2
|
Coban ZG, Kiliclar HC, Yagci Y. Photoinitiated Cationic Ring-Opening Polymerization of Octamethylcyclotetrasiloxane. Molecules 2023; 28:molecules28031299. [PMID: 36770964 PMCID: PMC9919424 DOI: 10.3390/molecules28031299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/18/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Photochemical techniques have recently been revitalized as they can readily be adapted to different polymerization modes to yield a wide range of complex macromolecular structures. However, the implementation of the photoinduced cationic methods in the polymerization of cyclic siloxane monomers has scarcely been investigated. Octamethylcyclotetrasiloxane (D4) is an important monomer for the synthesis of polydimethylsiloxane (PDMS) and its copolymers. In this study, the cationic ring-opening polymerization (ROP) of D4, initiated by diphenyl iodonium hexafluorophosphate (DPI), has been studied. Both direct and indirect initiating systems acting at broad wavelength using benzophenone and pyrene were investigated. In both systems, photochemically generated protonic acids and silylium cations are responsible for the polymerization. The kinetics of the polymerization are followed by viscosimetry and GPC analyses. The reported approach may overcome the problems associated with conventional methods and therefore represents industrial importance for the fabrication of polysiloxanes.
Collapse
|
3
|
Barrat A, Simon F, Mazajczyk J, Charriere B, Fouquay S, Lalevee J. Thiophenium Salts as New Oxidant for Redox Polymerization under Mild- and Low-Toxicity Conditions. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020627. [PMID: 36677685 PMCID: PMC9861688 DOI: 10.3390/molecules28020627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023]
Abstract
In mild conditions (under air, room temperature, no monomer purification and without any energy activation), redox free radical polymerization (RFRP) is considered as one of the most effective methods to polymerize (meth)acrylate monomers. In the past several years, there has been a growing interest in research on the development of new redox initiating systems (RISs), thanks mainly to the evolution of toxicity labeling and the stability issue of the current RIS based on peroxide and aromatic amine. In this study, a new, low-toxicity RIS based on thiophenium salt as the oxidant species is presented with various reductive species. The reactivity and the stability of the proposed RISs are investigated and the synthesis of new thiophenium salts reported.
Collapse
Affiliation(s)
- Alexis Barrat
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France
- Université de Strasbourg, F-67081, France
- Bostik Smart Technology Centre, F-60280 Venette, France
| | | | | | | | | | - Jacques Lalevee
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France
- Université de Strasbourg, F-67081, France
- Correspondence:
| |
Collapse
|
4
|
Ma Q, Buchon L, Magné V, Graff B, Morlet‐Savary F, Xu Y, Benltifa M, Lakhdar S, Lalevée J. Charge Transfer Complexes (CTCs) with Pyridinium Salts: Towards Efficient Dual Photochemical/Thermal Initiators and 3D Printing Applications. Macromol Rapid Commun 2022; 43:e2200314. [DOI: 10.1002/marc.202200314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/25/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Qiang Ma
- CNRS Université de Haute‐Alsace IS2M UMR 7361 Mulhouse F‐68100 France
- Université de Strasbourg Strasbourg F‐67081 France
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University) College of Chemistry Fuzhou University Fuzhou 350116 P. R. China
| | - Loïc Buchon
- CNRS Université de Haute‐Alsace IS2M UMR 7361 Mulhouse F‐68100 France
| | - Valentin Magné
- Laboratoire Hétérochimie Fondamentale et Appliquée UMR CNRS Université Paul Sabatier France
| | - Bernadette Graff
- CNRS Université de Haute‐Alsace IS2M UMR 7361 Mulhouse F‐68100 France
| | | | - Yangyang Xu
- College of Chemistry and Materials Science Anhui Normal University South Jiuhua Road 189 Wuhu 241002 P. R. China
| | - Mahmoud Benltifa
- Laboratory of Wastewaters and Environment Center for Water Research and Technologies CERTE BP 273 Soliman 8020 Tunisia
