1
|
Kuehl B, Raman S, Becker A, Garg V, Roberts-Dobie J, McCaslin A, Brensdal J, Attinger J, Burton L, Forrester M, Hohmann A, Cochran EW. Fully Atom-Efficient Solvent-Mediated Biopolymer Manufacturing: A Base Case Illustrated with Macromolecular Surfactants Tailored to Stable Polymer-Water Interfaces. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59280-59290. [PMID: 39422669 DOI: 10.1021/acsami.4c12730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
This work introduces a novel 1-pot, 0-waste, 0-VOC methodology for synthesizing polymeric surfactants using acrylated epoxidized soybean oil and acrylated glycerol as primary monomers. These macromolecular surfactants are synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization, allowing for tunable hydrophilic-lipophilic balance (HLB) and ionic properties. We characterize the copolymers' chemical composition and surface-active properties, and evaluate their effectiveness in forming and stabilizing emulsions of semiepoxidized soybean oil and poly(acrylated epoxidized high oleic soybean oil). Comprehensive analyses, including gel permeation chromatography, nuclear magnetic resonance spectroscopy, dynamic light scattering, particle size distribution, zeta potential, and critical micelle concentration, provide detailed insights into the copolymers and the emulsions they form. The results demonstrate that the RAFT-polymerized surfactants offer long-lasting stability and effectively disperse both common oil-in-water emulsions and highly viscous and hydrophobic polymer latexes. These surfactants outperform traditional small molecule surfactants by reducing particle size and preventing phase separation, even over extended storage periods. Stable polymer-water interfaces are achieved through HLB control, tailored by monomer composition, and the final product requires no additional purification since polymerization occurs in liquid surfactants. While small molecules contribute to rapid micelle formation, the polymeric components enhance long-term stability through steric repulsion and slower dynamics. This method enables even the emulsification of polymers with submicron particle size, which ordinarily requires emulsion polymerization. Integrating biobased polymeric surfactants with advanced polymer processing techniques opens new possibilities for transforming highly hydrophobic polymers into latexes, facilitating downstream applications. This innovation enhances the environmental sustainability of surfactant production and broadens the potential for polymer emulsification technologies. Additionally, the integrated solution-processing approach demonstrated here can be applied to other emerging polymers, where judiciously selected nonvolatile solvents facilitate the polymerization and play a role in the final application.
Collapse
Affiliation(s)
- Baker Kuehl
- Department of Chemical & Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Sharan Raman
- Department of Chemical & Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Andrew Becker
- Department of Chemical & Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Vivek Garg
- Department of Chemical & Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Jefferson Roberts-Dobie
- Department of Chemical & Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Anna McCaslin
- Department of Chemical & Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Joran Brensdal
- Department of Chemical & Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Jacques Attinger
- Department of Chemical & Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Lauren Burton
- Department of Chemical & Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Michael Forrester
- Department of Chemical & Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Austin Hohmann
- Department of Chemical & Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Eric W Cochran
- Department of Chemical & Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
2
|
Skandalis A, Sentoukas T, Selianitis D, Balafouti A, Pispas S. Using RAFT Polymerization Methodologies to Create Branched and Nanogel-Type Copolymers. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1947. [PMID: 38730753 PMCID: PMC11084462 DOI: 10.3390/ma17091947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/13/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024]
Abstract
This review aims to highlight the most recent advances in the field of the synthesis of branched copolymers and nanogels using reversible addition-fragmentation chain transfer (RAFT) polymerization. RAFT polymerization is a reversible deactivation radical polymerization technique (RDRP) that has gained tremendous attention due to its versatility, compatibility with a plethora of functional monomers, and mild polymerization conditions. These parameters lead to final polymers with good control over the molar mass and narrow molar mass distributions. Branched polymers can be defined as the incorporation of secondary polymer chains to a primary backbone, resulting in a wide range of complex macromolecular architectures, like star-shaped, graft, and hyperbranched polymers and nanogels. These subcategories will be discussed in detail in this review in terms of synthesis routes and properties, mainly in solutions.
Collapse
Affiliation(s)
- Athanasios Skandalis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (D.S.); (A.B.)
| | - Theodore Sentoukas
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Street, 41-819 Zabrze, Poland
| | - Dimitrios Selianitis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (D.S.); (A.B.)
| | - Anastasia Balafouti
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (D.S.); (A.B.)
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (D.S.); (A.B.)
| |
Collapse
|
3
|
Dawson F, Jafari H, Rimkevicius V, Kopeć M. Gelation in Photoinduced ATRP with Tuned Dispersity of the Primary Chains. Macromolecules 2023; 56:2009-2016. [PMID: 36938508 PMCID: PMC10018774 DOI: 10.1021/acs.macromol.2c02159] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/20/2023] [Indexed: 02/24/2023]
Abstract
We investigated gelation in photoinduced atom transfer radical polymerization (ATRP) as a function of Cu catalyst loading and thus primary chain dispersity. Using parallel polymerizations of methyl acrylate with and without the addition of a divinyl crosslinker (1,6-hexanediol diacrylate), the approximate values of molecular weights and dispersities of the primary chains at incipient gelation were obtained. In accordance with the Flory-Stockmayer theory, experimental gelation occurred at gradually lower conversions when the dispersity of the primary chains increased while maintaining a constant monomer/initiator/crosslinker ratio. Theoretical gel points were then calculated using the measured experimental values of dispersity and initiation efficiency. An empirical modification to the Flory-Stockmayer equation for ATRP was implemented, resulting in more accurate predictions of the gel point. Increasing the dispersity of the primary chains was found not to affect the distance between the theoretical and experimental gel points and hence the extent of intramolecular cyclization. Furthermore, the mechanical properties of the networks, such as equilibrium swelling ratio and shear storage modulus showed little variation with catalyst loading and depended primarily on the crosslinking density.
