1
|
Duan Y, Zhao X, Nan X, Sun Z, Lei X, Wang W, Hao H, Li J. Anisotropic Microparticles with a Controllable Structure via Soap-Free Seeded Emulsion Polymerization. Molecules 2025; 30:166. [PMID: 39795222 PMCID: PMC11721275 DOI: 10.3390/molecules30010166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/26/2024] [Accepted: 01/01/2025] [Indexed: 01/13/2025] Open
Abstract
Anisotropic particles have a wide range of applications in materials science such as emulsion stabilization, oil-water separation, and catalysis due to their asymmetric structure and properties. Nevertheless, designing and synthesizing large quantities of anisotropic particles with controlled morphologies continue to present considerable challenges. In this study, we successfully synthesized anisotropic microspheres using a soap-free seed emulsion polymerization method. This approach combines the benefits of seed emulsion polymerization with emulsion interfacial polymerization. By varying the concentrations of dissolved polymeric monomers, 3-methacryloyloxypropyltrimethoxysilane (MPS), and the initiator of potassium persulfate (KPS), different shapes of bowl, cap, and three-sided concave particles were obtained in surfactant-free aqueous solutions, simplifying the post-treatment process. The cap particles are Janus particles with good emulsion stability to toluene/water emulsions over 30 days. The catalytic degradation of 4-nitrophenol (4-NP) was investigated after loading silver nanoparticles on the surface of the particles by in situ deposition. The anisotropic particles obtained in this work have potential applications in emulsion stabilization and catalysis.
Collapse
Affiliation(s)
- Yanping Duan
- Shaanxi Key Laboratory of Catalysis, School of Chemical and Environmental Science, Shaanxi University of Technology, Hanzhong 723001, China; (X.Z.); (X.N.); (Z.S.); (X.L.); (W.W.)
| | - Xia Zhao
- Shaanxi Key Laboratory of Catalysis, School of Chemical and Environmental Science, Shaanxi University of Technology, Hanzhong 723001, China; (X.Z.); (X.N.); (Z.S.); (X.L.); (W.W.)
| | - Xiang Nan
- Shaanxi Key Laboratory of Catalysis, School of Chemical and Environmental Science, Shaanxi University of Technology, Hanzhong 723001, China; (X.Z.); (X.N.); (Z.S.); (X.L.); (W.W.)
| | - Zhifeng Sun
- Shaanxi Key Laboratory of Catalysis, School of Chemical and Environmental Science, Shaanxi University of Technology, Hanzhong 723001, China; (X.Z.); (X.N.); (Z.S.); (X.L.); (W.W.)
| | - Xiaoyun Lei
- Shaanxi Key Laboratory of Catalysis, School of Chemical and Environmental Science, Shaanxi University of Technology, Hanzhong 723001, China; (X.Z.); (X.N.); (Z.S.); (X.L.); (W.W.)
| | - Wei Wang
- Shaanxi Key Laboratory of Catalysis, School of Chemical and Environmental Science, Shaanxi University of Technology, Hanzhong 723001, China; (X.Z.); (X.N.); (Z.S.); (X.L.); (W.W.)
| | - Hong Hao
- School of Chemical Engineering, Northwest University, Xi’an 710127, China
| | - Jianfang Li
- Department of Energy and Power Engineering, Shanxi Institute of Energy, Jinzhong 030600, China;
| |
Collapse
|
2
|
Li Y, Liu F, Demirci S, Dey UK, Rawah T, Chaudary A, Ortega R, Yang Z, Pirhadi E, Huang B, Yong X, Jiang S. Two sides of the coin: synthesis and applications of Janus particles. NANOSCALE 2024; 17:88-112. [PMID: 39564617 DOI: 10.1039/d4nr03652b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Named after the two-faced Roman god, Janus particles (JPs) are defined by their distinct dual chemical compositions on a single particle. Research on micron-sized JPs has yielded remarkable insights, showcasing their unique assembly behaviors both in bulk and at interfaces. However, significant challenges persist, particularly in the synthesis of smaller (<500 nm) JPs, which remains complex and difficult to scale up. To date, there has been no commercial success with JPs. Recently, seeded synthesis methods, such as emulsion polymerization that is already employed in industrial-scale manufacturing, have shown great promise. These methods enable the production of high-quality JPs with different sizes, morphologies, and functionalities. This advancement has inspired more efforts in exploring JP applications across various fields, including emulsion stabilization, drug delivery, electronic devices, and coatings. This review provides a comprehensive overview of the recent progress in the synthesis and application of polymeric JPs, with an emphasis on the seeded synthesis approach. It discusses the underlying reaction mechanisms and explores different strategies for controlling JP morphology. Serving as a roadmap, this review aims to guide the design of novel functional JPs and their potential future applications. The successful implementation of JPs will require careful consideration and a deep understanding of both synthesis and applications, as these are indeed two sides of the same coin.