| | - Sami Lakhdar
- Laboratoire Hétérochimie Fondamentale et Appliquée UMR CNRS Université Paul Sabatier France
| | - Jacques Lalevée
- CNRS Université de Haute‐Alsace IS2M UMR 7361 Mulhouse F‐68100 France
- Université de Strasbourg Strasbourg F‐67081 France
| |
Collapse
|
5
|
A Sprayable and Visible Light Rapid-Cured Strippable Film for Surface Radioactive Decontamination. Polymers (Basel) 2022; 14:polym14051008. [PMID: 35267831 PMCID: PMC8912779 DOI: 10.3390/polym14051008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/28/2022] [Accepted: 02/28/2022] [Indexed: 11/23/2022] Open
Abstract
Strippable film is effective for removing radioactive contamination. However, it still has some limitations, such as the long curing time (about 30 min~24 h) and the requirement of organic solvents. To address these issues, we report a simple protocol to prepare strippable decontamination films using liquid polybutadiene (LPB) and tert-butyl acrylate (TBA) as the raw materials without solvent and using camphorquinone/ethyl 4-dimethylaminobenzoate (CQ/EDB) as a photoinitiator, where the film was formed under household LED panel light or daylight irradiation for about 540 s. After a thorough study of viscosity, real-time Fourier transform infrared (RT-FTIR spectra), gel and volatile organic compound (VOC) contents, mechanical properties and decontamination efficiency, the optimum composition and curing conditions were determined for the decontamination strippable film. VOC content is as low as 12.7 ± 0.7% and the resultant strippable film exhibits good mechanical performances with a tensile strength of up to 5.4 ± 0.4 MPa and elongation of up to 66.6 ± 13%. Most important, the decontamination efficiencies of this strippable film for 133CsCl on glass, ceramic and metal surfaces reach up to 98.1%, 94.3% and 97.6%, respectively.
Collapse
|
7
|
Sun G, Huang Y, Ma J, Li D, Fan Q, Li Y, Shao J. Photoinitiation mechanisms and photogelation kinetics of blue light induced polymerization of acrylamide with bicomponent photoinitiators. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20200818] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Guangdong Sun
- Engineering Research Center for Eco‐Dyeing and Finishing of Textiles, Ministry of Education Zhejiang Sci‐Tech University Hangzhou China
| | - Yi Huang
- Engineering Research Center for Eco‐Dyeing and Finishing of Textiles, Ministry of Education Zhejiang Sci‐Tech University Hangzhou China
- Zhejiang Sci‐Tech University Tongxiang Research Institute Tongxiang, Zhejiang China
| | - Junxiang Ma
- Engineering Research Center for Eco‐Dyeing and Finishing of Textiles, Ministry of Education Zhejiang Sci‐Tech University Hangzhou China
| | - Dapeng Li
- Department of Bioengineering University of Massachusetts Dartmouth North Dartmouth Massachusetts USA
| | - Qinguo Fan
- Department of Bioengineering University of Massachusetts Dartmouth North Dartmouth Massachusetts USA
| | - Yongqiang Li
- Zhejiang Sci‐Tech University Tongxiang Research Institute Tongxiang, Zhejiang China
| | - Jianzhong Shao
- Engineering Research Center for Eco‐Dyeing and Finishing of Textiles, Ministry of Education Zhejiang Sci‐Tech University Hangzhou China
| |
Collapse
|
8
|
Constantin T, Juliá F, Sheikh NS, Leonori D. A case of chain propagation: α-aminoalkyl radicals as initiators for aryl radical chemistry. Chem Sci 2020; 11:12822-12828. [PMID: 34094477 PMCID: PMC8163300 DOI: 10.1039/d0sc04387g] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The generation of aryl radicals from the corresponding halides by redox chemistry is generally considered a difficult task due to their highly negative reduction potentials. Here we demonstrate that α-aminoalkyl radicals can be used as both initiators and chain-carriers for the radical coupling of aryl halides with pyrrole derivatives, a transformation often employed to evaluate new highly reducing photocatalysts. This mode of reactivity obviates for the use of strong reducing species and was also competent in the formation of sp2 C-P bonds. Mechanistic studies have delineated some of the key features operating that trigger aryl radical generation and also propagate the chain process.
