1
|
Li X, Wang Z, Wang Z, Yin Y, Jiang R, Zhang P, Li B. A novel microscopic origin of co-nonsolvency. SOFT MATTER 2025. [PMID: 40423567 DOI: 10.1039/d5sm00164a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
Co-nonsolvency presents a fundamental paradox in polymer physics where macromolecules undergo collapse or precipitation in mixed good solvents. Through investigations combining simulations of various binary good solvent systems of polymers, including single-chain and multi-chain of homopolymers and block copolymers, and ternary Flory-Huggins theoretical validation, we reveal that the competition between the enthalpy of the system and the mixing entropy of binary solvents results in the liquid-liquid phase separation (LLPS) of the better solvent (S-solvent) and the co-nonsolvency phenomenon. To reduce the enthalpy, the polymer and S-solvent tend to mix together to maximize their contact, which, however, is entropically unfavorable due to the localization of the S-solvent in the polymer domain. The LLPS of the S-solvent, where different chain segments share the localized S-solvent molecules, simultaneously lowers the enthalpy and reduces the loss of the mixing entropy. This sharing leads the chain in single-chain systems to be in a locally folding conformation with a size being much smaller than that of the ideal chain. In multi-chain systems, however, the sharing can be among segments from different chains, which causes chain condensation and hence an average chain size larger than its ideal value. Our study provides a novel mechanism for co-nonsolvency and may provide insights into the LLPS in other soft matter systems.
Collapse
Affiliation(s)
- Xingye Li
- Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics, Nankai University, Tianjin 300071, China.
| | - Zhiyuan Wang
- Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics, Nankai University, Tianjin 300071, China.
| | - Zheng Wang
- Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics, Nankai University, Tianjin 300071, China.
| | - Yuhua Yin
- Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics, Nankai University, Tianjin 300071, China.
| | - Run Jiang
- Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics, Nankai University, Tianjin 300071, China.
| | - Pengfei Zhang
- State Key Laboratory for Advanced Fiber Materials, Center for Advanced Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Baohui Li
- Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics, Nankai University, Tianjin 300071, China.
| |
Collapse
|
2
|
Guha S. Binder and monomer valencies determine the extent of collapse and reswelling of chromatin. J Chem Phys 2025; 162:194904. [PMID: 40387774 DOI: 10.1063/5.0236102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 05/01/2025] [Indexed: 05/20/2025] Open
Abstract
Multivalent DNA-bridging protein-mediated collapse of chromatin polymers have long been established as one of the driving factors in chromatin organization inside cells. These multivalent proteins can bind to distant binding sites along the chromatin backbone and bring them together in spatial proximity, leading to collapsed conformations. Recently, it has been suggested that these proteins not only drive the collapse of the chromatin polymer but also reswelling at higher concentrations. In this study, we investigate the physical mechanisms underlying this unexpected reswelling behavior. We use the Langevin dynamics simulation of a coarse-grained homopolymer to investigate the effects of the valencies of both the binders and the monomers on the polymer conformations. We find that while the extent of collapse of the polymer is strongly dependent on the binder valency, the extent of reswelling is largely determined by the monomer valency. Furthermore, we also discovered two different physical mechanisms that drive the reswelling of the polymer-excluded volume effects and loss of long-range loops. Finally, we obtain a classification map to determine the regimes in which each of these mechanisms is the dominant factor leading to polymer reswelling.
Collapse
Affiliation(s)
- Sougata Guha
- Department of Physics, Indian Institute of Technology Bombay, Mumbai 400076, India and INFN Napoli, Complesso Universitario di Monte S. Angelo, Napoli 80126, Italy
| |
Collapse
|
3
|
Säckel C, von Klitzing R, Vogel M. 2H and 17O NMR studies of solvent dynamics related to the cononsolvency of poly( N-isopropyl acrylamide) in ethanol-water mixtures. SOFT MATTER 2025; 21:2738-2747. [PMID: 40123541 DOI: 10.1039/d5sm00055f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Although the thermoresponsive polymer poly(N-isopropylacrylamide) (pNIPAM) is well soluble in both ethanol and water, it shows a miscibility gap in ethanol-water mixtures, an effect termed cononsolvency. We use 2H and 17O nuclear magnetic resonance (NMR) together with appropriate isotope labelling to selectively study reorientation dynamics of ethanol and water related to the cononsolvency effect over the whole range of solvent compositions from pure ethanol to pure water. At low ethanol concentrations (≤30 vol%), spin-lattice (T1) and spin-spin (T2) relaxation times show a step-like decrease when heating across the lower critical solution temperature for the respective solvent composition. However, the drop is notably stronger for ethanol (2H NMR) than for water (17O NMR) in the solvent mixtures. These observations show that the coil-to-globule transition of pNIPAM is accompanied by a slowdown of average solvent dynamics, which is more prominent for ethanol than for water. The different degree of slowdown of the solvent components implies that preferential interaction with the polymer plays a significant role for cononsolvency. Field-cycling relaxometry reveals a low-frequency T1 dispersion above the coil-to-globule transition, indicating that the average solvent dynamics is slower because a major free solvent fraction is accompanied by a minor bound solvent fraction, which shows strongly retarded dynamics. From intermediate to high ethanol concentrations (>50 vol%), the T1 and T2 relaxation times yield no evidence for significant changes in ethanol and water dynamics when crossing an expected upper critical solution temperature.
