1
|
Habets T, Méreau R, Siragusa F, Grignard B, Detrembleur C. Fast, Regioselective Aminolysis of Tetrasubstituted Cyclic Carbonates and Application to Recyclable Thermoplastics and Thermosets. ACS Macro Lett 2024; 13:1425-1432. [PMID: 39383047 DOI: 10.1021/acsmacrolett.4c00570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Herein, the long-standing challenge of the ring-opening aminolysis of CO2-derived tetrasubstituted cyclic carbonates at room temperature (r.T) is overcome under catalyst-free conditions. Molecular design of the cyclic carbonate by substitution of an alkyl group by a thioether unlocks quantitative conversion at r.T and ensures total regioselectivity toward highly substituted oxazolidone scaffolds. An in-depth rationalization of the high reactivity of these cyclic carbonate structures and of the aminolysis reaction mechanism is provided by a computational study supporting experimental observations. The high efficiency of the reaction is then translated to the deconstruction of high-performance thermoplastics containing tetrasubstituted cyclic carbonate linkages to deliver building blocks that are reused for designing recyclable thermosets bearing dynamic N,S-acetal linkages.
Collapse
Affiliation(s)
- Thomas Habets
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liege, Sart-Tilman B6a, 4000 Liege, Belgium
| | - Raphaël Méreau
- Institut des Sciences Moléculaires (ISM), Univ. Bordeaux, CNRS, Bordeaux INP - UMR 5255, F-33400 Talence, France
| | - Fabiana Siragusa
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liege, Sart-Tilman B6a, 4000 Liege, Belgium
| | - Bruno Grignard
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liege, Sart-Tilman B6a, 4000 Liege, Belgium
- FRITCO2T Platform, University of Liege, Sart-Tilman B6a, 4000 Liege, Belgium
| | - Christophe Detrembleur
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liege, Sart-Tilman B6a, 4000 Liege, Belgium
- WEL Research Institute, Wavre 1300, Belgium
| |
Collapse
|
2
|
Pal A, Wong AR, Lamb JR. Chemically Recyclable, High Molar Mass Polyoxazolidinones via Ring-Opening Metathesis Polymerization. ACS Macro Lett 2024; 13:502-507. [PMID: 38625148 DOI: 10.1021/acsmacrolett.4c00147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The development of robust methods for the synthesis of chemically recyclable polymers with tunable properties is necessary for the design of next-generation materials. Polyoxazolidinones (POxa), polymers with five-membered urethanes in their backbones, are an attractive target because they are strongly polar and have high thermal stability, but existing step-growth syntheses limit molar masses and methods to chemically recycle POxa to monomer are rare. Herein, we report the synthesis of high molar mass POxa via ring-opening metathesis polymerization of oxazolidinone-fused cyclooctenes. These novel polymers show <5% mass loss up to 382-411 °C and have tunable glass transition temperatures (14-48 °C) controlled by the side chain structure. We demonstrate facile chemical recycling to monomer and repolymerization despite moderately high monomer ring-strain energies, which we hypothesize are facilitated by the conformational restriction introduced by the fused oxazolidinone ring. This method represents the first chain growth synthesis of POxa and provides a versatile platform for the study and application of this emerging subclass of polyurethanes.
Collapse
Affiliation(s)
- Arpan Pal
- Department of Chemistry, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Allison R Wong
- Department of Chemistry, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Jessica R Lamb
- Department of Chemistry, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
3
|
Siragusa F, Crane L, Stiernet P, Habets T, Grignard B, Monbaliu JCM, Detrembleur C. Continuous Flow Synthesis of Functional Isocyanate-Free Poly(oxazolidone)s by Step-Growth Polymerization. ACS Macro Lett 2024; 13:644-650. [PMID: 38717381 DOI: 10.1021/acsmacrolett.4c00203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Flow chemistry presents many advantages over batch processes for the fast and continuous production of polymers under more robust, safer, and easily scalable conditions. Although largely exploited for chain-growth polymerizations, it has rarely been applied to step-growth polymerizations (SGP) due to their inherent limitations. Here, we report the facile and fast preparation of an emerging class of nonisocyanate polyurethanes, i.e., CO2-based poly(oxazolidone)s, by SGP in continuous flow reactors. Importantly, we also demonstrate that functional poly(oxazolidone)s are easily prepared by telescoping a flow module where SGP occurs with reagents able to simultaneously promote two polymer derivatizations in a second module, i.e., dehydration followed by cationic thiol-ene to yield poly(N,S-acetal oxazolidone)s. The functional polymer is produced at a high rate and functionalization degree, without requiring the isolation of any intermediates. This work demonstrates the enormous potential of flow technology for the facile and fast continuous production of functional polymers by SGP.
