1
|
Molkenthin M, Hupf E, Nachtsheim BJ. Dibenzyl isophthalates as versatile hosts in room temperature phosphorescence host-guest systems. Chem Sci 2025; 16:2819-2829. [PMID: 39811010 PMCID: PMC11726582 DOI: 10.1039/d4sc07768g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025] Open
Abstract
We report a series of dibenzyl isophthalates (DBIs) as novel hosts for room-temperature phosphorescence (RTP) host-guest systems, achieving RTP quantum yields (QY) of up to 77% or lifetimes of up to 21.0 s with the guest coronene-d 12. Furthermore, a 4,4'-Br substituted DBI was used to form host-guest RTP systems with 15 different aromatic guest molecules, to tune the phosphorescence emission color from blue to red and to demonstrate the versatility of the host. Mechanistic insights were gained through a host-guest-matrix system which shows RTP by trace combinations of a 4,4'-Br DBI host (0.10 wt%) and a pyrene-d 10 guest (0.01 wt%) in an otherwise non-RTP-emissive aromatic matrix. This work establishes DBIs as readily available and versatile, tunable hosts for RTP host-guest systems, posing an alternative to polymeric hosts.
Collapse
Affiliation(s)
- Martin Molkenthin
- University of Bremen, Institute for Organic and Analytical Chemistry 28359 Bremen Germany
| | - Emanuel Hupf
- University of Bremen, Institute of Inorganic Chemistry and Crystallography 28359 Bremen Germany
| | - Boris J Nachtsheim
- University of Bremen, Institute for Organic and Analytical Chemistry 28359 Bremen Germany
| |
Collapse
|
2
|
Zhang M, Lan X, Ding M, Han C, Liu XW, Meng Z, Yu ZQ, An Z. Dynamic Organic Phosphorescence Glass by Rigid-Soft Coupling. Angew Chem Int Ed Engl 2025; 64:e202415250. [PMID: 39301990 DOI: 10.1002/anie.202415250] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/14/2024] [Accepted: 09/19/2024] [Indexed: 09/22/2024]
Abstract
Organic phosphorescence glass has garnered considerable attention owing to the excellent shaping ability and photophysical behavior, but facile construction from single-component phosphors is still challenging. Herein, a rigid-soft coupling design is adopted in organic phosphors of ICO, CCO and PCO, thus preparing phosphorescence glasses through melting-quenching method to give excellent shaping ability and dynamic phosphorescence. RTP performance is significantly enhanced in the dense-structure glass, and intriguing high-temperature phosphorescence (HTP) is still observable even at 400 K. Direct patterning under UV irradiation is also achieved using photolithography technique, allowing for the creation of high-quality afterglow patterns that can be reversibly erased and rewritten. This rigid-soft conformation in organic phosphors elucidates a promising concept for achieving efficient RTP glass with wide application prospects.
Collapse
Affiliation(s)
- Meng Zhang
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Xiaohui Lan
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Meijuan Ding
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Chaoyi Han
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Xing Wang Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518071, China
| | - Zhengong Meng
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518071, China
| | - Zhen-Qiang Yu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518071, China
| | - Zhongfu An
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| |
Collapse
|
3
|
Qu R, Jiang X, Zhen X. Light/X-ray/ultrasound activated delayed photon emission of organic molecular probes for optical imaging: mechanisms, design strategies, and biomedical applications. Chem Soc Rev 2024; 53:10970-11003. [PMID: 39380344 DOI: 10.1039/d4cs00599f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Conventional optical imaging, particularly fluorescence imaging, often encounters significant background noise due to tissue autofluorescence under real-time light excitation. To address this issue, a novel optical imaging strategy that captures optical signals after light excitation has been developed. This approach relies on molecular probes designed to store photoenergy and release it gradually as photons, resulting in delayed photon emission that minimizes background noise during signal acquisition. These molecular probes undergo various photophysical processes to facilitate delayed photon emission, including (1) charge separation and recombination, (2) generation, stabilization, and conversion of the triplet excitons, and (3) generation and decomposition of chemical traps. Another challenge in optical imaging is the limited tissue penetration depth of light, which severely restricts the efficiency of energy delivery, leading to a reduced penetration depth for delayed photon emission. In contrast, X-ray and ultrasound serve as deep-tissue energy sources that facilitate the conversion of high-energy photons or mechanical waves into the potential energy of excitons or the chemical energy of intermediates. This review highlights recent advancements in organic molecular probes designed for delayed photon emission using various energy sources. We discuss distinct mechanisms, and molecular design strategies, and offer insights into the future development of organic molecular probes for enhanced delayed photon emission.
