1
|
Zhao P, Zhao Y, Lu Y, Xu L, Li B, Zhao Y, Zhou W, Yan P, Wang Y, Cao K, Zheng Y. Non-Equilibrium Dissipative Assembly with Switchable Biological Functions. Angew Chem Int Ed Engl 2024; 63:e202409169. [PMID: 39171425 DOI: 10.1002/anie.202409169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/05/2024] [Accepted: 08/20/2024] [Indexed: 08/23/2024]
Abstract
Natural dissipative assembly (DSA) often exhibit energy-driven shifts in natural functions. However, creating man-made DSA that can mimic such biological activities transformation remains relatively rare. Herein, we introduce a cytomembrane-like dissipative assembly system based on chiral supramolecules. This system employs benzoyl cysteine in an out of equilibrium manner, enabling the shifts in biofunctions while minimizing material use. Specifically, aroyl-cystine derivatives primarily assemble into stable M-helix nanofibers under equilibrium conditions. These nanofibers enhance fibroblast adhesion and proliferation through stereospecific interactions with chiral cellular membranes. Upon the addition of chemical fuels, these functional nanofibers temporarily transform into non-equilibrium nanospheres, facilitating efficient drug delivery. Subsequently, these nanospheres revert to their original nanofiber state, effectively recycling the drug. The programmable function-shifting ability of this DSA establishes it as a novel, fuel-driven drug delivery vehicle. And the bioactive DSA not only addresses a gap in synthetic DSAs within biological applications but also sets the stage for innovative designs of 'living' materials.
Collapse
Affiliation(s)
- Peng Zhao
- School of Physical Science and Technology &, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 201210, Shanghai, China
| | - Yuanfeng Zhao
- School of Physical Science and Technology &, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 201210, Shanghai, China
| | - Yan Lu
- School of Physical Science and Technology &, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 201210, Shanghai, China
| | - Linjie Xu
- School of Physical Science and Technology &, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 201210, Shanghai, China
| | - Bohan Li
- School of Physical Science and Technology &, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 201210, Shanghai, China
| | - Yingshuai Zhao
- School of Physical Science and Technology &, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 201210, Shanghai, China
| | - Wei Zhou
- School of Physical Science and Technology &, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 201210, Shanghai, China
| | - Pu Yan
- School of Physical Science and Technology &, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 201210, Shanghai, China
| | - Youfu Wang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Kecheng Cao
- School of Physical Science and Technology &, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 201210, Shanghai, China
| | - Yijun Zheng
- School of Physical Science and Technology &, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 201210, Shanghai, China
| |
Collapse
|
2
|
Jang YJ, Nguyen S, Hillmyer MA. Chemically Recyclable Linear and Branched Polyethylenes Synthesized from Stoichiometrically Self-Balanced Telechelic Polyethylenes. J Am Chem Soc 2024; 146:4771-4782. [PMID: 38323928 DOI: 10.1021/jacs.3c12660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
High-density polyethylene (HDPE) is a widely used commercial plastic due to its excellent mechanical properties, chemical resistance, and water vapor barrier properties. However, less than 10% of HDPE is mechanically recycled, and the chemical recycling of HDPE is challenging due to the inherent strength of the carbon-carbon backbone bonds. Here, we report chemically recyclable linear and branched HDPE with sparse backbone ester groups synthesized from the transesterification of telechelic polyethylene macromonomers. Stoichiometrically self-balanced telechelic polyethylenes underwent transesterification polymerization to produce the PE-ester samples with high number-average molar masses of up to 111 kg/mol. Moreover, the transesterification polymerization of the telechelic polyethylenes and the multifunctional diethyl 5-(hydroxymethyl)isophthalate generated branched PE-esters. Thermal and mechanical properties of the PE-esters were comparable to those of commercial HDPE and tunable through control of the ester content in the backbone. In addition, branched PE-esters showed higher levels of melt strain hardening compared with linear versions. The PE-ester was depolymerized into telechelic macromonomers through straightforward methanolysis, and the resulting macromonomers could be effectively repolymerized to generate a high molar mass recycled PE-ester sample. This is a new and promising method for synthesizing and recycling high-molar-mass linear and branched PE-esters, which are competitive with HDPE and have easily tailorable properties.