Collapse
Affiliation(s)
- Christoph Säckel
- Institute for Condensed Matter Physics, Technische Universität Darmstadt, Hochschulstraße 6, 64289 Darmstadt, Germany.
| | - Regine von Klitzing
- Institute for Condensed Matter Physics, Technische Universität Darmstadt, Hochschulstraße 6, 64289 Darmstadt, Germany.
| | - Michael Vogel
- Institute for Condensed Matter Physics, Technische Universität Darmstadt, Hochschulstraße 6, 64289 Darmstadt, Germany.
| |
Collapse
|
4
|
Centeno SP, Nothdurft K, Klymchenko AS, Pich A, Richtering W, Wöll D. FLIM nanoscopy resolves the structure and preferential adsorption in the co-nonsolvency of PNIPAM microgels in methanol-water. J Colloid Interface Sci 2025; 678:210-220. [PMID: 39243721 DOI: 10.1016/j.jcis.2024.08.235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
Polymer microgels are swollen macromolecular networks with a typical size of hundred of nanometers to several microns that show an extraordinary open and responsive architecture to different external stimuli, being therefore important candidates for nanobiotechnology and nanomedical applications such as biocatalysis, sensing and drug delivery. It is therefore crucial to understand the delicate balance of physical-chemical interactions between the polymer backbone and solvent molecules that to a high extent determine their responsivity. In particular, the co-nonsolvency effect of poly(N-isopropylacrylamide) in aqueous alcohols is highly discussed, and there is a disagreement between molecular dynamics (MD) simulations (from literature) of the preferential adsorption of alcohol on the polymer chains and the values obtained by several empirical methods that mostly probe the bulk solvent properties. It is our contention that the most efficacious method for addressing this problem requires a nanoscopic method that can be combined with spectroscopy and record fluorescence spectra and super-resolved fluorescence lifetime images of microgels labeled covalently with the solvatochromic dye Nile Red. By employing this approach, we could simultaneously resolve the structure of sub-micron size objects in the swollen and in the collapsed state and estimate the solvent composition inside of them in - mixtures for two very different polymer architectures. We found an outstanding agreement between the MD simulations and our results that estimate a co-solvent molar fraction excess of approximately 3 with a very flat profile in the lateral direction of the microgel.
Collapse
Affiliation(s)
- S P Centeno
- DWI Leibniz Institute for Interactive Materials, Forckenbeckstrasse 50, Aachen, 52074, Germany.
| | - K Nothdurft
- Institute of Physical Chemistry, RWTH-Aachen University, Landoltweg 2, Aachen, 52074, Germany
| | - A S Klymchenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CRS, Université de Strasbourg, 74 Route du Rhin, Illkirch, 67401, France
| | - A Pich
- DWI Leibniz Institute for Interactive Materials, Forckenbeckstrasse 50, Aachen, 52074, Germany; Functional and Interactive Polymers Institute of Technical and Macromolecular Chemistry, Worringerweg 2, Aachen, 52074, Germany; Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, RD Geleen, 6167, the Netherlands
| | - W Richtering
- DWI Leibniz Institute for Interactive Materials, Forckenbeckstrasse 50, Aachen, 52074, Germany; Institute of Physical Chemistry, RWTH-Aachen University, Landoltweg 2, Aachen, 52074, Germany
| | - D Wöll
- Institute of Physical Chemistry, RWTH-Aachen University, Landoltweg 2, Aachen, 52074, Germany.
| |
Collapse
|
5
|
Tiani R, Jardat M, Dahirel V. Phase transitions in chromatin: Mesoscopic and mean-field approaches. J Chem Phys 2025; 162:024902. [PMID: 39783975 DOI: 10.1063/5.0236019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/16/2024] [Indexed: 01/12/2025] Open
Abstract
By means of a minimal physical model, we investigate the interplay of two phase transitions at play in chromatin organization: (1) liquid-liquid phase separation within the fluid solvating chromatin, resulting in the formation of biocondensates; and (2) the coil-globule crossover of the chromatin fiber, which drives the condensation or extension of the chain. In our model, a species representing a domain of chromatin is embedded in a binary fluid. This fluid phase separates to form a droplet rich in a macromolecule (B). Chromatin particles are trapped in a harmonic potential to reproduce the coil and globular phases of an isolated polymer chain. We investigate the role of the droplet material B on the radius of gyration of this polymer and find that this radius varies nonmonotonically with respect to the volume fraction of B. This behavior is reminiscent of a phenomenon known as co-non-solvency: a polymer chain in a good solvent (S) may collapse when a second good solvent (here B) is added in low quantity and expands at higher B concentration. In addition, the presence of finite-size effects on the coil-globule transition results in a qualitatively different impact of the droplet material on polymers of various sizes. In the context of genetic regulation, our results suggest that the size of chromatin domains and the quantity of condensate proteins are key parameters to control whether chromatin may respond to an increase in the quantity of chromatin-binding proteins by condensing or expanding.