Collapse
Affiliation(s)
- Timothée Constantin
- Department of Chemistry, University of Manchester Manchester M13 9PL UK https://leonoriresearchgroup.com
| | - Fabio Juliá
- Department of Chemistry, University of Manchester Manchester M13 9PL UK https://leonoriresearchgroup.com
| | - Nadeem S Sheikh
- Department of Chemistry, College of Science, King Faisal University P. O. Box 400 Al-Ahsa 31982 Saudi Arabia
| | - Daniele Leonori
- Department of Chemistry, University of Manchester Manchester M13 9PL UK https://leonoriresearchgroup.com
| |
Collapse
|
9
|
Malik MS, Schlögl S, Wolfahrt M, Sangermano M. Review on UV-Induced Cationic Frontal Polymerization of Epoxy Monomers. Polymers (Basel) 2020; 12:polym12092146. [PMID: 32962306 PMCID: PMC7570253 DOI: 10.3390/polym12092146] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 11/16/2022] Open
Abstract
Ultraviolet (UV)-induced cationic frontal polymerization has emerged as a novel technique that allows rapid curing of various epoxy monomers upon UV irradiation within a few seconds. In the presence of a diaryliodonium salt photoinitiator together with a thermal radical initiator, the cationic ring opening polymerization of an epoxide monomer is auto-accelerated in the form of a self-propagating front upon UV irradiation. This hot propagating front generates the required enthalpy to sustain curing reaction throughout the resin formulation without further need for UV irradiation. This unique reaction pathway makes the cationic frontal polymerization a promising route towards the efficient curing of epoxy-based thermosetting resins and related composite structures. This review represents a comprehensive overview of the mechanism and progress of UV-induced cationic frontal polymerization of epoxy monomers that have been reported so far in literature. At the same time, this review covers important aspects on the frontal polymerization of various epoxide monomers involving the chemistry of the initiators, the effect of appropriate sensitizers, diluents and fillers.
Collapse
Affiliation(s)
- Muhammad Salman Malik
- Polymer Competence Center Leoben GmbH, Rossegerstrasse 12, 8700 Leoben, Austria; (M.S.M.); (S.S.); (M.W.)
| | - Sandra Schlögl
- Polymer Competence Center Leoben GmbH, Rossegerstrasse 12, 8700 Leoben, Austria; (M.S.M.); (S.S.); (M.W.)
| | - Markus Wolfahrt
- Polymer Competence Center Leoben GmbH, Rossegerstrasse 12, 8700 Leoben, Austria; (M.S.M.); (S.S.); (M.W.)
| | - Marco Sangermano
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, C.so Duca degli Abruzzi 24, I-10129 Torino, Italy
- Correspondence:
| |
Collapse
|
11
|
Zhu J, Zhu Y, Li Z, Yu Z, Guan X, Liu R, Yagci Y. Chemiluminescence-Induced Free Radical-Promoted Cationic Polymerization. Macromol Rapid Commun 2020; 41:e2000004. [PMID: 32100902 DOI: 10.1002/marc.202000004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/12/2020] [Indexed: 12/14/2022]
Abstract
Chemiluminescence (CL) has recently been featured as a new external light source for various photoinduced reactions with attractive features such as eliminating continuous energy supply and advanced light source setups. In the present study, the free-radical-promoted cationic polymerization of cyclohexene oxide, n-butyl vinyl ether, and N-vinyl carbazole under CL irradiation is described. The method is based on the visible-light-induced generation of electron donor radicals from bis-(4-methoxybenzoyl)diethyl germane (BAG), bis(2,4,6-trimethylbenzoyl) phenyl phosphinate, and camphorquinone by CL illumination followed by electron transfer to diphenyl iodonium hexafluorophosphate (Ph2 I+ PF6 - ) to form corresponding cations capable of initiating cationic polymerization. The applicability of the process to network formation is also demonstrated by using a bifunctional monomer, tri(ethylene glycol) divinyl ether.
Collapse
Affiliation(s)
- Junzhe Zhu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China.,International Research Center for Photoresponsive Molecules and Materials, Jiangnan University, Wuxi, Jiangsu, 214122, China.,School of Chemical & Materials Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Ye Zhu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China.,International Research Center for Photoresponsive Molecules and Materials, Jiangnan University, Wuxi, Jiangsu, 214122, China.,School of Chemical & Materials Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Zhiquan Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China.,International Research Center for Photoresponsive Molecules and Materials, Jiangnan University, Wuxi, Jiangsu, 214122, China.,School of Chemical & Materials Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Zihang Yu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China.,International Research Center for Photoresponsive Molecules and Materials, Jiangnan University, Wuxi, Jiangsu, 214122, China.,School of Chemical & Materials Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Xin Guan
- School of Chemical & Materials Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Ren Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China.,International Research Center for Photoresponsive Molecules and Materials, Jiangnan University, Wuxi, Jiangsu, 214122, China.,School of Chemical & Materials Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yusuf Yagci
- Department of Chemistry, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey.,Center of Excellence for Advanced Materials Research (CEAMR) and Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah, 21589, Saudi Arabia
| |
Collapse
|