Collapse
Affiliation(s)
- Yifan Li
- Department of Materials Science and Engineering, Iowa State University of Science and Technology, Ames, IA 50011, USA.
| | - Fei Liu
- Department of Materials Science and Engineering, Iowa State University of Science and Technology, Ames, IA 50011, USA.
| | - Serkan Demirci
- Department of Materials Science and Engineering, Iowa State University of Science and Technology, Ames, IA 50011, USA.
| | - Utsav Kumar Dey
- Department of Materials Science and Engineering, Iowa State University of Science and Technology, Ames, IA 50011, USA.
| | - Thamer Rawah
- Department of Materials Science and Engineering, Iowa State University of Science and Technology, Ames, IA 50011, USA.
| | - Aneeba Chaudary
- Department of Materials Science and Engineering, Iowa State University of Science and Technology, Ames, IA 50011, USA.
| | - Ricardo Ortega
- Department of Materials Science and Engineering, Iowa State University of Science and Technology, Ames, IA 50011, USA.
| | - Zhengtao Yang
- Department of Materials Science and Engineering, Iowa State University of Science and Technology, Ames, IA 50011, USA.
| | - Emad Pirhadi
- Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY 14260, USA
| | - Bingrui Huang
- Department of Materials Science and Engineering, Iowa State University of Science and Technology, Ames, IA 50011, USA.
| | - Xin Yong
- Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY 14260, USA
| | - Shan Jiang
- Department of Materials Science and Engineering, Iowa State University of Science and Technology, Ames, IA 50011, USA.
- Division of Materials Science & Engineering, Ames National Laboratory, Ames, IA 50011, USA
| |
Collapse
|
3
|
Chamolly A, Michelin S, Lauga E. Colloidal bubble propulsion mediated through viscous flows. SOFT MATTER 2024; 20:4744-4764. [PMID: 38837398 DOI: 10.1039/d4sm00114a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Bubble-propelled catalytic colloids stand out as a uniquely efficient design for artificial controllable micromachines, but so far lack a general theoretical framework that explains the physics of their propulsion. Here we develop a combined diffusive and hydrodynamic theory of bubble growth near a spherical catalytic colloid, that allows us to explain the underlying mechanism and the influence of environmental and material parameters. We identify two dimensionless groups, related to colloidal activity and the background fluid, that govern a saddle-node bifurcation of the bubble growth dynamics, and calculate the generated flows analytically for both slip and no slip boundary conditions on the bubble. We finish with a discussion of the assumptions and predictions of our model in the context of existing experimental results, and conclude that some of the observed behaviour, notably the ratchet-like gait, may stem from peculiarities of the experimental setup rather than fundamental physics of the propulsive mechanism.
Collapse
Affiliation(s)
- Alexander Chamolly
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Developmental and Stem Cell Biology Department, F-75015 Paris, France.
- Laboratoire de Physique de l'École normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, F-75005 Paris, France
| | - Sébastien Michelin
- LadHyX, CNRS - Ecole Polytechnique, Institut Polytechnique de Paris, F-91128 Palaiseau Cedex, France.
| | - Eric Lauga
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, CB3 0WA, Cambridge, UK.
| |
Collapse
|
4
|
Tao S, Lin B, Zhou H, Sha S, Hao X, Wang X, Chen J, Zhang Y, Pan J, Xu J, Zeng J, Wang Y, He X, Huang J, Zhao W, Fan JB. Janus particle-engineered structural lipiodol droplets for arterial embolization. Nat Commun 2023; 14:5575. [PMID: 37696820 PMCID: PMC10495453 DOI: 10.1038/s41467-023-41322-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/30/2023] [Indexed: 09/13/2023] Open
Abstract
Embolization (utilizing embolic materials to block blood vessels) has been considered one of the most promising strategies for clinical disease treatments. However, the existing embolic materials have poor embolization effectiveness, posing a great challenge to highly efficient embolization. In this study, we construct Janus particle-engineered structural lipiodol droplets by programming the self-assembly of Janus particles at the lipiodol-water interface. As a result, we achieve highly efficient renal embolization in rabbits. The obtained structural lipiodol droplets exhibit excellent mechanical stability and viscoelasticity, enabling them to closely pack together to efficiently embolize the feeding artery. They also feature good viscoelastic deformation capacities and can travel distally to embolize finer vasculatures down to 40 μm. After 14 days post-embolization, the Janus particle-engineered structural lipiodol droplets achieve efficient embolization without evidence of recanalization or non-target embolization, exhibiting embolization effectiveness superior to the clinical lipiodol-based emulsion. Our strategy provides an alternative approach to large-scale fabricate embolic materials for highly efficient embolization and exhibits good potential for clinical applications.