Collapse
Affiliation(s)
- R Tiani
- CNRS, Laboratoire PHENIX (Physicochimie des Electrolytes et Nanosystèmes Interfaciaux), Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
| | - M Jardat
- CNRS, Laboratoire PHENIX (Physicochimie des Electrolytes et Nanosystèmes Interfaciaux), Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
| | - V Dahirel
- CNRS, Laboratoire PHENIX (Physicochimie des Electrolytes et Nanosystèmes Interfaciaux), Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
6
|
Zhang X, Zong J, Meng D. General Condition for Polymer Cononsolvency in Binary Mixed Solvents. Macromolecules 2024; 57:8632-8642. [PMID: 39281841 PMCID: PMC11394006 DOI: 10.1021/acs.macromol.4c00246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 09/18/2024]
Abstract
Starting from a generic model based on the thermodynamics of mixing and abstracted from the chemistry and microscopic details of solution components, three consistent and complementary computational approaches are deployed to investigate the general condition for polymer cononsolvency in binary mixed solvents at the zeroth order. The study reveals χPS - χPC + χSC as the underlying universal parameter that regulates cononsolvency, where χαβ is the immiscibility parameter between the α- and β-component. Two disparate cononsolvency regimes are identified for χPS - χPC + χSC < 0 and χPS - χPC + χSC > 2, respectively, based on the behavior of the second osmotic virial coefficient at varying solvent mixture composition x C. The predicted condition is verified using self-consistent field calculations by directly examining the polymer conformational transition as a function of x C. It is further shown that in the regime χPS - χPC + χSC < 0, the reentrant polymer conformation transition is driven by maximizing the solvent-cosolvent contact, but in the regime χPS - χPC + χSC > 2, it is driven by promoting polymer and cosolvent contact. In-between the two regimes when neither effect is dominant, a monotonic response of polymer conformation to x C is observed. Effects of the mean-field approximation on the predicted condition are evaluated by comparing the mean-field calculations with computer simulations. It shows that the fluctuation effects lead to a higher threshold value of χPS - χPC + χSC in the second regime, where local enrichment of cosolvent in polymer proximity plays a critical role.
Collapse
Affiliation(s)
- Xiangyu Zhang
- Department of Chemical and Biomolecular Engineering, John Hopkins University, Baltimore, Maryland 21218, United States
| | - Jing Zong
- Department of Chemical Engineering, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Dong Meng
- Biomaterials Division, Department of Molecular Pathobiology, New York University, New York, New York 10010, United States
| |
Collapse
|
7
|
Luo Z, Shu Z, Jiang Y, Wang B. Effect of Cosolvent on the Vesicle Formation Pathways under Solvent Exchange Process: A Dissipative Particle Dynamics Simulation. Molecules 2023; 28:5113. [PMID: 37446777 DOI: 10.3390/molecules28135113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
The effective control over the vesicle formation pathways is vital for tuning its function. Recently, a liquid-liquid phase-separated intermediate (LLPS) is observed before a vesicular structure during the solvent exchange self-assembly of block copolymers. Though the understanding of polymer structures and chemical compositions on the competition between LLPS and micellization has made some progress, little is known about the role of cosolvent on it. In this study, the influence of cosolvent on the vesicle formation pathways is investigated by using dissipative particle dynamics. The results show that the range of water fraction within which the LLPS is favored will be highly dependent on the affinity difference of cosolvent to water and to polymer repeat units. The change of the cosolvent-water interaction and the water fraction impact the distribution of cosolvent in the polymer domain, the miscibility between the components in the system as well as the chain conformations, which finally induce different self-assembly behaviors. Our findings would be helpful for understanding the LLPS and controlling the morphologies of diblock polymers in solutions for further applications.
Collapse
Affiliation(s)
- Zhonglin Luo
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, National Experimental Demonstration Center for Materials Science and Engineering, School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Zhou Shu
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, National Experimental Demonstration Center for Materials Science and Engineering, School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Yi Jiang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, National Experimental Demonstration Center for Materials Science and Engineering, School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Biaobing Wang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, National Experimental Demonstration Center for Materials Science and Engineering, School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
8
|
Yan Y, Duan S, Liu B, Wu S, Alsaid Y, Yao B, Nandi S, Du Y, Wang TW, Li Y, He X. Tough Hydrogel Electrolytes for Anti-Freezing Zinc-Ion Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211673. [PMID: 36932878 DOI: 10.1002/adma.202211673] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/04/2023] [Indexed: 05/05/2023]
Abstract
As the soaring demand for energy storage continues to grow, batteries that can cope with extreme conditions are highly desired. Yet, existing battery materials are limited by weak mechanical properties and freeze-vulnerability, prohibiting safe energy storage in devices that are exposed to low temperature and unusual mechanical impacts. Herein, a fabrication method harnessing the synergistic effect of co-nonsolvency and "salting-out" that can produce poly(vinyl alcohol) hydrogel electrolytes with unique open-cell porous structures, composed of strongly aggregated polymer chains, and containing disrupted hydrogen bonds among free water molecules, is introduced. The hydrogel electrolyte simultaneously combines high strength (tensile strength 15.6 MPa), freeze-tolerance (< -77 °C), high mass transport (10× lower overpotential), and dendrite and parasitic reactions suppression for stable performance (30 000 cycles). The high generality of this method is further demonstrated with poly(N-isopropylacrylamide) and poly(N-tertbutylacrylamide-co-acrylamide) hydrogels. This work takes a further step toward flexible battery development for harsh environments.