Collapse
Affiliation(s)
- Yoon-Jung Jang
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Sam Nguyen
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Marc A Hillmyer
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
3
|
Zhao XT, Men YF. Thermal Fractionation of Polyolefins: Brief History, New Developments and Future Perspective. POLYMER SCIENCE SERIES A 2022. [DOI: 10.1134/s0965545x22700419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Abstract
For semi-crystalline polymer materials, the difference in chain structure often leads to different physical properties; therefore, in-depth analysis of the chain structure is of great significance. With the continuous development of advanced instruments, many research means have emerged to characterize the structure of molecular chains. Among them, fractionation techniques provide effectively structural information on inter- and intra-molecular comonomer distribution, branching degree, and sequence length, etc. This work briefly presents the history of developments of various classical fractionation means such as temperature-rising elution fractionation, stepwise crystallization and successive self-nucleation and annealing, while focusing on the present and future of their applications.
Collapse
|
4
|
Crystallization behavior and structure of metallocene polyethylene with long-chain branch. Colloid Polym Sci 2022. [DOI: 10.1007/s00396-021-04925-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Pérez-Camargo RA, Liu G, Meabe L, Zhao Y, Sardon H, Müller AJ, Wang D. Using Successive Self-Nucleation and Annealing to Detect the Solid–Solid Transitions in Poly(hexamethylene carbonate) and Poly(octamethylene carbonate). Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ricardo Arpad Pérez-Camargo
- CAS Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Guoming Liu
- CAS Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Leire Meabe
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Donostia-San Sebastián 20018, Spain
| | - Ying Zhao
- CAS Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haritz Sardon
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Donostia-San Sebastián 20018, Spain
| | - Alejandro J. Müller
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Donostia-San Sebastián 20018, Spain
- IKESBASQUE, Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Spain
| | - Dujin Wang
- CAS Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Scoponi G, Francini N, Paradiso V, Donno R, Gennari A, d’Arcy R, Capacchione C, Athanassiou A, Tirelli N. Versatile Preparation of Branched Polylactides by Low-Temperature, Organocatalytic Ring-Opening Polymerization in N-Methylpyrrolidone and Their Surface Degradation Behavior. Macromolecules 2021; 54:9482-9495. [PMID: 34720189 PMCID: PMC8552446 DOI: 10.1021/acs.macromol.1c01503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/16/2021] [Indexed: 11/28/2022]
Abstract
We describe how the organocatalytic, 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU)-based lactide ring-opening polymerization can be effectively performed in a very polar solvent, N-methylpyrrolidone (NMP). Due to a low ceiling temperature, this "living" mechanism has been unreported to date, but we here demonstrate that through a combination of low temperature and repeated monomer additions (starve-fed process), this mechanism enables the generation of a plethora of multifunctional homo- and (stereo)block-poly(lactide)s (PLAs) with exquisite control of the molecular weight dispersity (typically Đ < 1.1) and topology (from linear through 4-, 6-, or 8-armed stars and up to ∼140 armed combs). They are scarcely obtainable or inaccessible through more classical synthetic methods due to the poor solubility of multifunctional initiators (polyols) in most organic solvents and monomer melts. In these precisely designed structures, branching significantly altered the nature of the materials' hydrolytic degradation, allowing them to acquire a pronounced surface character (as opposed to the bulk degradation of linear polymers). Finally, we have assessed the amenability of this method to in situ block copolymerization by using the tacticity of PLLA blocks in PLLA-b-PDLLA versus PDLLA-b-PLLA (L-LA polymerized before or after DL-LA) as a sensitive method to detect (stereochemical) defects.
Collapse
Affiliation(s)
- Giulia Scoponi
- Smart
Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- DIBRIS, University of Genova, Via Opera Pia 13, 16145 Genova, Italy
| | - Nora Francini
- Laboratory
of Polymers Biomaterials, Istituto Italiano
di Tecnologia, Via Morego
30, 16163 Genoa, Italy
| | - Veronica Paradiso
- Department
of Chemistry and Biology “Adolfo Zambelli”, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Roberto Donno
- Laboratory
of Polymers Biomaterials, Istituto Italiano
di Tecnologia, Via Morego
30, 16163 Genoa, Italy
| | - Arianna Gennari
- Laboratory
of Polymers Biomaterials, Istituto Italiano
di Tecnologia, Via Morego
30, 16163 Genoa, Italy
| | - Richard d’Arcy
- Laboratory
of Polymers Biomaterials, Istituto Italiano
di Tecnologia, Via Morego
30, 16163 Genoa, Italy
| | - Carmine Capacchione
- Department
of Chemistry and Biology “Adolfo Zambelli”, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | | | - Nicola Tirelli
- Laboratory
of Polymers Biomaterials, Istituto Italiano
di Tecnologia, Via Morego
30, 16163 Genoa, Italy
- School
of Health Sciences, University of Manchester, Oxford Road, M13 9PL Manchester, U.K.