Collapse
Affiliation(s)
- Sijian Tao
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, P. R. China
- School of Biomedical Engineering, Southern Medical University, 510515, Guangzhou, P. R. China
| | - Bingquan Lin
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, P. R. China
| | - Houwang Zhou
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, P. R. China
| | - Suinan Sha
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, P. R. China
| | - Xiangrong Hao
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, P. R. China
| | - Xuejiao Wang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, P. R. China
| | - Jianping Chen
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, P. R. China
| | - Yangning Zhang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, P. R. China
| | - Jiahao Pan
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, P. R. China
| | - Jiabin Xu
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, P. R. China
| | - Junling Zeng
- Laboratory Animal Research Center of Nanfang Hospital, Southern Medical University, 510515, Guangzhou, P. R. China
| | - Ying Wang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, P. R. China
| | - Xiaofeng He
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, P. R. China
| | - Jiahao Huang
- School of Biomedical Engineering, Southern Medical University, 510515, Guangzhou, P. R. China.
- Department of Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, 524000, Zhanjiang, P. R. China.
| | - Wei Zhao
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, P. R. China.
| | - Jun-Bing Fan
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, P. R. China.
| |
Collapse
|
5
|
Qi X, Du Y, Zhang Z, Zhang X. Amphiphilic Bowl-Shaped Janus Particles Prepared via Thiol-Ene Click Reaction for Effective Oil-Water Separation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:455. [PMID: 36770416 PMCID: PMC9921205 DOI: 10.3390/nano13030455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Janus particles for oil-water separation have attracted widespread attention in recent years. Herein, we prepared a bowl-shaped Janus particle that could rapidly separate oil and water through a thiol-ene click reaction and selective etching. Firstly, snowman-like composite microspheres based on silica and mercaptopropyl polysilsesquioxane (SiO2@MPSQ) were prepared by a hydrolytic condensation reaction and phase separation, and the effects of the rotational speed and molar ratios on their microscopic morphologies were investigated. Subsequently, bowl-shaped Janus particles with convex hydrophilic and concave oleophilic surfaces were prepared via a thiol-ene click reaction followed by HF etching. Our amphiphilic bowl-shaped Janus particles could remarkably separate micro-sized oil droplets from an n-heptane-water emulsion with a separation efficiency of >98% within 300 s. Based on the experimental and theoretical results, we proposed the underlying mechanism for the coalescence of oil droplets upon the addition of the amphiphilic bowl-shaped Janus particles.
Collapse
|
6
|
Morphology design and synthesis of magnetic microspheres as highly efficient reusable catalyst for organic dyes. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
7
|
Yuan S, Wang J, Xiang Y, Zheng S, Wu Y, Liu J, Zhu X, Zhang Y. Shedding Light on Luminescent Janus Nanoparticles: From Synthesis to Photoluminescence and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200020. [PMID: 35429137 DOI: 10.1002/smll.202200020] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Luminescent Janus nanoparticles refer to a special category of Janus-based nanomaterials that not only exhibit dual-asymmetric surface nature but also attractive optical properties. The introduction of luminescence has endowed conventional Janus nanoparticles with many alluring light-responsive functionalities and broadens their applications in imaging, sensing, nanomotors, photo-based therapy, etc. The past few decades have witnessed significant achievements in this field. This review first summarizes well-established strategies to design and prepare luminescent Janus nanoparticles and then discusses optical properties of luminescent Janus nanoparticles based on downconversion and upconversion photoluminescence mechanisms. Various emerging applications of luminescent Janus nanoparticles are also introduced. Finally, opportunities and future challenges are highlighted with respect to the development of next-generation luminescent Janus nanoparticles with diverse applications.