Collapse
Affiliation(s)
- Yichen Yan
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Sidi Duan
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Bo Liu
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Shuwang Wu
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yousif Alsaid
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Bowen Yao
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Sunny Nandi
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Physics, Tezpur University, Assam, 784028, India
| | - Yingjie Du
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Ta-Wei Wang
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yuzhang Li
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Ximin He
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- California Nanosystems Institute, Los Angeles, CA, 90095, USA
| |
Collapse
|
9
|
Henschel C, Schanzenbach D, Laschewsky A, Ko CH, Papadakis CM, Müller-Buschbaum P. Thermoresponsive and co-nonsolvency behavior of poly(N-vinyl isobutyramide) and poly(N-isopropyl methacrylamide) as poly(N-isopropyl acrylamide) analogs in aqueous media. Colloid Polym Sci 2023. [DOI: 10.1007/s00396-023-05083-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Abstract
Sets of the nonionic polymers poly(N-vinyl isobutyramide) (pNVIBAm) and poly(N-isopropyl methacrylamide) (pNIPMAm) are synthesized by radical polymerization covering the molar mass range from about 20,000 to 150,000 kg mol−1, and their thermoresponsive and solvent-responsive behaviors in aqueous solution are studied. Both polymers feature a lower critical solution temperature (LCST) apparently of the rare so-called type II, as characteristic for their well-studied analogue poly(N-isopropyl acrylamide) (pNIPAm). Moreover, in analogy to pNIPAm, both polymers exhibit co-nonsolvency behavior in mixtures of water with several co-solvents, including short-chain alcohols as well as a range of polar aprotic solvents. While the cloud points of the aqueous solutions are a few degrees higher than those for pNIPAm and increase in the order pNIPAm < pNVIBAm < pNIPMAm, the co-nonsolvency behavior becomes less pronounced in the order pNIPAm > pNVIBAm > pNIPMAm. Exceptionally, pNIPMAm does not show co-nonsolvency in mixtures of water and N,N-dimethylformamide.
Graphical Abstract
Collapse
|
10
|
Garg H, Rajesh R, Vemparala S. The conformational phase diagram of neutral polymers in the presence of attractive crowders. J Chem Phys 2023; 158:114903. [PMID: 36948827 DOI: 10.1063/5.0140721] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Extensive coarse-grained molecular dynamics simulations are performed to investigate the conformational phase diagram of a neutral polymer in the presence of attractive crowders. We show that, for low crowder densities, the polymer predominantly shows three phases as a function of both intra-polymer and polymer-crowder interactions: (1) weak intra-polymer and weak polymer-crowder attractive interactions induce extended or coil polymer conformations (phase E), (2) strong intra-polymer and relatively weak polymer-crowder attractive interactions induce collapsed or globular conformations (phase CI), and (3) strong polymer-crowder attractive interactions, regardless of intra-polymer interactions, induce a second collapsed or globular conformation that encloses bridging crowders (phase CB). The detailed phase diagram is obtained by determining the phase boundaries delineating the different phases based on an analysis of the radius of gyration as well as bridging crowders. The dependence of the phase diagram on strength of crowder-crowder attractive interactions and crowder density is clarified. We also show that when the crowder density is increased, a third collapsed phase of the polymer emerges for weak intra-polymer attractive interactions. This crowder density-induced compaction is shown to be enhanced by stronger crowder-crowder attraction and is different from the depletion-induced collapse mechanism, which is primarily driven by repulsive interactions. We also provide a unified explanation of the observed re-entrant swollen/extended conformations of the earlier simulations of weak and strongly self-interacting polymers in terms of crowder-crowder attractive interactions.
Collapse
Affiliation(s)
- Hitesh Garg
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India
| | - R Rajesh
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India
| | - Satyavani Vemparala
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India
| |
Collapse
|
11
|
Zhang P, Wang Z, Wang ZG. Conformation Transition of a Homopolymer Chain in Binary Mixed Solvents. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Pengfei Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620, China
| | - Zheng Wang
- School of Physics, Nankai University, Tianjin 300071, China
| | - Zhen-Gang Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
12
|
Liu B, Yan X, Zhao Z, Wang J, Feng J. Distinctly different solvation behaviors of poly( N, N-diethylacrylamide) gels in water/acetone and water/DMSO mixtures. Phys Chem Chem Phys 2022; 24:23893-23902. [PMID: 36165400 DOI: 10.1039/d2cp02144g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The solvation behaviors and intermolecular interactions of a poly(N,N-diethylacrylamide) (PDEA) gel network in water/DMSO and water/acetone mixtures have been investigated by variable-temperature high-resolution 1H MAS NMR. Unlike decreasing volume phase transition temperature (VPTT) of the typical thermosensitive poly(N-isopropylacrylamide) (PNIPAM) gel induced by both acetone and DMSO in a water-rich region, distinct phase transition behaviors are revealed for the PDEA gel. That is, acetone is found to increase the VPTT of PDEA directly in the water-rich region while DMSO is also found to increase the VPTT of PDEA at a very low concentration but then decrease the VPTT as the concentration further increases. The above distinctly different VPTT shifts of PDEA are attributed to the different polymer-cosolvent interactions in water/acetone and water/DMSO systems. DMSO molecules with a strong water affinity are preferentially excluded by the PDEA gel network, and can promote the volume phase transition by favoring the collapse of the PDEA gel network, while acetone molecules preferentially adsorbed on the polymer interact with PDEA via non-specific van der Waals interaction, which favors the swollen state of the PDEA gel.