| |
Collapse
|
7
|
Infante Teixeira L, Landfester K, Thérien-Aubin H. Selective Oxidation of Polysulfide Latexes to Produce Polysulfoxide and Polysulfone in a Waterborne Environment. Macromolecules 2021; 54:3659-3667. [PMID: 34083842 PMCID: PMC8161668 DOI: 10.1021/acs.macromol.1c00382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/28/2021] [Indexed: 11/27/2022]
Abstract
Polymers containing sulfur centers with high oxidation states in the main chain, polysulfoxide and polysulfone, display desirable properties such as thermomechanical and chemical stability. To circumvent their challenging direct synthesis, methods based on the oxidation of a parent polysulfide have been developed but are plagued by uncontrolled reactions, leading either to ill-defined mixtures of polysulfoxides and polysulfones or to polysulfones with reduced degrees of polymerization due to overoxidation of the polymer. We developed an alternative method to produce well-defined polysulfoxide and polysulfone in a waterborne colloidal emulsion using different oxidants to control the oxidation state of sulfur in the final materials. The direct oxidation of water-based polysulfide latexes avoided the use of volatile organic solvents and allowed for the control of the oxidation state of the sulfur atoms. Oxidation of parent polysulfides by tert-butyl hydroperoxide led to the production of pure polysulfoxides, even after 70 days of reaction time. Additionally, hydrogen peroxide produced both species through the course of the reaction but yielded fully converted polysulfones after 24 h. By employing mild oxidants, our approach controlled the oxidation state of the sulfur atoms in the final sulfur-containing polymer and prevented any overoxidation, thus ensuring the integrity of the polymer chains and colloidal stability of the system. We also verified the selectivity, versatility, and robustness of the method by applying it to polysulfides of different chemical compositions and structures. The universality demonstrated by this method makes it a powerful yet simple platform for the design of sulfur-containing polymers and nanoparticles.
Collapse
Affiliation(s)
| | - Katharina Landfester
- Max Planck Institute for
Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | | |
Collapse
|
8
|
Fernández‐d'Arlas B, Maiz J, Pérez‐Camargo RA, Baumann R, Pöselt E, Dabbous R, Stribeck A, Müller AJ. SSA
fractionation of thermoplastic polyurethanes. POLYMER CRYSTALLIZATION 2021. [DOI: 10.1002/pcr2.10148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Borja Fernández‐d'Arlas
- Faculty of Chemistry, Department of Polymer Science and Technology POLYMAT and University of the Basque Country UPV/EHU Donostia‐San Sebastián Spain
- Grupo 'Materiales+Tecnologías' (GMT), Escuela Universitaria de Gipuzkoa, Universidad del País Vasco (UPV/EHU) Donostia‐San Sebastián Spain
| | - Jon Maiz
- Faculty of Chemistry, Department of Polymer Science and Technology POLYMAT and University of the Basque Country UPV/EHU Donostia‐San Sebastián Spain
- Centro de Física de Materiales (CFM) (CSIC‐UPV/EHU)—Materials Physics Center (MPC) Donostia‐San Sebastián Spain
- IKERBASQUE, Basque Foundation for Science Bilbao Spain
| | - Ricardo A. Pérez‐Camargo
- Faculty of Chemistry, Department of Polymer Science and Technology POLYMAT and University of the Basque Country UPV/EHU Donostia‐San Sebastián Spain
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences Beijing China
| | | | | | | | - Almut Stribeck
- Department of Chemistry University of Hamburg Hamburg Germany
| | - Alejandro J. Müller
- Faculty of Chemistry, Department of Polymer Science and Technology POLYMAT and University of the Basque Country UPV/EHU Donostia‐San Sebastián Spain
- IKERBASQUE, Basque Foundation for Science Bilbao Spain
| |
Collapse
|
9
|
Sangroniz L, Ocando C, Cavallo D, Müller AJ. Melt Memory Effects in Poly(Butylene Succinate) Studied by Differential Fast Scanning Calorimetry. Polymers (Basel) 2020; 12:E2796. [PMID: 33256010 PMCID: PMC7761523 DOI: 10.3390/polym12122796] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/19/2020] [Accepted: 11/22/2020] [Indexed: 11/17/2022] Open
Abstract
It is widely accepted that melt memory effect on polymer crystallization depends on thermal history of the material, however a systematic study of the different parameters involved in the process has been neglected, so far. In this work, poly(butylene succinate) has been selected to analyze the effect of short times and high cooling/heating rates that are relevant from an industrial point of view by taking advantage of fast scanning calorimetry (FSC). The FSC experiments reveal that the width of melt memory temperature range is reduced with the time spent at the self-nucleation temperature (Ts), since annealing of crystals occurs at higher temperatures. The effectiveness of self-nuclei to crystallize the sample is addressed by increasing the cooling rate from Ts temperature. The effect of previous standard state on melt memory is analyzed by (a) changing the cooling/heating rate and (b) applying successive self-nucleation and annealing (SSA) technique, observing a strong correlation between melting enthalpy or crystallinity degree and the extent of melt memory. The acquired knowledge can be extended to other semicrystalline polymers to control accurately the melt memory effect and therefore, the time needed to process the material and its final performance.