Collapse
Affiliation(s)
- Rui Qu
- MOE Key Laboratory of High Performance Polymer Materials & Technology and State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.
| | - Xiqun Jiang
- MOE Key Laboratory of High Performance Polymer Materials & Technology and State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.
| | - Xu Zhen
- MOE Key Laboratory of High Performance Polymer Materials & Technology and State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
4
|
Jiang P, Liu Y, Ding B, Ma X. Regulation Strategies of Dynamic Organic Room-Temperature Phosphorescence Materials. CHEM & BIO ENGINEERING 2024; 1:13-25. [PMID: 39973973 PMCID: PMC11835169 DOI: 10.1021/cbe.3c00095] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/23/2024] [Indexed: 02/21/2025]
Abstract
Recently, organic room-temperature phosphorescence (RTP) materials, especially those with reversible responses to external stimuli, have attracted extensive attention. A dynamic regulation strategy enables the materials to rapidly respond to external stimuli, gifting varied RTP performance and greater application potential in sensitive sensing, detection, and so on. For these reasons, this Review summarizes progress in the regulation of dynamic RTP in recent years. It focuses on physical regulatory factors including light, heat, and mechanical force as well as chemical regulatory factors including water, pH, and oxygen. It is expected to be beneficial for developing smart materials with dynamic RTP in the future.
Collapse
Affiliation(s)
- Ping Jiang
- Key Laboratory for Advanced
Materials and Feringa Nobel Prize Scientist Joint Research Center,
Frontiers Science Center for Materiobiology and Dynamic Chemistry,
School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yiwei Liu
- Key Laboratory for Advanced
Materials and Feringa Nobel Prize Scientist Joint Research Center,
Frontiers Science Center for Materiobiology and Dynamic Chemistry,
School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Bingbing Ding
- Key Laboratory for Advanced
Materials and Feringa Nobel Prize Scientist Joint Research Center,
Frontiers Science Center for Materiobiology and Dynamic Chemistry,
School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xiang Ma
- Key Laboratory for Advanced
Materials and Feringa Nobel Prize Scientist Joint Research Center,
Frontiers Science Center for Materiobiology and Dynamic Chemistry,
School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
5
|
Lu F, Xu X, Zhu X, Shen L, Wan W, Hu M. Based on FRET to construct color-tunable ultralong lifetime room temperature phosphorescent carbon dots in aqueous solution. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123404. [PMID: 37722162 DOI: 10.1016/j.saa.2023.123404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 08/20/2023] [Accepted: 09/12/2023] [Indexed: 09/20/2023]
Abstract
Room temperature phosphorescent (RTP) Carbon Dots have been capturing increasing attention in recent years, while building a general method to adjust the emission color of RTP carbon dots is still a big challenge. Herein we report a simple method that combine the carbon nanodots and dyes (R6G and DCF) in SiO2 nanosphere to get a series of multicolor RTP nanodots (CD@SiO2@dye) with long lifetime in aqueous solution. Leverage on chitosan quaternary ammonium as matrix and diethylenetriamine as N-doping resource to form a cross-linked skeleton as a luminescent center (namely CD), and a rigid network is formed by silica encapsulation (CD@SiO2) to restrict the non-radiative transition process to generate the phosphorescence. The CD-based composites, with 1.10 s green (503 nm) phosphorescence emission, serve as activator to stimulate the corresponding luminescence of organic dyes. Then, based on Förster resonance energy transfer (FRET) process from CDs (as donor) to organic dyes (as acceptor) under UV excitation, the CD@SiO2@R6G emit ultra-long lifetime (1.13 s) orange-yellow (570 nm) afterglow, and CD@SiO2@DCF emit ultra-long lifetime (1.20 s) yellow-green afterglow (530 nm). Furthermore, it also achieves RTP colors control when the ratio of CDs and the dyes changes, the ratio of green emission and dye's emission activated by CDs will gradually change as well. These kinds of materials keep the inherent advantages of low toxicity and luminous stability, and achieve adjustable RTP color in aqueous solution. Our research provides a strategy to synthesize water-soluble long-life RTP CDs with adjustable color and lifetime.