Collapse
Affiliation(s)
- Biaolan Liu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan Center for Magnetic Resonance, Key Laboratory of Magnetic Resonance in Biological Systems, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Xiaoshuang Yan
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhihui Zhao
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan Center for Magnetic Resonance, Key Laboratory of Magnetic Resonance in Biological Systems, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jian Wang
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jiwen Feng
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan Center for Magnetic Resonance, Key Laboratory of Magnetic Resonance in Biological Systems, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China.
| |
Collapse
|
13
|
Equilibrium Swelling of Thermo-Responsive Gels in Mixtures of Solvents. CHEMISTRY 2022. [DOI: 10.3390/chemistry4030049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Thermo-responsive (TR) gels of the LCST (lower critical solution temperature) type swell in water at temperatures below their volume phase transition temperature Tc and collapse above the critical temperature. When water is partially replaced with an organic liquid, these materials demonstrate three different types of equilibrium solvent uptake diagrams at temperatures below, above, in the close vicinity of Tc. A model is developed for equilibrium swelling of TR gels in binary mixtures of solvents. It takes into account three types of phase transitions in TR gels driven by (i) aggregation of hydrophobic side groups into clusters from which solvent molecules are expelled, (ii) replacement of water with cosolvent molecules in cage-like structures surrounding these groups, and (iii) replacement of water with cosolvent as the main element of hydration shells around backbone chains. The model involves a relatively small number of material constants that are found by matching observations on covalently cross-linked poly(N-isopropylacrylamide) macroscopic gels and microgels. Good agreement is demonstrated between the experimental data and results of numerical analysis. Classification is provided of the phase transition points on equilibrium swelling diagrams.
Collapse
|
14
|
Drozdov A.D, Christiansen JD. Reentrant-Convex Swelling of Thermoresponsive Gels in Mixtures of Solvents. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- A .D. Drozdov
- Department of Materials and Production, Aalborg University, Fibigerstraede 16, Aalborg 9220, Denmark
| | | |
Collapse
|
15
|
Co-solvent and temperature effect on conformation and hydration of polypropylene and polyethylene oxides in aqueous solutions. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Ritsema van Eck G, Chiappisi L, de Beer S. Fundamentals and Applications of Polymer Brushes in Air. ACS APPLIED POLYMER MATERIALS 2022; 4:3062-3087. [PMID: 35601464 PMCID: PMC9112284 DOI: 10.1021/acsapm.1c01615] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/03/2022] [Indexed: 05/22/2023]
Abstract
For several decades, high-density, end-tethered polymers, forming so-called polymer brushes, have inspired scientists to understand their properties and to translate them to applications. While earlier research focused on polymer brushes in liquids, it was recently recognized that these brushes can find application in air as well. In this review, we report on recent progress in unraveling fundamental concepts of brushes in air, such as their vapor-swelling and solvent partitioning. Moreover, we provide an overview of the plethora of applications in air (e.g., in sensing, separations or smart adhesives) where brushes can be key components. To conclude, we provide an outlook by identifying open questions and issues that, when solved, will pave the way for the large scale application of brushes in air.
Collapse
Affiliation(s)
- Guido
C. Ritsema van Eck
- Sustainable
Polymer Chemistry Group, Department of Molecules & Materials,
MESA+ Institute for Nanotechnology, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Leonardo Chiappisi
- Institut
Max von Laue - Paul Langevin, 71 avenue des Martyrs, 38042 Grenoble, France
| | - Sissi de Beer
- Sustainable
Polymer Chemistry Group, Department of Molecules & Materials,
MESA+ Institute for Nanotechnology, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
17
|
Buglakov AI, Vasilevskaya VV. Fibrillar gel self-assembly via cononsolvency of amphiphilic polymer. J Colloid Interface Sci 2022; 614:181-193. [DOI: 10.1016/j.jcis.2022.01.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 11/25/2022]
|
18
|
Bharadwaj S, Niebuur BJ, Nothdurft K, Richtering W, van der Vegt NFA, Papadakis CM. Cononsolvency of thermoresponsive polymers: where we are now and where we are going. SOFT MATTER 2022; 18:2884-2909. [PMID: 35311857 DOI: 10.1039/d2sm00146b] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cononsolvency is an intriguing phenomenon where a polymer collapses in a mixture of good solvents. This cosolvent-induced modulation of the polymer solubility has been observed in solutions of several polymers and biomacromolecules, and finds application in areas such as hydrogel actuators, drug delivery, compound detection and catalysis. In the past decade, there has been a renewed interest in understanding the molecular mechanisms which drive cononsolvency with a predominant emphasis on its connection to the preferential adsorption of the cosolvent. Significant efforts have also been made to understand cononsolvency in complex systems such as micelles, block copolymers and thin films. In this review, we will discuss some of the recent developments from the experimental, simulation and theoretical fronts, and provide an outlook on the problems and challenges which are yet to be addressed.
Collapse
Affiliation(s)
- Swaminath Bharadwaj
- Technical University of Darmstadt, Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Computational Physical Chemistry Group, 64287 Darmstadt, Germany.
| | - Bart-Jan Niebuur
- Technical University of Munich, Physics Department, Soft Matter Physics Group, James-Franck-Str. 1, 85748 Garching, Germany
| | - Katja Nothdurft
- RWTH Aachen University, Institut für Physikalische Chemie, Landoltweg 2, 52056 Aachen, Germany, European Union
| | - Walter Richtering
- RWTH Aachen University, Institut für Physikalische Chemie, Landoltweg 2, 52056 Aachen, Germany, European Union
| | - Nico F A van der Vegt
- Technical University of Darmstadt, Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Computational Physical Chemistry Group, 64287 Darmstadt, Germany.
