1
|
Yildirim A, Krause C, Huber P, Schönhals A. Multiple glassy dynamics of a homologous series of triphenylene-based columnar liquid crystals – A study by broadband dielectric spectroscopy and advanced calorimetry. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
2
|
Lindemann N, Schawe JEK, Lacayo-Pineda J. Kinetics of the Glass Transition of Silica-Filled Styrene-Butadiene Rubber: The Effect of Resins. Polymers (Basel) 2022; 14:polym14132626. [PMID: 35808677 PMCID: PMC9269213 DOI: 10.3390/polym14132626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/09/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
Resins are important for enhancing both the processability and performance of rubber. Their efficient utilization requires knowledge about their influence on the dynamic glass transition and their miscibility behavior in the specific rubber compound. The resins investigated, poly-(α-methylstyrene) (AMS) and indene-coumarone (IC), differ in molecular rigidity but have a similar aromaticity degree and glass transition temperature. Transmission electron microscopy (TEM) investigations show an accumulation of IC around the silanized silica in styrene–butadiene rubber (SBR) at high contents, while AMS does not show this effect. This higher affinity between IC and the silica surface leads to an increased compactness of the filler network, as determined by dynamic mechanical analysis (DMA). The influence of the resin content on the glass transition of the rubber compounds is evaluated in the sense of the Gordon–Taylor equation and suggests a rigid amorphous fraction for the accumulated IC. Broadband dielectric spectroscopy (BDS) and fast differential scanning calorimetry (FDSC) are applied for the characterization of the dielectric and thermal relaxations as well as for the corresponding vitrification kinetics. The cooling rate dependence of the vitrification process is combined with the thermal and dielectric relaxation time by one single Vogel–Fulcher–Tammann–Hesse equation, showing an increased fragility of the rubber containing AMS.
Collapse
Affiliation(s)
- Niclas Lindemann
- Institut für Physikalische Chemie und Elektrochemie, Leibniz Universität Hannover, Callinstraße 3A, 30167 Hanover, Germany
- Continental Reifen Deutschland GmbH, Jädekamp 30, 30419 Hanover, Germany;
- Correspondence:
| | | | - Jorge Lacayo-Pineda
- Continental Reifen Deutschland GmbH, Jädekamp 30, 30419 Hanover, Germany;
- Institut für Anorganische Chemie, Leibniz Universität Hannover, Callinstraße 9, 30167 Hanover, Germany
| |
Collapse
|
3
|
Maiz J, Verde-Sesto E, Asenjo-Sanz I, Mangin-Thro L, Frick B, Pomposo JA, Arbe A, Colmenero J. Disentangling Component Dynamics in an All-Polymer Nanocomposite Based on Single-Chain Nanoparticles by Quasielastic Neutron Scattering. Macromolecules 2022; 55:2320-2332. [PMID: 35355834 PMCID: PMC8945772 DOI: 10.1021/acs.macromol.1c02382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/11/2022] [Indexed: 11/30/2022]
Abstract
![]()
We
have investigated an all-polymer nanocomposite (NC) consisting
of single-chain nanoparticles (SCNPs) immersed in a matrix of linear
chains of their precursors (25/75% composition in weight). The SCNPs
were previously synthesized via “click” chemistry, which
induces intramolecular cross-links in the individual macromolecules
accompanied by a slight shift (5–8 K) of the glass transition
temperature toward higher values and a broadening of the dynamic response
with respect to the raw precursor material. The selective investigation
of the dynamics of the NC components has been possible by using properly
isotopically labeled materials and applying quasielastic neutron scattering
techniques. Results have been analyzed in the momentum transfer range
where the coherent scattering contribution is minimal, as determined
by complementary neutron diffraction experiments with polarization
analysis. We observe the development of dynamic heterogeneity in the
intermediate scattering function of the NC components, which grows
with increasing time. Local motions in the precursor matrix of the
NC are accelerated with respect to the reference bulk behavior, while
the displacements of SCNPs’ hydrogens show enhanced deviations
from Gaussian and exponential behavior compared with the pure melt
of SCNPs. The resulting averaged behavior in the NC coincides with
that of the pure precursor, in accordance with the macroscopic observations
by differential scanning calorimetry (DSC) experiments.