Collapse
Affiliation(s)
- Shanshan Yuan
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Jing Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yi Xiang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Shanshan Zheng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yihan Wu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Jinliang Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Xiaohui Zhu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yong Zhang
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117583, Singapore
| |
Collapse
|
8
|
Zhang Y, Yang F, Wei W, Wang Y, Yang S, Li J, Xing Y, Zhou L, Dai W, Dong H. Self-Propelled Janus Mesoporous Micromotor for Enhanced MicroRNA Capture and Amplified Detection in Complex Biological Samples. ACS NANO 2022; 16:5587-5596. [PMID: 35357821 DOI: 10.1021/acsnano.1c10437] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The slow mass transport of the target molecule essentially limits the biosensing performance. Here, we report a Janus mesoporous microsphere/Pt-based (meso-MS/Pt) nanostructure with greatly enhanced target transport and accelerated recognition process for microRNA (miRNA) amplified detection in complex biological samples. The mesoporous MS was synthesized via double emulsion interfacial polymerization, and Pt nanoparticles (PtNPs) were deposited on the half-MS surface to construct Janus meso-MS/Pt micromotor. The heterogeneous meso-MS/Pt with a large surface available was attached to an entropy-driven DNA recognition system, termed meso-MS/Pt/DNA, and the tremendous pores network was beneficial to enhanced receptor-target interaction. It enabled moving around complex biological samples to greatly enhance target miRNA mass transport and accelerate recognition procedure due to the self-diffusiophoretic propulsion. Coupling with the entropy-driven signal amplification, extremely sensitive miRNA detection in Dulbecco's modified Eagle medium (DMEM), and cell lysate without preparatory and washing steps was realized. Given the free preparatory and washing steps, fast mass transport, and amplified capability, the meso-MS/Pt/DNA micromotor provides a promising method for miRNAs analysis in real biological samples.
Collapse
Affiliation(s)
- Yufan Zhang
- Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering; University of Science & Technology Beijing, Beijing 100083, P. R. China
| | - Fan Yang
- Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering; University of Science & Technology Beijing, Beijing 100083, P. R. China
| | - Wei Wei
- Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering; University of Science & Technology Beijing, Beijing 100083, P. R. China
| | - Yeyu Wang
- Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering; University of Science & Technology Beijing, Beijing 100083, P. R. China
| | - Shuangshuang Yang
- Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering; University of Science & Technology Beijing, Beijing 100083, P. R. China
| | - Jinze Li
- Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering; University of Science & Technology Beijing, Beijing 100083, P. R. China
| | - Yi Xing
- Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering; University of Science & Technology Beijing, Beijing 100083, P. R. China
| | - Liping Zhou
- Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering; University of Science & Technology Beijing, Beijing 100083, P. R. China
| | - Wenhao Dai
- Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering; University of Science & Technology Beijing, Beijing 100083, P. R. China
| | - Haifeng Dong
- Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering; University of Science & Technology Beijing, Beijing 100083, P. R. China
- Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong 518060, P. R. China
| |
Collapse
|
9
|
Zou H, Lv Y. Synthetic Strategies for Polymer Particles with Surface Concavities. Macromol Rapid Commun 2022; 43:e2200072. [PMID: 35322491 DOI: 10.1002/marc.202200072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/15/2022] [Indexed: 11/06/2022]
Abstract
Over the past decade or so, there has been increasing interest in the synthesis of polymer particles with surface concavities, which mainly include golf ball-like, dimpled and surface-wrinkled polymer particles. Such syntheses generally can be classified into direct polymerization and post-treatment on preformed polymer particles. This review aims to provide an overview of the synthetic strategies of such particles. Some selected examples are given to present the formation mechanisms of the surface concavities. The applications and future development of these concave polymer particles are also briefly discussed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hua Zou
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Yongliang Lv
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| |
Collapse
|
10
|
Sun H, Lin S, Ng FTT, Mitra SK, Pan Q. Synthesis of Shape-Controllable Anisotropic Microparticles and "Walnut-like" Microparticles via Emulsion Interfacial Polymerization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:6007-6015. [PMID: 33938218 DOI: 10.1021/acs.langmuir.1c00589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Anisotropic microparticles have plenty of applications for their asymmetric structure and precisely modified surface. In our research, the uniform anisotropic microparticles with benzyl chloride group were synthesized successfully via emulsion interfacial polymerization. By varying the degree of cross-linking and the concentration of slightly hydrophilic monomer 4-vinyl benzyl chloride (VBC), several types of microparticles with different concavities and different shapes of microparticles (hemisphere, bowl-like, egg-like, etc.) were obtained. Nanoporous microparticles with a walnut-like heterostructure were achieved with modified hydrophilic seeds with the same strategy. The potential applications of shape-controllable fluorescent microparticles and surface modification of microparticles by thiol-click reaction were explored. The modified microparticles achieved in this study are very useful in labeling, tracing, protein separation, and other biomedical fields.