| | - Christine M Papadakis
- Technical University of Munich, Physics Department, Soft Matter Physics Group, James-Franck-Str. 1, 85748 Garching, Germany
| |
Collapse
|
19
|
Li S, Cui R, Yu C, Zhou Y. Coarse-Grained Model of Thiol-Epoxy-Based Alternating Copolymers in Explicit Solvents. J Phys Chem B 2022; 126:1830-1841. [PMID: 35179028 DOI: 10.1021/acs.jpcb.1c09406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The cosolvent method has been widely used in the self-assembly of amphiphilic alternating copolymers (ACPs), but the role of good and selective solvents is rarely investigated. Here, we have developed a coarse-grained (CG) model for the widely studied thiol-epoxy-based amphiphilic ACPs and a three-bead CG model for tetrahydrofuran (THF) as the good solvent, which is compatible with the MARTINI water model. The accuracy of both the CG polymer and THF models was validated by reproducing the structural and thermodynamic properties obtained from experiments or atomistic simulation results. Density in bulk, the radius of gyration, and solvation free energy in water or THF showed a good agreement between CG and atomistic models. The CG models were further employed to explore the self-assembly of ACPs in THF/water mixtures with different compositions. Chain folding and liquid-liquid phase separation behaviors were found with increasing water fractions, which were the key steps of the self-assembly process. This work will provide a basic platform to explore the self-assembly of amphiphilic ACPs in solvent mixtures and to reveal the real role of different solvents in self-assembly.
Collapse
Affiliation(s)
- Shanlong Li
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Rui Cui
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunyang Yu
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yongfeng Zhou
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
20
|
Zhang X, Wang Y, Yao J, Li H, Mochizuki K. A tiny charge-scaling in the OPLS-AA + L-OPLS force field delivers the realistic dynamics and structure of liquid primary alcohols. J Comput Chem 2021; 43:421-430. [PMID: 34962297 DOI: 10.1002/jcc.26802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 11/06/2022]
Abstract
We carry out molecular dynamics simulations for pure liquid primary alcohols ranging from methanol to 1-decanol under ambient conditions. Based on the OPLS-AA force field with the L-OPLS correction, we demonstrate that a few % increases in the partial charges deliver the realistic dynamics (self-diffusion coefficient and shear viscosity) and structure (density and X-ray scattering intensity) as well as enthalpy of vaporization and isothermal compressibility. The validity against thermal expansion coefficient, isobaric heat capacity, and static dielectric constant are also discussed.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Chemistry, Zhejiang University, Hangzhou, People's Republic of China
| | - Yongtao Wang
- Department of Chemistry, Zhejiang University, Hangzhou, People's Republic of China
| | - Jia Yao
- Department of Chemistry, Zhejiang University, Hangzhou, People's Republic of China
| | - Haoran Li
- Department of Chemistry, Zhejiang University, Hangzhou, People's Republic of China
| | - Kenji Mochizuki
- Department of Chemistry, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
21
|
Feasible Fabrication of Hollow Micro-vesicles by Non-amphiphilic Macromolecules Based on Interfacial Cononsolvency. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2541-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Dhabal D, Jiang Z, Pallath A, Patel AJ. Characterizing the Interplay between Polymer Solvation and Conformation. J Phys Chem B 2021; 125:5434-5442. [PMID: 33978411 DOI: 10.1021/acs.jpcb.1c02191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Conformational transitions of flexible molecules, especially those driven by hydrophobic effects, tend to be hindered by desolvation barriers. For such transitions, it is thus important to characterize and understand the interplay between solvation and conformation. Using specialized molecular simulations, here we perform such a characterization for a hydrophobic polymer solvated in water. We find that an external potential, which unfavorably perturbs the polymer hydration waters, can trigger a coil-to-globule or collapse transition, and that the relative stabilities of the collapsed and extended states can be quantified by the strength of the requisite potential. Our results also provide mechanistic insights into the collapse transition, highlighting that the bottleneck to polymer collapse is the formation of a sufficiently large cluster, and the collective dewetting of such a cluster. We also study the collapse of the hydrophobic polymer in octane, a nonpolar solvent, and interestingly, we find that the mechanistic details of the transition are qualitatively similar to that in water.
Collapse
Affiliation(s)
- Debdas Dhabal
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Zhitong Jiang
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Akash Pallath
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Amish J Patel
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
23
|
Bharadwaj S, Nayar D, Dalgicdir C, van der Vegt NFA. An interplay of excluded-volume and polymer-(co)solvent attractive interactions regulates polymer collapse in mixed solvents. J Chem Phys 2021; 154:134903. [PMID: 33832270 DOI: 10.1063/5.0046746] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Cosolvent effects on the coil-globule transitions in aqueous polymer solutions are not well understood, especially in the case of amphiphilic cosolvents that preferentially adsorb on the polymer and lead to both polymer swelling and collapse. Although a predominant focus in the literature has been placed on the role of polymer-cosolvent attractive interactions, our recent work has shown that excluded-volume interactions (repulsive interactions) can drive both preferential adsorption of the cosolvent and polymer collapse via a surfactant-like mechanism. Here, we further study the role of polymer-(co)solvent attractive interactions in two kinds of polymer solutions, namely, good solvent (water)-good cosolvent (alcohol) (GSGC) and poor solvent-good cosolvent (PSGC) solutions, both of which exhibit preferential adsorption of the cosolvent and a non-monotonic change in the polymer radius of gyration with the addition of the cosolvent. Interestingly, at low concentrations, the polymer-(co)solvent energetic interactions oppose polymer collapse in the GSGC solutions and contrarily support polymer collapse in the PSGC solutions, indicating the importance of the underlying polymer chemistry. Even though the alcohol molecules are preferentially adsorbed on the polymer, the trends of the energetic interactions at low cosolvent concentrations are dominated by the polymer-water energetic interactions in both the cases. Therefore, polymer-(co)solvent energetic interactions can either reinforce or compensate the surfactant-like mechanism, and it is this interplay that drives coil-to-globule transitions in polymer solutions. These results have implications for rationalizing the cononsolvency transitions in real systems such as polyacrylamides in aqueous alcohol solutions where the understanding of microscopic driving forces is still debatable.