Collapse
Affiliation(s)
- Jon Maiz
- Centro de Física de Materiales (CFM) (CSIC-UPV/EHU)-Materials Physics Center (MPC), Paseo Manuel de Lardizábal 5, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE-Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Ester Verde-Sesto
- Centro de Física de Materiales (CFM) (CSIC-UPV/EHU)-Materials Physics Center (MPC), Paseo Manuel de Lardizábal 5, 20018 Donostia-San Sebastián, Spain
| | - Isabel Asenjo-Sanz
- Centro de Física de Materiales (CFM) (CSIC-UPV/EHU)-Materials Physics Center (MPC), Paseo Manuel de Lardizábal 5, 20018 Donostia-San Sebastián, Spain
| | - Lucile Mangin-Thro
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble Cedex 9, France
| | - Bernhard Frick
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble Cedex 9, France
| | - José A. Pomposo
- Centro de Física de Materiales (CFM) (CSIC-UPV/EHU)-Materials Physics Center (MPC), Paseo Manuel de Lardizábal 5, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE-Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
- Departamento de Polímeros y Materiales Avanzados: Física, Química y Tecnología, Universidad del País Vasco-Euskal Herriko Unibertsitatea (UPV/EHU), 20018 Donostia-San Sebastián, Spain
| | - Arantxa Arbe
- Centro de Física de Materiales (CFM) (CSIC-UPV/EHU)-Materials Physics Center (MPC), Paseo Manuel de Lardizábal 5, 20018 Donostia-San Sebastián, Spain
| | - Juan Colmenero
- Centro de Física de Materiales (CFM) (CSIC-UPV/EHU)-Materials Physics Center (MPC), Paseo Manuel de Lardizábal 5, 20018 Donostia-San Sebastián, Spain
- Departamento de Polímeros y Materiales Avanzados: Física, Química y Tecnología, Universidad del País Vasco-Euskal Herriko Unibertsitatea (UPV/EHU), 20018 Donostia-San Sebastián, Spain
- Donostia International Physics Center, Paseo Manuel de Lardizábal 4, 20018 Donostia-San Sebastián, Spain
| |
Collapse
|
4
|
Szymoniak P, Qu X, Abbasi M, Pauw BR, Henning S, Li Z, Wang DY, Schick C, Saalwächter K, Schönhals A. Spatial inhomogeneity, interfaces and complex vitrification kinetics in a network forming nanocomposite. SOFT MATTER 2021; 17:2775-2790. [PMID: 33543739 DOI: 10.1039/d0sm01992e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A detailed calorimetric study on an epoxy-based nanocomposite system was performed employing bisphenol A diglycidyl ether (DGEBA) cured with diethylenetriamine (DETA) as the polymer matrix and a taurine-modified MgAL layered double hydroxide (T-LDH) as the nanofiller. The -NH2 group of taurine can react with DGEBA improving the interaction of the polymer with the filler. The combined X-ray scattering and electron microscopy data showed that the nanocomposite has a partially exfoliated morphology. Calorimetric studies were performed using conventional DSC, temperature modulated DSC (TMDSC) and fast scanning calorimetry (FSC) in the temperature modulated approach (TMFSC) to investigate the vitrification and molecular mobility dependent on the filler concentration. First, TMDSC and NMR were used to estimate the amount of the rigid amorphous fraction which consists of immobilized polymer segments at the nanoparticle surface. It was found to be 40 wt% for the highest filler concentration, indicating that the interface dominates the overall macroscopic properties and behavior of the material to a great extent. Second, the relaxation rates of the α-relaxation obtained by TMDSC and TMFSC were compared with the thermal and dielectric relaxation rates measured by static FSC. The investigation revealed that the system shows two distinct α-relaxation processes. Furthermore, two separate vitrification mechanisms were also found for a bulk network-former without geometrical confinement as also confirmed by NMR. This was discussed in terms of the intrinsic spatial heterogeneity on a molecular scale, which becomes more pronounced with increasing nanofiller content.
Collapse
Affiliation(s)
- Paulina Szymoniak
- Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany.
| | - Xintong Qu
- Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany.
| | - Mozhdeh Abbasi
- Institut für Physik - NMR, Martin-Luther-Universität Halle-Wittenberg, Betty-Heimann-Str. 7, 06120 Halle, Germany
| | - Brian R Pauw
- Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany.
| | - Sven Henning
- Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS, Walter-Hülse-Str. 1, 06120 Halle, Germany
| | - Zhi Li
- IMDEA Materials Institute, Eric Kandel 2, 28906 Getafe, Madrid, Spain
| | - De-Yi Wang
- IMDEA Materials Institute, Eric Kandel 2, 28906 Getafe, Madrid, Spain
| | - Christoph Schick
- University of Rostock, Institute of Physics and Competence Center CALOR, Albert-Einstein-Str. 23-24, 18059 Rostock, Germany and A. M. Butlerov Institute of Chemistry, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russian Federation
| | - Kay Saalwächter
- Institut für Physik - NMR, Martin-Luther-Universität Halle-Wittenberg, Betty-Heimann-Str. 7, 06120 Halle, Germany
| | - Andreas Schönhals
- Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany.