Collapse
Affiliation(s)
- Feng Lu
- School of Medicine, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Xinhuan Xu
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Xingdong Zhu
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Linxin Shen
- School of Medicine, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Weizheng Wan
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Min Hu
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, PR China.
| |
Collapse
|
6
|
Gong W, Huang G, Zhou M, Fan C, Yuan Y, Zhang H. Synthesis and Properties of Room-Temperature Phosphorescent Liquid Crystal Copolymers with Linearly Polarized Luminescence Characteristic. ACS APPLIED MATERIALS & INTERFACES 2023; 15:49701-49711. [PMID: 37846058 DOI: 10.1021/acsami.3c14313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Room-temperature phosphorescent (RTP) liquid crystal materials have garnered considerable attention because of their significant applications in organic light emitting diodes, polarized light emitting materials, and so forth. How to efficiently synthesize pure organic RTP liquid crystals and regulate their performance is of great significance. In this article, we propose a simple and feasible method to synthesize RTP liquid crystals and manipulate their properties through copolymerization. We constructed RTP liquid crystal copolymers by copolymerizing a phosphorescent monomer bearing biphenyl mesogen with a phosphorescent monomer bearing a dibenzofuran chromophore. All the synthesized copolymers show a liquid crystal property because of the introduction of biphenyl mesogen. Meanwhile, by changing the composition of copolymers, it is possible to regulate their RTP performance, including luminescence color and lifetime. As the content of the PMDFM0C component in copolymers increases, the phosphorescence lifetime gradually increases. For poly(MDFM0C(0.46)-co-MBi18C(0.54)), the phosphorescence lifetime can reach 463.0 ms. Moreover, the phosphorescence color of the PMDFM0C component in copolymers changes with the copolymer composition, which can induce variable room-temperature phosphorescence. In addition, when oriented, liquid crystal copolymer films can emit linearly polarized fluorescence and linearly polarized phosphorescence. The linearly polarized phosphorescence dichroic ratio and polarization ratio values of the oriented poly(MDFM0C(0.46)-co-MBi18C(0.54)) film are 3.33 and 0.50, respectively.
Collapse
Affiliation(s)
- Wei Gong
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, Key Laboratory of Advanced Organic Functional Materials of Colleges and Universities of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan 411105, Hunan Province, China
| | - Guiyan Huang
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, Key Laboratory of Advanced Organic Functional Materials of Colleges and Universities of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan 411105, Hunan Province, China
| | - Mengdie Zhou
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, Key Laboratory of Advanced Organic Functional Materials of Colleges and Universities of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan 411105, Hunan Province, China
| | - Chunyan Fan
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, Key Laboratory of Advanced Organic Functional Materials of Colleges and Universities of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan 411105, Hunan Province, China
| | - Yongjie Yuan
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, Key Laboratory of Advanced Organic Functional Materials of Colleges and Universities of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan 411105, Hunan Province, China
| | - Hailiang Zhang
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, Key Laboratory of Advanced Organic Functional Materials of Colleges and Universities of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan 411105, Hunan Province, China
| |
Collapse
|
7
|
Lin ZZ, Wang Y, Wu Y, Yang XB, Chen Y, Li HC. Sensitive room-temperature phosphorescence for luminometric and visual monitoring of the dynamic evolution of acrylate-vinylidene chloride copolymers. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 286:122016. [PMID: 36283210 DOI: 10.1016/j.saa.2022.122016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/30/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Unlike fluorescence, room-temperature phosphorescence (RTP) has never been utilized to monitor the dynamic variation of polymer. In the present study, acrylate-vinylidene chloride (VDC) copolymers were doped with a good RTP molecule, N-hydroxyethyl 4-bromo-1,8-naphthalimide (HBN). During the maturation process, marked RTP-intensity enhancement of HBN was observed due to the crystallinity increase of copolymers, verified by X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR). For ensuring the more efficient RTP emission of HBN, copolymers with a higher content of crystallizable VDC segments and a more polar acrylate comonomer, i.e. methyl acrylate (MA) were preferred. According to the RTP characterizations, the following deductions could be obtained: (1) Maturation for 8-9 days at room temperature was needed for the copolymers with a high VDC content to ensure the complete crystallization; (2) Raising the maturation temperature to 50 and 70 °C not only accelerated the crystallization rate, but also increased the crystallinity of copolymers; (3) RTP method was more sensitive to the slight crystallinity variation than XRD and FTIR. Moreover, the dynamic maturation processes of acrylate-VDC copolymers could be also visually monitored through contacting with certain organic solvents that led to the emission color transition from orange to blue.