Collapse
Affiliation(s)
- Swaminath Bharadwaj
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Divya Nayar
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Cahit Dalgicdir
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Nico F A van der Vegt
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| |
Collapse
|
24
|
A cosolvent surfactant mechanism affects polymer collapse in miscible good solvents. Commun Chem 2020; 3:165. [PMID: 36703319 PMCID: PMC9814688 DOI: 10.1038/s42004-020-00405-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/14/2020] [Indexed: 01/29/2023] Open
Abstract
The coil-globule transition of aqueous polymers is of profound significance in understanding the structure and function of responsive soft matter. In particular, the remarkable effect of amphiphilic cosolvents (e.g., alcohols) that leads to both swelling and collapse of stimuli-responsive polymers has been hotly debated in the literature, often with contradictory mechanisms proposed. Using molecular dynamics simulations, we herein demonstrate that alcohols reduce the free energy cost of creating a repulsive polymer-solvent interface via a surfactant-like mechanism which surprisingly drives polymer collapse at low alcohol concentrations. This hitherto neglected role of interfacial solvation thermodynamics is common to all coil-globule transitions, and rationalizes the experimentally observed effects of higher alcohols and polymer molecular weight on the coil-to-globule transition of thermoresponsive polymers. Polymer-(co)solvent attractive interactions reinforce or compensate this mechanism and it is this interplay which drives polymer swelling or collapse.
Collapse
|
25
|
Mochizuki K. On-Off of Co-non-solvency for Poly( N-vinylcaprolactam) in Alcohol-Water Mixtures: A Molecular Dynamics Study. J Phys Chem B 2020; 124:9951-9957. [PMID: 33086006 DOI: 10.1021/acs.jpcb.0c07188] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Poly(N-vinylcaprolactam) (PVCL) exhibits co-non-solvency in aqueous solutions of 2-propanol but not in methanol. What distinguishes the impact of these two cosolvents on the polymer conformational stability? We report a molecular dynamics simulation study on PVCL 50-mer and monomers dissolved in methanol-water and 2-propanol-water mixtures. We show that the alcohol-concentration dependence of the effective attraction between a pair of PVCL monomers closely resembles the conformational changes in a single PVCL 50-mer as well as the experimentally observed behavior for PVCL chains. We also found that, at the co-non-solvency maximum, the monomer-monomer attraction works over a long-range beyond the solvent-separated distance. Then, we correlate the long-range attraction to the appearance of a dense alcohol concentration accumulated between the monomers. Furthermore, we distinctly demonstrate that the co-non-solvency of PVCL monomers can be switched on/off by artificially tuning the alcohol size while keeping the energetic parameters. Thus, we conclude that the magnitude of the excluded volume effect in alcohol accompanying the gain in translational entropy of the solvent is crucial to the occurrence of PVCL polymer co-non-solvency.
Collapse
Affiliation(s)
- Kenji Mochizuki
- Department of Chemistry, Zhejiang University, 148 Tianmushan Road, Hangzhou, Zhejiang 310028, P. R. China
| |
Collapse
|
26
|
Raftopoulos KN, Kyriakos K, Nuber M, Niebuur BJ, Holderer O, Ohl M, Ivanova O, Pasini S, Papadakis CM. Co-nonsolvency in concentrated aqueous solutions of PNIPAM: effect of methanol on the collective and the chain dynamics. SOFT MATTER 2020; 16:8462-8472. [PMID: 32856669 DOI: 10.1039/d0sm01007c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The polymer dynamics in concentrated solutions of poly(N-isopropyl acrylamide) (PNIPAM) in D2O/CD3OD mixtures is investigated in the one-phase region. Two polymer concentrations (9 and 25 wt%) and CD3OD contents in the solvent mixture of 0, 10 and 15 vol% are chosen. Temperature-resolved dynamic light scattering (DLS) reveals the collective dynamics. Two modes are observed, namely the fast relaxation of polymer segments within the blobs and the slow collective relaxation of the blobs. As the cloud point is approached, the correlation length related to the fast mode increases with CD3OD content. It features critical scaling behavior, which is consistent with mean-field behavior for the 9 wt% PNIPAM solution in pure D2O and with 3D Ising behavior for all other solutions. While the slow mode is not very strong in the 9 wt% PNIPAM solution in pure D2O, it is significantly more prominent as CD3OD is added and at all CD3OD contents in the 25 wt% solution, which may be attributed to enhanced interaction between the polymers. Neutron spin-echo spectroscopy (NSE) reveals a decay in the intermediate structure factor which indicates a diffusive process. For the polymer concentration of 9 wt%, the diffusion coefficients from NSE are similar to the ones from the fast relaxation observed in DLS. In contrast, they are significantly lower for the solutions having a polymer concentration of 25 wt%, which is attributed to the influence of the dominant large-scale dynamic heterogeneities. To summarize, addition of cosolvent leads to enhanced large-scale heterogeneities, which are reflected in the dynamic behavior at small length scales.