| |
Collapse
|
5
|
Lindemann N, Schawe JEK, Lacayo‐Pineda J. Kinetics of the glass transition of styrene‐butadiene‐rubber: Dielectric spectroscopy and fast differential scanning calorimetry. J Appl Polym Sci 2021. [DOI: 10.1002/app.49769] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Niclas Lindemann
- Institut für Physikalische Chemie und Elektrochemie Leibniz Universität Hannover Hanover Lower Saxony Germany
- Department of Research and Development Continental Reifen Deutschland GmbH Hanover Lower Saxony Germany
| | | | - Jorge Lacayo‐Pineda
- Department of Research and Development Continental Reifen Deutschland GmbH Hanover Lower Saxony Germany
- Institut für Anorganische Chemie Leibniz Universität Hannover Hanover Lower Saxony Germany
| |
Collapse
|
6
|
Electrical Conductivity and Multiple Glassy Dynamics of Crown Ether-Based Columnar Liquid Crystals. J Phys Chem B 2020; 124:8728-8739. [PMID: 32902985 DOI: 10.1021/acs.jpcb.0c06854] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The phase behavior of two unsymmetrical triphenylene crown ether-based columnar liquid crystals bearing different lengths of alkyl chains, KAL465 and KAL468, was investigated using differential scanning calorimetry (DSC). A plastic crystalline (Cry), a columnar liquid crystalline (Colh), and an isotropic phase were observed along with two glass transitions in the Cry phase. The molecular mobility of the KAL compounds was further studied by a combination of broadband dielectric spectroscopy (BDS) and advanced calorimetric techniques. By the BDS investigations, three dielectric active relaxation processes were observed for both samples. At low temperatures, a γ-process in the Cry state was detected and is assigned to the localized fluctuations taking place in the alkyl chains. An α2-process takes place at higher temperatures in the Cry phase. An α3-process was found in the Colh mesophase. The advanced calorimetric techniques consist of fast scanning calorimetry (FSC) and specific heat spectroscopy employing temperature-modulated DSC and FSC. The advanced calorimetric investigations revealed that besides the α2-process in agreement with BDS, there is a second dynamic glass transition (α1-process), which is not observed by dielectric spectroscopy. The results are in good agreement with the glass transitions detected by DSC for this process. The temperature dependences of the relaxation rates of the α1-, α2-, and α3-processes are all different. Therefore, different molecular assignments for the relaxation processes are proposed. In addition to the relaxation processes, a conductivity contribution was explored by BDS for both KAL compounds. The conductivity contribution appears in both Cry and Colh phases, where the conductivity increases by ca. 1 order of magnitude at phase transition from the Cry to the hexagonal phase.
Collapse
|
7
|
Szymoniak P, Pauw BR, Qu X, Schönhals A. Competition of nanoparticle-induced mobilization and immobilization effects on segmental dynamics of an epoxy-based nanocomposite. SOFT MATTER 2020; 16:5406-5421. [PMID: 32490484 DOI: 10.1039/d0sm00744g] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The complex effects of nanoparticles on a thermosetting material based on an anhydride cured DGEBA/boehmite nanocomposite with different particle concentrations are considered. A combination of X-ray scattering, calorimetry, including fast scanning calorimetry and temperature modulated calorimetry, and dielectric spectroscopy was employed to study the structure, the vitrification kinetics and the molecular dynamics of the nanocomposites. For the first time in the literature, for an epoxy-based composite, a detailed analysis of the X-ray data was carried out. Moreover, the unfilled polymer was found to be intrinsically heterogeneous, showing regions with different crosslinking densities, indicated by two separate dynamic glass transitions. The glass transition temperature decreases with increasing nanoparticle concentration, resulting from a change in the crosslinking density. Moreover, on the one hand, for the nanocomposites, the incorporation of nanofiller increased the number of mobile segments for low nanoparticle concentrations, due to the altered crosslinking density. On the other hand, for higher loading degrees, the number of mobile segments decreased, resulting from the formation of an immobilized interphase (RAF). The simultaneous mobilization and immobilization of the segmental dynamics cannot be separated unambiguously. By taking the sample with the highest number of mobile segments as a reference state, it was possible to estimate the amount of RAF.
Collapse
Affiliation(s)
- Paulina Szymoniak
- Bundesanstalt für Materialforschung und-prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany.
| | | | | | | |
Collapse
|