Collapse
Affiliation(s)
- Ze-Zhong Lin
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, China; Key Laboratory of Resource Chemistry and Eco-Environmental Protection in Tibetan Plateau of State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Qinghai Minzu University, Xining 810007, Qinghai Province, China
| | - Yan Wang
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, China
| | - Yue Wu
- Key Laboratory of Resource Chemistry and Eco-Environmental Protection in Tibetan Plateau of State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Qinghai Minzu University, Xining 810007, Qinghai Province, China
| | - Xiao-Bo Yang
- Key Laboratory of Resource Chemistry and Eco-Environmental Protection in Tibetan Plateau of State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Qinghai Minzu University, Xining 810007, Qinghai Province, China
| | - Yu Chen
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, China; Key Laboratory of Resource Chemistry and Eco-Environmental Protection in Tibetan Plateau of State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Qinghai Minzu University, Xining 810007, Qinghai Province, China.
| | - Hai-Chao Li
- Key Laboratory of Resource Chemistry and Eco-Environmental Protection in Tibetan Plateau of State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Qinghai Minzu University, Xining 810007, Qinghai Province, China.
| |
Collapse
|
8
|
Li Z, Chen M, Chen Z, Zhu YL, Guo C, Wang H, Qin Y, Fang F, Wang D, Su C, He C, Yu X, Lu ZY, Li X. Non-equilibrium Nanoassemblies Constructed by Confined Coordination on a Polymer Chain. J Am Chem Soc 2022; 144:22651-22661. [PMID: 36411055 DOI: 10.1021/jacs.2c09726] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Biological systems employ non-equilibrium self-assembly to create ordered nanoarchitectures with sophisticated functions. However, it is challenging to construct artificial non-equilibrium nanoassemblies due to lack of control over assembly dynamics and kinetics. Herein, we design a series of linear polymers with different side groups for further coordination-driven self-assembly based on shape-complementarity. Such a design introduces a main-chain confinement which effectively slows down the assembly process of side groups, thus allowing us to monitor the real-time evolution of lychee-like nanostructures. The function related to the non-equilibrium nature is further explored by performing photothermal conversion study. The ability to observe and capture non-equilibrium states in this supramolecular system will enhance our understanding of the thermodynamic and kinetic features as well as functions of living systems.
Collapse
Affiliation(s)
- Zhikai Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China.,Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Min Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Zhi Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - You-Liang Zhu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Chenxing Guo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Heng Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Yi Qin
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Fang Fang
- Instrumental Analysis Center, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Dong Wang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Chenliang Su
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Chuanxin He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Xiujun Yu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Zhong-Yuan Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China.,Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen, Guangdong 518055, China
| |
Collapse
|
9
|
Zhu W, Xing H, Li E, Zhu H, Huang F. Room-Temperature Phosphorescence in the Amorphous State Enhanced by Copolymerization and Host–Guest Complexation. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Weijie Zhu
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Hao Xing
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Errui Li
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Huangtianzhi Zhu
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, People’s Republic of China
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
| |
Collapse
|
10
|
Ultralong organic phosphorescence from isolated molecules with repulsive interactions for multifunctional applications. Nat Commun 2022; 13:4890. [PMID: 35986007 PMCID: PMC9391375 DOI: 10.1038/s41467-022-32029-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 07/14/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractIntermolecular interactions, including attractive and repulsive interactions, play a vital role in manipulating functionalization of the materials from micro to macro dimensions. Despite great success in generation of ultralong organic phosphorescence (UOP) by suppressing non-radiative transitions through attractive interactions recently, there is still no consideration of repulsive interactions on UOP. Herein, we proposed a feasible approach by introducing carboxyl groups into organic phosphors, enabling formation of the intense repulsive interactions between the isolated molecules and the matrix in rigid environment. Our experimental results show a phosphor with a record lifetime and quantum efficiency up to 3.16 s and 50.0% simultaneously in film under ambient conditions. Considering the multiple functions of the flexible films, the potential applications in anti-counterfeiting, afterglow display and visual frequency indicators were demonstrated. This finding not only outlines a fundamental principle to achieve bright organic phosphorescence in film, but also expands the potential applications of UOP materials.