Collapse
Affiliation(s)
- Fabiana Siragusa
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liège, Sart-Tilman B6a, 4000 Liège, Belgium
| | - Lionel Crane
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liège, Sart-Tilman B6a, 4000 Liège, Belgium
- Center for Integrated Technology and Organic Synthesis (CiTOS), MolSys Research Unit, University of Liège, Sart-Tilman B6a, 4000 Liège, Belgium
| | - Pierre Stiernet
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liège, Sart-Tilman B6a, 4000 Liège, Belgium
| | - Thomas Habets
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liège, Sart-Tilman B6a, 4000 Liège, Belgium
| | - Bruno Grignard
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liège, Sart-Tilman B6a, 4000 Liège, Belgium
- FRITCO2T Platform, CESAM Research Unit, University of Liège, Sart-Tilman B6a, 4000 Liège, Belgium
| | - Jean-Christophe M Monbaliu
- Center for Integrated Technology and Organic Synthesis (CiTOS), MolSys Research Unit, University of Liège, Sart-Tilman B6a, 4000 Liège, Belgium
- WEL Research Institute, 1300 Wavre, Belgium
| | - Christophe Detrembleur
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liège, Sart-Tilman B6a, 4000 Liège, Belgium
- WEL Research Institute, 1300 Wavre, Belgium
| |
Collapse
|
4
|
Das K, Halder S. Synthesis of Functionalized Five-Membered Heterocycles from Epoxides: A Hydrogen-Bond Donor Catalytic Approach. J Org Chem 2023; 88:12872-12883. [PMID: 36007267 DOI: 10.1021/acs.joc.2c00902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The synthesis of highly functionalized five-membered oxa- and aza-heterocycles has been reported utilizing hydrogen-bond donor (HBD) catalysis. In this method, an epoxide was taken as a substrate and reacted with functionalized arylidene/alkylidene malononitrile derivatives in the presence of a newly designed HBD catalyst. In all the cases, the products 2,5-disubstituted tetrahydrofurans (2,5-THFs) were obtained in good to excellent yields (up to 86%) with high diastereoselectivity (dr up to 99:1) as a single regioisomer. The stereochemistry at the 2- and 5-positions of the five-membered ring has been confirmed by single-crystal X-ray analysis, and cis is found to be the major product. The same strategy has been further utilized to obtain substituted oxazolidines whenever the epoxide has been reacted with isocyanate as an electrophile. In order to induce enantioselectivity, a chiral epoxide has been reacted with both the electrophiles in the presence of the same catalyst system to afford the single stereoisomer of the final products. This synthetic methodology involves a low catalyst loading and ambient reaction condition and has been generalized with various substituents present in the starting electrophiles to produce the resultant products in acceptable yields and stereoselectivity.
Collapse
Affiliation(s)
- Koushik Das
- Department of Chemistry, Visvesvaraya National Institute of Technology (VNIT), Nagpur, Maharashtra 440010, India
| | - Sandipan Halder
- Department of Chemistry, Visvesvaraya National Institute of Technology (VNIT), Nagpur, Maharashtra 440010, India
| |
Collapse
|
5
|
Wong AR, Barrera M, Pal A, Lamb JR. Improved Characterization of Polyoxazolidinones by Incorporating Solubilizing Side Chains. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c02104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Affiliation(s)
- Allison R. Wong
- Department of Chemistry, University of Minnesota─Twin Cities, 207 Pleasant Street SE, Minneapolis, Minnesota55455, United States
| | - Melissa Barrera
- Department of Chemistry, University of Minnesota─Twin Cities, 207 Pleasant Street SE, Minneapolis, Minnesota55455, United States
| | - Arpan Pal
- Department of Chemistry, University of Minnesota─Twin Cities, 207 Pleasant Street SE, Minneapolis, Minnesota55455, United States
| | - Jessica R. Lamb
- Department of Chemistry, University of Minnesota─Twin Cities, 207 Pleasant Street SE, Minneapolis, Minnesota55455, United States
| |
Collapse
|
6
|
Affiliation(s)
- Chao Chen
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Yves Gnanou
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Xiaoshuang Feng
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| |
Collapse
|
7
|
Altmann HJ, Steinmann M, Elser I, Benedikter MJ, Naumann S, Buchmeiser MR. Dual catalysis with an
N
‐heterocyclic
carbene and a Lewis acid: Thermally latent
precatalyst
for the polymerization of
ε‐caprolactam. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Hagen J. Altmann
- Institute of Polymer Chemistry University of Stuttgart Stuttgart Germany
| | - Mark Steinmann
- German Institutes of Textile and Fiber Research Denkendorf Denkendorf Germany
| | - Iris Elser
- Institute of Polymer Chemistry University of Stuttgart Stuttgart Germany
| | | | - Stefan Naumann
- Institute of Polymer Chemistry University of Stuttgart Stuttgart Germany
| | - Michael R. Buchmeiser
- Institute of Polymer Chemistry University of Stuttgart Stuttgart Germany
- German Institutes of Textile and Fiber Research Denkendorf Denkendorf Germany
| |
Collapse
|
8
|
Altmann HJ, Frey W, Buchmeiser MR. A Spirocyclic Parabanic Acid Masked N-Heterocyclic Carbene as Thermally Latent Pre-Catalyst for Polyamide 6 Synthesis and Epoxide Curing. Macromol Rapid Commun 2020; 41:e2000338. [PMID: 32909339 DOI: 10.1002/marc.202000338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/14/2020] [Indexed: 11/06/2022]
Abstract
1,3-Dicyclcohexyl-6,9-dimethyl-1,3,6,9-tetraazaspiro[4.4]non-7-ene-2,4-dione, a spirocyclic parabanic acid derivative of N,N-dimethylimidazole, is used as thermally latent, protected N-heterocyclic carbene (NHC) in polymerizing anhydride-cured epoxide resins, and azepan-2-one, respectively. The protected carbene is synthesized from 1,3-dimethylimidazolium-2-carboxylate in the presence of two equivalents of cyclohexyl isocyanate. In the synthesis of epoxide resin thermosets, this class of latent NHC allows the production of fast and fully cured materials with high crosslinking content. Fast and complete conversion is found in the anionic ring opening polymerization (AROP) of azepan-2-one (ε-caprolactam, CLA) with and without additional activators.