Collapse
Affiliation(s)
- Konstantinos N Raftopoulos
- Technische Universität München, Physik-Department, Fachgebiet Physik weicher Materie, James-Franck-Str. 1, 85748 Garching, Germany.
| | - Konstantinos Kyriakos
- Technische Universität München, Physik-Department, Fachgebiet Physik weicher Materie, James-Franck-Str. 1, 85748 Garching, Germany.
| | - Matthias Nuber
- Technische Universität München, Physik-Department, Fachgebiet Physik weicher Materie, James-Franck-Str. 1, 85748 Garching, Germany.
| | - Bart-Jan Niebuur
- Technische Universität München, Physik-Department, Fachgebiet Physik weicher Materie, James-Franck-Str. 1, 85748 Garching, Germany.
| | - Olaf Holderer
- Jülich Centre for Neutron Science at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, 85747 Garching, Germany
| | - Michael Ohl
- Jülich Centre for Neutron Science JCNS-1, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Str., 52425 Jülich, Germany
| | - Oxana Ivanova
- Jülich Centre for Neutron Science at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, 85747 Garching, Germany
| | - Stefano Pasini
- Jülich Centre for Neutron Science at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, 85747 Garching, Germany
| | - Christine M Papadakis
- Technische Universität München, Physik-Department, Fachgebiet Physik weicher Materie, James-Franck-Str. 1, 85748 Garching, Germany.
| |
Collapse
|
27
|
Yong H, Merlitz H, Fery A, Sommer JU. Polymer Brushes and Gels in Competing Solvents: The Role of Different Interactions and Quantitative Predictions for Poly(N-isopropylacrylamide) in Alcohol–Water Mixtures. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Huaisong Yong
- Leibniz-Institut für Polymerforschung Dresden e.V., 01069 Dresden, Germany
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Holger Merlitz
- Leibniz-Institut für Polymerforschung Dresden e.V., 01069 Dresden, Germany
| | - Andreas Fery
- Leibniz-Institut für Polymerforschung Dresden e.V., 01069 Dresden, Germany
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Jens-Uwe Sommer
- Leibniz-Institut für Polymerforschung Dresden e.V., 01069 Dresden, Germany
- Institute for Theoretical Physics, Technische Universität Dresden, 01062 Dresden, Germany
| |
Collapse
|
28
|
Chattaraj KG, Paul S. Inclusion of Theobromine Modifies Uric Acid Aggregation with Possible Changes in Melamine–Uric Acid Clusters Responsible for Kidney Stones. J Phys Chem B 2019; 123:10483-10504. [DOI: 10.1021/acs.jpcb.9b08487] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam, India-781039
| |
Collapse
|
29
|
Yong H, Bittrich E, Uhlmann P, Fery A, Sommer JU. Co-Nonsolvency Transition of Poly(N-isopropylacrylamide) Brushes in a Series of Binary Mixtures. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01286] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Huaisong Yong
- Leibniz-Institut für Polymerforschung Dresden e.V., 01069 Dresden, Germany
| | - Eva Bittrich
- Leibniz-Institut für Polymerforschung Dresden e.V., 01069 Dresden, Germany
| | - Petra Uhlmann
- Leibniz-Institut für Polymerforschung Dresden e.V., 01069 Dresden, Germany
- Department of Chemistry, University of Nebraska-Lincoln, Hamilton Hall, Lincoln, Nebraska 68588, United States
| | - Andreas Fery
- Leibniz-Institut für Polymerforschung Dresden e.V., 01069 Dresden, Germany
| | - Jens-Uwe Sommer
- Leibniz-Institut für Polymerforschung Dresden e.V., 01069 Dresden, Germany
| |
Collapse
|
30
|
Bruce EE, van der Vegt NFA. Molecular Scale Solvation in Complex Solutions. J Am Chem Soc 2019; 141:12948-12956. [DOI: 10.1021/jacs.9b03469] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ellen E. Bruce
- Eduard-Zintl-Institut für Anorganische und
Physikalische Chemie, Technische Universität Darmstadt, D-64287 Darmstadt, Germany
| | - Nico F. A. van der Vegt
- Eduard-Zintl-Institut für Anorganische und
Physikalische Chemie, Technische Universität Darmstadt, D-64287 Darmstadt, Germany
| |
Collapse
|
31
|
Nothdurft K, Müller DH, Brands T, Bardow A, Richtering W. Enrichment of methanol inside pNIPAM gels in the cononsolvency-induced collapse. Phys Chem Chem Phys 2019; 21:22811-22818. [DOI: 10.1039/c9cp04383g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
From Raman, we determined an enrichment of methanol inside the polymer in the cononsolvency-induced collapse and donor-type hydrogen-bonding of methanol with pNIPAM.
Collapse
Affiliation(s)
- Katja Nothdurft
- Institute of Physical Chemistry
- RWTH Aachen University
- 52056 Aachen
- Germany
| | - David H. Müller
- Institute of Technical Thermodynamics
- RWTH Aachen University
- 52062 Aachen
- Germany
| | - Thorsten Brands
- Institute of Technical Thermodynamics
- RWTH Aachen University
- 52062 Aachen
- Germany
| | - André Bardow
- Institute of Technical Thermodynamics
- RWTH Aachen University
- 52062 Aachen
- Germany
| | - Walter Richtering
- Institute of Physical Chemistry
- RWTH Aachen University
- 52056 Aachen
- Germany
| |
Collapse
|