Collapse
|
11
|
Mu B, Zhang Z, Hao X, Ma T, Tian W. Positional Isomerism-Mediated Copolymerization Realizing the Continuous Luminescence Color-Tuning of Liquid-Crystalline Polymers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bin Mu
- Shanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - Zhelin Zhang
- Shanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - Xiangnan Hao
- Shanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - Tianshu Ma
- Shanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - Wei Tian
- Shanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| |
Collapse
|
12
|
Dynamic room-temperature phosphorescence by reversible transformation of photo-induced free radicals. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1255-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Huang A, Li Q, Li Z. Molecular Uniting Set Identified Characteristic (
MUSIC
) of Organic Optoelectronic Materials. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Arui Huang
- Hubei Key Lab on Organic and Polymeric Opto‐Electronic Materials, Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University Wuhan 430072 China
| | - Qianqian Li
- Hubei Key Lab on Organic and Polymeric Opto‐Electronic Materials, Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University Wuhan 430072 China
| | - Zhen Li
- Hubei Key Lab on Organic and Polymeric Opto‐Electronic Materials, Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University Wuhan 430072 China
- Institute of Molecular Aggregation Science, Tianjin University Tianjin 300072 China
| |
Collapse
|
14
|
Wang D, Wu H, Gong J, Xiong Y, Wu Q, Zhao Z, Wang L, Wang D, Tang BZ. Unveiling the crucial contributions of electrostatic and dispersion interactions to the ultralong room-temperature phosphorescence of H-bond crosslinked poly(vinyl alcohol) films. MATERIALS HORIZONS 2022; 9:1081-1088. [PMID: 35072200 DOI: 10.1039/d1mh01829a] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Organic phosphors exhibiting room-temperature phosphorescence (RTP) in the amorphous phase are promising candidates for optoelectronic and biomedical applications. In particular, noncovalently embedding organic phosphors into a poly(vinyl alcohol) (PVA) matrix has emerged as the most commonly used yet effective approach to obtain amorphous organic RTP materials. While the role of intermolecular hydrogen-bonding interactions in determining the RTP properties of doping PVA systems has been well documented, we show that electrostatic and dispersion interactions contribute crucially to the ultralong RTP properties of doping PVA films. This impressive outcome reveals the nature of non-covalent interactions existing in doping PVA systems for the first time. We demonstrate this through detailed experimental and computational studies for a series of hydrogen-bond crosslinked PVA films where star-shaped organic phosphors containing active groups of carboxy, hydroxy, and amino act as multisite crosslinkers for the construction of extensive hydrogen-bonding networks. More importantly, we successfully obtain an ultralong RTP lifetime of up to 1.74 s by tuning the electrostatic and dispersion interactions between organic phosphors and the PVA matrix through simply modifying active groups of organic phosphors. This instructive work will provide new guiding principles for the exploration of amorphous organic RTP systems.
Collapse
Affiliation(s)
- Deliang Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518061, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518061, China.
| | - Hongzhuo Wu
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518061, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518061, China.
| | - Junyi Gong
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen City, Guangdong 518172, China.
| | - Yu Xiong
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518061, China
- HKUST Shenzhen Research Institute, Shenzhen 518057, China
| | - Qian Wu
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518061, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518061, China.
| | - Zheng Zhao
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen City, Guangdong 518172, China.
| | - Lei Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518061, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518061, China
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen City, Guangdong 518172, China.