Collapse
Affiliation(s)
- Leire Sangroniz
- POLYMAT, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain;
| | - Connie Ocando
- POLYMAT, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain;
| | - Dario Cavallo
- Department of Chemistry and Industrial Chemistry, University of Genova, via Dodecaneso 31, 16146 Genova, Italy
| | - Alejandro J. Müller
- POLYMAT, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain;
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
10
|
Affiliation(s)
- Leire Sangroniz
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain
| | - Dario Cavallo
- Department of Chemistry and Industrial Chemistry, University of Genova, via Dodecaneso, 31, 16146 Genova, Italy
| | - Alejandro J. Müller
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE - Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
11
|
El Mohtadi F, d’Arcy R, Burke J, Rios De La Rosa JM, Gennari A, Marotta R, Francini N, Donno R, Tirelli N. “Tandem” Nanomedicine Approach against Osteoclastogenesis: Polysulfide Micelles Synergically Scavenge ROS and Release Rapamycin. Biomacromolecules 2019; 21:305-318. [DOI: 10.1021/acs.biomac.9b01348] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Farah El Mohtadi
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Richard d’Arcy
- Laboratory of Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Jason Burke
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Julio M. Rios De La Rosa
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Arianna Gennari
- Laboratory of Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Roberto Marotta
- Electron Microscopy Facility, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Nora Francini
- Laboratory of Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Roberto Donno
- Laboratory of Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Nicola Tirelli
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
- Laboratory of Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy
| |
Collapse
|
12
|
Xu M, Guo C, Dou H, Zuo Y, Sun Y, Zhang J, Li W. Tailoring the degradation and mechanical properties of poly(ε-caprolactone) incorporating functional ε-caprolactone-based copolymers. Polym Chem 2019. [DOI: 10.1039/c9py00174c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Functional block copolymers (COPs) were synthesized through the ring-opening polymerization, and the effects of COPs on the hydrolytic & oxidative degradation and mechanical properties of PCL/COP composites were studied.
Collapse
Affiliation(s)
- Mi Xu
- School of Chemical Engineering & Technology
- Tianjin University; Collaborative Innovation Center of Chemical Science & Chemical Engineering
- Tianjin
- P.R. China
| | - Cuili Guo
- School of Chemical Engineering & Technology
- Tianjin University; Collaborative Innovation Center of Chemical Science & Chemical Engineering
- Tianjin
- P.R. China
| | - Haozhen Dou
- School of Chemical Engineering & Technology
- Tianjin University; Collaborative Innovation Center of Chemical Science & Chemical Engineering
- Tianjin
- P.R. China
| | - Yi Zuo
- School of Chemical Engineering & Technology
- Tianjin University; Collaborative Innovation Center of Chemical Science & Chemical Engineering
- Tianjin
- P.R. China
| | - Yawei Sun
- School of Chemical Engineering & Technology
- Tianjin University; Collaborative Innovation Center of Chemical Science & Chemical Engineering
- Tianjin
- P.R. China
| | - Jinli Zhang
- School of Chemical Engineering & Technology
- Tianjin University; Collaborative Innovation Center of Chemical Science & Chemical Engineering
- Tianjin
- P.R. China
| | - Wei Li
- School of Chemical Engineering & Technology
- Tianjin University; Collaborative Innovation Center of Chemical Science & Chemical Engineering
- Tianjin
- P.R. China
| |
Collapse
|