Collapse
Affiliation(s)
- Haohong Sun
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou 215123, P. R. China
| | - Shaohui Lin
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou 215123, P. R. China
| | - Flora T T Ng
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Sushanta K Mitra
- Waterloo Institute for Nanotechnology, Department of Mechanical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Qinmin Pan
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
11
|
Zhang X, Fu Q, Duan H, Song J, Yang H. Janus Nanoparticles: From Fabrication to (Bio)Applications. ACS NANO 2021; 15:6147-6191. [PMID: 33739822 DOI: 10.1021/acsnano.1c01146] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Janus nanoparticles (JNPs) refer to the integration of two or more chemically discrepant composites into one structure system. Studies into JNPs have been of significant interest due to their interesting characteristics stemming from their asymmetric structures, which can integrate different functional properties and perform more synergetic functions simultaneously. Herein, we present recent progress of Janus particles, comprehensively detailing fabrication strategies and applications. First, the classification of JNPs is divided into three blocks, consisting of polymeric composites, inorganic composites, and hybrid polymeric/inorganic JNPs composites. Then, the fabrication strategies are alternately summarized, examining self-assembly strategy, phase separation strategy, seed-mediated polymerization, microfluidic preparation strategy, nucleation growth methods, and masking methods. Finally, various intriguing applications of JNPs are presented, including solid surfactants agents, micro/nanomotors, and biomedical applications such as biosensing, controlled drug delivery, bioimaging, cancer therapy, and combined theranostics. Furthermore, challenges and future works in this field are provided.
Collapse
Affiliation(s)
- Xuan Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, P.R. China
| | - Qinrui Fu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, P.R. China
| | - Hongwei Duan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, P.R. China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, P.R. China
| |
Collapse
|
12
|
Liu H, Gong L, Lu S, Wang H, Fan W, Yang C. Three core-shell polymersomes for targeted doxorubicin delivery: Sustained and acidic release. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
Duan Y, Zhao X, Sun M, Hao H. Research Advances in the Synthesis, Application, Assembly, and Calculation of Janus Materials. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c04304] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Xia Zhao
- School of Chemical Engineering, Northwest University, Xi’an 710069, Shan xi, China
| | - Miaomiao Sun
- School of Chemical Engineering, Northwest University, Xi’an 710069, Shan xi, China
| | - Hong Hao
- School of Chemical Engineering, Northwest University, Xi’an 710069, Shan xi, China
| |
Collapse
|
14
|
Frank BD, Antonietti M, Zeininger L. Structurally Anisotropic Janus Particles with Tunable Amphiphilicity via Polymerization of Dynamic Complex Emulsions. Macromolecules 2020; 54:981-987. [PMID: 33518808 PMCID: PMC7842141 DOI: 10.1021/acs.macromol.0c02152] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/24/2020] [Indexed: 12/20/2022]
Abstract
![]()
A facile
one-step approach for the synthesis of physically and
chemically anisotropic polymer particles with tunable size, shape,
composition, wettability, and functionality is reported. Specifically,
dynamically reconfigurable oil-in-water Janus emulsions containing
photocurable hydrocarbon or fluorocarbon acrylate monomers as one
of the droplet phases are used as structural templates to polymerize
them into precision Janus particles with highly uniform anomalous
morphologies including (hemi-) spheres, lenses, and bowls. During
polymerization, each interface is exposed to a different chemical
environment, yielding particles with an intrinsic Janus character
that can be amplified via side-selective postfunctionalization. The
fabrication method allows to start with various common emulsification
techniques, thus generating particles in the range of 200 nm –150
μm, also at a technical scale. The anisotropic shape combined
with the asymmetric wettability profile of the produced particles
promotes their directed self-assembly into colloidal clusters as well
as their directional alignment at fluid interfaces. We foresee the
application of such Janus particles in technical emulsions or oil
recovery, for the manufacturing of programmed self-assembled architectures,
and for the engineering of microstructured interfaces.