Collapse
Affiliation(s)
- Hagen J Altmann
- Institute of Polymer Chemistry, University of Stuttgart, Pfaffenwaldring 55, Stuttgart, 70569, Germany
| | - Wolfgang Frey
- Institute of Organic Chemistry, University of Stuttgart, Pfaffenwaldring 55, Stuttgart, 70569, Germany
| | - Michael R Buchmeiser
- Institute of Polymer Chemistry, University of Stuttgart, Pfaffenwaldring 55, Stuttgart, 70569, Germany
| |
Collapse
|
9
|
Habets T, Siragusa F, Grignard B, Detrembleur C. Advancing the Synthesis of Isocyanate-Free Poly(oxazolidones)s: Scope and Limitations. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01231] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Thomas Habets
- Centre for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liege, Sart-Tilman
B6a, Quartier Agora, Liege 4000, Belgium
| | - Fabiana Siragusa
- Centre for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liege, Sart-Tilman
B6a, Quartier Agora, Liege 4000, Belgium
| | - Bruno Grignard
- Centre for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liege, Sart-Tilman
B6a, Quartier Agora, Liege 4000, Belgium
| | - Christophe Detrembleur
- Centre for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liege, Sart-Tilman
B6a, Quartier Agora, Liege 4000, Belgium
| |
Collapse
|
10
|
Delaude L. The Chemistry of Azolium‐Carboxylate Zwitterions and Related Compounds: a Survey of the Years 2009–2020. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000639] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Lionel Delaude
- Laboratory of CatalysisMolSys Research UnitInstitut de Chimie Organique (B6a)Université de Liège Allée du six Août 13 4000 Liège Belgium
| |
Collapse
|
11
|
von Seggern N, Schindler T, Naumann S. Dual Catalytic Ring-Opening Polymerization of Ethylene Carbonate for the Preparation of Degradable PEG. Biomacromolecules 2020; 21:2661-2669. [DOI: 10.1021/acs.biomac.0c00360] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Nils von Seggern
- Institute of Polymer Chemistry, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Tamara Schindler
- Institute of Polymer Chemistry, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Stefan Naumann
- Institute of Polymer Chemistry, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| |
Collapse
|
12
|
Wang Z, Detrembleur C, Debuigne A. Reversible deactivation radical (co)polymerization of dimethyl methylene oxazolidinone towards responsive vicinal aminoalcohol-containing copolymers. Polym Chem 2020. [DOI: 10.1039/d0py01255f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Well-defined oxazolidinone-containing copolymers produced by controlled radical polymerization give access to multi-responsive vicinal amino-alcohol functional poly(vinyl alcohol)s.
Collapse
Affiliation(s)
- Zhuoqun Wang
- Center for Education and Research on Macromolecules (CERM)
- CESAM Research Unit
- University of Liege
- 4000 Liege
- Belgium
| | - Christophe Detrembleur
- Center for Education and Research on Macromolecules (CERM)
- CESAM Research Unit
- University of Liege
- 4000 Liege
- Belgium
| | - Antoine Debuigne
- Center for Education and Research on Macromolecules (CERM)
- CESAM Research Unit
- University of Liege
- 4000 Liege
- Belgium
| |
Collapse
|
13
|
Abstract
In the last ten years, the combination of Lewis acid with N-heterocyclic carbene (NHC) catalysis has emerged as a powerful strategy in a variety of important asymmetric synthesis, due to the ready availability of starting materials, operational simplicity and mild reaction conditions. Recent findings illustrate that Lewis acid could largely enhance the efficiency and enantioselectivity, reverse the diastereoselectivity, and even influence the pathway of the same reaction partners. Herein, this review aims to reveal the recent advances in NHC-Lewis acid synergistically promoted enantioselective reactions for the expeditious assembly of versatile biologically important chiral pharmaceuticals and natural products.
Collapse
|