- HKUST Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
15
|
Wang J, Lou X, Wang Y, Tang J, Yang Y. Recent Advances of Polymer‐Based Pure Organic Room Temperature Phosphorescent Materials. Macromol Rapid Commun 2021; 42:e2100021. [DOI: 10.1002/marc.202100021] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/17/2021] [Indexed: 12/11/2022]
Affiliation(s)
- Jun Wang
- College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Xin‐Yue Lou
- College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Yan Wang
- College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Jun Tang
- College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Ying‐Wei Yang
- College of Chemistry Jilin University Changchun 130012 P. R. China
- The State Key Laboratory of Refractories and Metallurgy School of Chemistry and Chemical Engineering Wuhan University of Science and Technology Wuhan 430081 P. R. China
| |
Collapse
|
16
|
Yin Z, Gu M, Ma H, Jiang X, Zhi J, Wang Y, Yang H, Zhu W, An Z. Molecular Engineering through Control of Structural Deformation for Highly Efficient Ultralong Organic Phosphorescence. Angew Chem Int Ed Engl 2020; 60:2058-2063. [DOI: 10.1002/anie.202011830] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Zheng Yin
- National Experimental Demonstration Center for Materials Science and Engineering Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications School of Materials Science & Engineering Changzhou University Changzhou 213164 China
- College of Chemistry Xiangtan University Xiangtan 411105 China
| | - Mingxing Gu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) 30 South Puzhu Road Nanjing 211816 China
| | - Huili Ma
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) 30 South Puzhu Road Nanjing 211816 China
| | - Xueyan Jiang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) 30 South Puzhu Road Nanjing 211816 China
| | - Jiahuan Zhi
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) 30 South Puzhu Road Nanjing 211816 China
| | - Yafei Wang
- National Experimental Demonstration Center for Materials Science and Engineering Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications School of Materials Science & Engineering Changzhou University Changzhou 213164 China
| | - Huifang Yang
- National Experimental Demonstration Center for Materials Science and Engineering Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications School of Materials Science & Engineering Changzhou University Changzhou 213164 China
| | - Weiguo Zhu
- National Experimental Demonstration Center for Materials Science and Engineering Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications School of Materials Science & Engineering Changzhou University Changzhou 213164 China
- College of Chemistry Xiangtan University Xiangtan 411105 China
| | - Zhongfu An
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) 30 South Puzhu Road Nanjing 211816 China
| |
Collapse
|
17
|
Yin Z, Gu M, Ma H, Jiang X, Zhi J, Wang Y, Yang H, Zhu W, An Z. Molecular Engineering through Control of Structural Deformation for Highly Efficient Ultralong Organic Phosphorescence. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011830] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Zheng Yin
- National Experimental Demonstration Center for Materials Science and Engineering Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications School of Materials Science & Engineering Changzhou University Changzhou 213164 China
- College of Chemistry Xiangtan University Xiangtan 411105 China
| | - Mingxing Gu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) 30 South Puzhu Road Nanjing 211816 China
| | - Huili Ma
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) 30 South Puzhu Road Nanjing 211816 China
| | - Xueyan Jiang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) 30 South Puzhu Road Nanjing 211816 China
| | - Jiahuan Zhi
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) 30 South Puzhu Road Nanjing 211816 China
| | - Yafei Wang
- National Experimental Demonstration Center for Materials Science and Engineering Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications School of Materials Science & Engineering Changzhou University Changzhou 213164 China
| | - Huifang Yang
- National Experimental Demonstration Center for Materials Science and Engineering Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications School of Materials Science & Engineering Changzhou University Changzhou 213164 China
| | - Weiguo Zhu
- National Experimental Demonstration Center for Materials Science and Engineering Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications School of Materials Science & Engineering Changzhou University Changzhou 213164 China
- College of Chemistry Xiangtan University Xiangtan 411105 China
| | - Zhongfu An
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) 30 South Puzhu Road Nanjing 211816 China
| |
Collapse
|
18
|
Crystal structures and magnetic properties of two Co(II) coordination polymers created via in situ ligand synthesis. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121573] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