Collapse
Affiliation(s)
- Bradley D Frank
- Department of Colloid Chemistry, Max Planck Institute of Colloids & Interfaces, Am Muehlenberg 1, 14476 Potsdam, Germany
| | - Markus Antonietti
- Department of Colloid Chemistry, Max Planck Institute of Colloids & Interfaces, Am Muehlenberg 1, 14476 Potsdam, Germany
| | - Lukas Zeininger
- Department of Colloid Chemistry, Max Planck Institute of Colloids & Interfaces, Am Muehlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
15
|
Li G, Gan Z, Liu Y, Wang S, Guo QY, Liu Z, Tan R, Zhou D, Kong D, Wen T, Dong XH. Molecular Patchy Clusters with Controllable Symmetry Breaking for Structural Engineering. ACS NANO 2020; 14:13816-13823. [PMID: 32935968 DOI: 10.1021/acsnano.0c06189] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Anisotropic patchy particles with molecular precision are exquisite building blocks for constructing diverse meso-structures of high complexity. In this research, a library of molecular patchy clusters consisting of a collection of functional polyhedral oligomeric silsesquioxane cages with exact regio-configuration and composition were prepared through a robust and modular approach. By meticulously tuning the composition, molecular symmetry, and other parameters, these patchy clusters could assemble into diverse nanostructures, including unconventional complex spherical phases (i.e., Frank-Kasper σ phase and dodecagonal quasicrystalline phase). As the size of the hydrophilic patch expands, a transition sequence from disorder to hexagonally packed cylinders and then to double gyroids was recorded, corresponding to a progressive decrease of interfacial curvature. On the other hand, regioisomers with the same composition but different regio-configuration adopt similar molecular packing but varied phase stability, as a result of the local self-sorting process to alleviate excess unfavorable interfacial contact. These precisely defined molecular patchy clusters provide a model system for a general understanding of the hierarchical structure formation and evolution based on anisotropic spherical building blocks at the nanoscale.
Collapse
Affiliation(s)
- Gang Li
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhanhui Gan
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yuchu Liu
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Shuai Wang
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Qing-Yun Guo
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Zhongguo Liu
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Rui Tan
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Dongdong Zhou
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Deyu Kong
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Tao Wen
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xue-Hui Dong
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
16
|
Razavi S, Lin B, Lee KYC, Tu RS, Kretzschmar I. Impact of Surface Amphiphilicity on the Interfacial Behavior of Janus Particle Layers under Compression. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:15813-15824. [PMID: 31269790 DOI: 10.1021/acs.langmuir.9b01664] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Langmuir monolayers of silica/gold Janus particles with two different degrees of amphiphilicity have been examined to study the significance of particle surface amphiphilicity on the structure and mechanical properties of the interfacial layers. The response of the layers to the applied compression provides insight into the nature and strength of the interparticle interactions. Different collapse modes observed for the interfacial layers are linked to the amphiphilicity of Janus particles and their configuration at the interface. Molecular dynamics simulations on nanoparticles with similar contact angles provide insight on the arrangement of particles at the interface and support our conclusion that the interfacial configuration and collapse of anisotropic particles at the air/water interface are controlled by particle amphiphilicity.
Collapse
Affiliation(s)
- Sepideh Razavi
- Chemical, Biological, and Materials Engineering , University of Oklahoma , Norman , Oklahoma 73019 , United States
| | | | | | - Raymond S Tu
- Department of Chemical Engineering , City College of the City University of New York , New York , New York 10031 , United States
| | - Ilona Kretzschmar
- Department of Chemical Engineering , City College of the City University of New York , New York , New York 10031 , United States
| |
Collapse
|
17
|
Wang J, Pan M, Yuan J, Wang Y, Liu G, Zhu L. Revisiting the Classical Emulsion Polymerization: An Intriguing Occurrence of Monodispersed Bowl-Shaped Particles. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b02675] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Juan Wang
- Institute of Polymer Science and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, PR China
| | - Mingwang Pan
- Institute of Polymer Science and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, PR China
- National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, PR China
| | - Jinfeng Yuan
- Institute of Polymer Science and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, PR China
| | - Yajiao Wang
- Institute of Polymer Science and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, PR China
| | - Gang Liu
- Institute of Polymer Science and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, PR China
| | - Lei Zhu
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106-7202, United States
| |
Collapse
|