Wei Sun
- College of ChemistryChemical Engineering and Materials ScienceCollaborative Innovation Center for New Type Urbanization and Social Governance of Jiangsu ProvinceSoochow University Suzhou 215123 P. R. China
| | - Wenying Liu
- College of ChemistryChemical Engineering and Materials ScienceCollaborative Innovation Center for New Type Urbanization and Social Governance of Jiangsu ProvinceSoochow University Suzhou 215123 P. R. China
| | - Zhaoqiang Wu
- College of ChemistryChemical Engineering and Materials ScienceCollaborative Innovation Center for New Type Urbanization and Social Governance of Jiangsu ProvinceSoochow University Suzhou 215123 P. R. China
| | - Hong Chen
- College of ChemistryChemical Engineering and Materials ScienceCollaborative Innovation Center for New Type Urbanization and Social Governance of Jiangsu ProvinceSoochow University Suzhou 215123 P. R. China
| |
Collapse
|