19
|
Lyu X, Xiao A, Shi D, Li Y, Shen Z, Chen EQ, Zheng S, Fan XH, Zhou QF. Liquid crystalline polymers: Discovery, development, and the future. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122740] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Lv FN, Chen Y, Liu HJ. Dual-Emissive Coating Films Prepared from Water-Borne Latexes of Acrylate–Vinylidene Chloride Copolymers: Their Room-Temperature Phosphorescence Properties and Sensing Abilities toward Solvents. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00546] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fu-Ning Lv
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, P. R. China
| | - Yu Chen
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, P. R. China
- Tianjin Engineering Technology Center of Chemical Wastewater Source Reduction and Recycling, School of Science, Tianjin Chengjian University, Tianjin 300384, P. R. China
| | - Hua-Ji Liu
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, P. R. China
| |
Collapse
|
21
|
Su Z, Zhang R, Yan XY, Guo QY, Huang J, Shan W, Liu Y, Liu T, Huang M, Cheng SZ. The role of architectural engineering in macromolecular self-assemblies via non-covalent interactions: A molecular LEGO approach. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2020.101230] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
22
|
Yang S, Zhou B, Huang Q, Wang S, Zhen H, Yan D, Lin Z, Ling Q. Highly Efficient Organic Afterglow from a 2D Layered Lead-Free Metal Halide in Both Crystals and Thin Films under an Air Atmosphere. ACS APPLIED MATERIALS & INTERFACES 2020; 12:1419-1426. [PMID: 31833758 DOI: 10.1021/acsami.9b20502] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Organic afterglow materials (OAMs) with a lifetime longer than 0.1 s have recently received much attention for their fascinating properties meeting the critical requirements of applications in newly emerged technologies. However, the development of OAMs lags behind for their low luminescence efficiency. Usually, enhancing the phosphorescence efficiency of organic materials causes a short lifetime. Here, we report two kinds of OAMs, two-dimensional (2D) layered organic-inorganic hybrid zinc bromides (PEZB-NTA and PEZB-BPA), obtained in an environmentally friendly ethanol solvent by a low-temperature solution method. They display highly efficient and persistent luminescence in air in both crystals and thin films with phosphorescence quantum yields up to 42% in crystals and 27% in films. For OAMs, the two quantum yields are the highest values ever reported for crystals and films. Due to the excellent crystalline and film-forming ability, PEZB-NTA and PEZB-BPA in ethanol can be used as inks to construct patterns on various rigid and flexible substrates, including paper, iron, plastic, marble, tin foil, and cloth. Consequently, the novel OAMs show great application prospects in the fields of anti-counterfeiting and information storage because of their economic synthesis, solution processing, and easy operation.
Collapse
Affiliation(s)
- Shuming Yang
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science , Fujian Normal University , Fuzhou 350007 , China
| | - Bo Zhou
- College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Qiuqin Huang
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science , Fujian Normal University , Fuzhou 350007 , China
| | - Shuaiqi Wang
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science , Fujian Normal University , Fuzhou 350007 , China
| | - Hongyu Zhen
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science , Fujian Normal University , Fuzhou 350007 , China
| | - Dongpeng Yan
- College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Zhenghuan Lin
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science , Fujian Normal University , Fuzhou 350007 , China
| | - Qidan Ling
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science , Fujian Normal University , Fuzhou 350007 , China
| |
Collapse
|
23
|
Zheng JF, Tang T, Ding LL, Xu P, Zhang R, Peng DL, Yang S, Chen EQ. Phase Behavior of Phasmidic Mesogen-Jacketed Liquid Crystalline Polymers Displaying Chain Bundling. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jun-Feng Zheng
- Department of Applied Chemistry, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Tao Tang
- Department of Applied Chemistry, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lin-Lin Ding
- Department of Applied Chemistry, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Peng Xu
- Department of Applied Chemistry, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Rui Zhang
- Department of Applied Chemistry, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Dong-Lai Peng
- School of Material & Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, P. R. China
| | - Shuang Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Er-Qiang Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|