Collapse
Affiliation(s)
- Frances Dawson
- Department of Chemistry, University
of Bath, Claverton Down, Bath BA2
7AY, U.K.
| | - Hugo Jafari
- Department of Chemistry, University
of Bath, Claverton Down, Bath BA2
7AY, U.K.
| | - Vytenis Rimkevicius
- Department of Chemistry, University
of Bath, Claverton Down, Bath BA2
7AY, U.K.
| | - Maciej Kopeć
- Department of Chemistry, University
of Bath, Claverton Down, Bath BA2
7AY, U.K.
| |
Collapse
|
4
|
Grignon E, An SY, Battaglia AM, Seferos DS. Catechol Homopolymers and Networks through Postpolymerization Modification. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Eloi Grignon
- Department of Chemistry, University of Toronto, Lash Miller Chemical Laboratories, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - So Young An
- Department of Chemistry, University of Toronto, Lash Miller Chemical Laboratories, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Alicia M. Battaglia
- Department of Chemistry, University of Toronto, Lash Miller Chemical Laboratories, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Dwight S. Seferos
- Department of Chemistry, University of Toronto, Lash Miller Chemical Laboratories, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| |
Collapse
|
5
|
Kuehl BW, Hohmann A, Lee TH, Forrester M, Hernandez N, Dietrich H, Smith C, Musselman S, Tran G, Cochran EW. Cavitation-Mediated Fracture Energy Dissipation in Polylactide at Rubbery Soybean Oil-Based Block Copolymer Interfaces Formed via Reactive Extrusion. ACS APPLIED MATERIALS & INTERFACES 2022; 14:46912-46919. [PMID: 36201621 DOI: 10.1021/acsami.2c10496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Here, we spearhead a new approach to biopolymer impact modification that demonstrates superior performance while maintaining greater than 99% compostability. Using soybean-based monomers, a virtually untapped resource in terms of commercial volume and overall cost, a series of hyperbranched block copolymers were synthesized and melt-processed with poly(l-lactide) (PLA) to yield impact resistant all-polymer composites. Although PLA impact modification has been treated extensively, to date, the only practical solutions have relied on non-compostable petroleum-based rubbers. This study illustrates the activity of energy dissipation mechanisms such as cavitation, classically relegated to well-entangled petroleum-based rubbers, in poorly entangled hyperbranched soybean-based rubbers. Furthermore, we present a complete study of the mechanical performance and morphology of these impact modified PLA composites. The significance of combining deformation theory with a scalable green alternative to petroleum-based rubbers opens up a potential avenue for cheap compostable engineering thermoplastics.
Collapse
Affiliation(s)
- Baker W Kuehl
- Department of Chemical & Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Austin Hohmann
- Department of Chemical & Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Ting Han Lee
- Department of Chemical & Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Michael Forrester
- Department of Chemical & Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Nacu Hernandez
- Department of Chemical & Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Hannah Dietrich
- Department of Chemical & Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Connor Smith
- Department of Chemical & Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Sam Musselman
- Department of Chemical & Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Grayson Tran
- Department of Chemical & Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Eric W Cochran
- Department of Chemical & Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
6
|
Lee TH, Liu H, Forrester MJ, Shen L, Wang TP, Yu H, He JH, Li W, Kraus GA, Cochran EW. Next-Generation High-Performance Biobased Naphthalate-Modified PET for Sustainable Food Packaging Applications. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ting-Han Lee
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Hengzhou Liu
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Michael J. Forrester
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Liyang Shen
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Tung-ping Wang
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Huangchao Yu
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Jia-Hao He
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Wenzhen Li
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - George A. Kraus
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Eric W. Cochran
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
7
|
Penrhyn-Lowe OB, Flynn S, Cassin SR, Mckeating S, Lomas S, Wright S, Chambon P, Rannard SP. Impact of multi-vinyl taxogen dimensions on high molecular weight soluble polymer synthesis using transfer-dominated branching radical telomerisation. Polym Chem 2021. [DOI: 10.1039/d1py01103k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The creation of branched polymers by TBRT is influenced by the molecular dimensions of the polymerising species. A mechanistic understanding is presented that includes a radical lifetime sphere model that is unique to telomerisation conditions used.
Collapse
Affiliation(s)
- Oliver B. Penrhyn-Lowe
- Materials Innovation Factory & Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK
| | - Sean Flynn
- Materials Innovation Factory & Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK
| | - Savannah R. Cassin
- Materials Innovation Factory & Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK
| | - Samuel Mckeating
- Materials Innovation Factory & Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK
| | - Sarah Lomas
- Materials Innovation Factory & Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK
| | - Stephen Wright
- Materials Innovation Factory & Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK
| | - Pierre Chambon
- Materials Innovation Factory & Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK
| | - Steve P. Rannard
- Materials Innovation Factory & Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK
| |
Collapse
|
8
|
Shang C, Fan F. Preparation of ionogel-bonded mesoporous silica and its application in liquid chromatography. NEW J CHEM 2021. [DOI: 10.1039/d1nj03244e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A new preparation strategy for stable ionogels on silica obtained by a chemical bonding method and its application in LC.
Collapse
Affiliation(s)
- Ce Shang
- E&D Research Institute of Liaohe Oilfield Company, Panjin, 124010, China
| | - Fangbin Fan
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|