1
|
Hada R, Kanazawa A, Aoshima S. Degradable Silyl Ether Polymers Synthesized by Sequence-Controlled Cationic Terpolymerization of 1,3-Dioxa-2-silacycloalkanes with Vinyl Ethers and Aldehydes. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ryosuke Hada
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Arihiro Kanazawa
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Sadahito Aoshima
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
2
|
Shibata K, Kametani Y, Daito Y, Ouchi M. Homopolymer- block-Alternating Copolymers Composed of Acrylamide Units: Design of Transformable Divinyl Monomers and Sequence-Specific Thermoresponsive Properties. J Am Chem Soc 2022; 144:9959-9970. [PMID: 35613460 DOI: 10.1021/jacs.2c02836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In this work, we synthesized an acrylamide-based terpolymer that is a block copolymer composed of an AB alternating copolymer and a C homopolymer. The key to the unprecedented achievement is rational design of an acrylate-acrylamide divinyl monomer carrying CF3-substituted salicylic acid ester bonds (AAm-CF3) to realize the efficient and selective cyclopolymerization as well as the quantitative transformation of the resultant cyclorepeating units. The selectivity in the cyclopolymerization and the pendant transformation ability were evaluated through reactivity ratios of the corresponding model monomers and quantitative aminolysis reactions of the model compound. The cyclopolymerization via the photoinduced electron transfer-reversible addition-fragmentation chain transfer (PET-RAFT) process with a macrochain-transfer agent and subsequent aminolysis reaction afforded the homopolymer-block-alternating copolymer. The sequence-controlled terpolymer exhibited a very unique thermal response behavior in water that was strikingly different from the corresponding sequence-uncontrolled terpolymers, such as homopolymer-block-statistical copolymers and all statistical terpolymers, despite the fact that the structure cannot be distinguished by 1H NMR.
Collapse
Affiliation(s)
- Kentaro Shibata
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yuki Kametani
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yuji Daito
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Makoto Ouchi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
3
|
Hayashi K, Kanazawa A, Aoshima S. Cationic Copolymerization of o-Phthalaldehyde and Vinyl Monomers with Various Substituents on the Vinyl Group or in the Pendant: Effects of the Structure and Reactivity of Vinyl Monomers on Copolymerization Behavior. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Keisuke Hayashi
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan 560-0043
| | - Arihiro Kanazawa
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan 560-0043
| | - Sadahito Aoshima
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan 560-0043
| |
Collapse
|
4
|
Dirauf M, Muljajew I, Weber C, Schubert US. Recent advances in degradable synthetic polymers for biomedical applications – Beyond polyesters. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Maruyama K, Kanazawa A, Aoshima S. ABC-Type Periodic Terpolymer Synthesis by a One-Pot Approach Consisting of Oxirane- and Carbonyl-Derived Cyclic Acetal Generation and Subsequent Living Cationic Alternating Copolymerization with a Vinyl Monomer. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Kazuya Maruyama
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Arihiro Kanazawa
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Sadahito Aoshima
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
6
|
Takahata K, Aizawa N, Nagao M, Uchida S, Goseki R, Ishizone T. Living Anionic Addition Reaction of 1,1-Diphenylethylene Derivatives: One-Pot Synthesis of ABC-type Chain-End Sequence-Controlled Polymers. J Am Chem Soc 2021; 143:11296-11301. [PMID: 34232655 DOI: 10.1021/jacs.1c04500] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In this study, a 1:1 addition reaction using 1,1-diphenylethylene (DPE) derivatives, referred to as the "living anionic addition reaction", was established to regulate the sequence of vinyl compounds having negligible homopolymerizability. The stoichiometric and successive addition reaction between a DPE anion and more reactive DPE derivatives proceeded quantitatively when the electrophilicity of the DPE derivatives was sufficiently enhanced by electron-withdrawing groups such as (trimethylsilyl)ethynyl and acyl groups. The relative electrophilicity of the DPE derivatives was predicted by Hammett's law and the β-carbon chemical shifts of the carbon-carbon double bonds. AB- and ABC-type chain-end sequence-controlled polystyrenes with well-defined structures were synthesized by reacting two or three DPE derivatives with difunctional anionic living polystyrene in increasing order of their electrophilicity in a one-pot reaction.
Collapse
Affiliation(s)
- Kazuki Takahata
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-S1-13 Ohokayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Naoki Aizawa
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-S1-13 Ohokayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Masashi Nagao
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-S1-13 Ohokayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Satoshi Uchida
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-S1-13 Ohokayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Raita Goseki
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-S1-13 Ohokayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Takashi Ishizone
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-S1-13 Ohokayama, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
7
|
Higuchi M, Kanazawa A, Aoshima S. Unzipping and scrambling
reaction‐induced
sequence control of copolymer chains via temperature changes during cationic
ring‐opening
copolymerization of cyclic acetals and cyclic esters. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Motoki Higuchi
- Department of Macromolecular Science, Graduate School of Science Osaka University Toyonaka Osaka Japan
| | - Arihiro Kanazawa
- Department of Macromolecular Science, Graduate School of Science Osaka University Toyonaka Osaka Japan
| | - Sadahito Aoshima
- Department of Macromolecular Science, Graduate School of Science Osaka University Toyonaka Osaka Japan
| |
Collapse
|
8
|
Lin X, Li J, Zhang J, Liu S, Lin X, Pan X, Zhu J, Zhu X. Living cationic polymerization of vinyl ethers initiated by electrophilic selenium reagents under ambient conditions. Polym Chem 2021. [DOI: 10.1039/d0py01691h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We present a living cationic polymerization of vinyl ethers utilizing electrophilic selenium reagents as initiators and pentacarbonylbromomanganese (Mn(CO)5Br) as the catalyst.
Collapse
Affiliation(s)
- Xia Lin
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Jiajia Li
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Jiandong Zhang
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Shaoxiang Liu
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Xiaofang Lin
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Xiangqiang Pan
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Jian Zhu
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Xiulin Zhu
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| |
Collapse
|
9
|
Daito Y, Kojima R, Kusuyama N, Kohsaka Y, Ouchi M. Magnesium bromide (MgBr 2) as a catalyst for living cationic polymerization and ring-expansion cationic polymerization. Polym Chem 2021. [DOI: 10.1039/d0py01584a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Magnesium bromide (MgBr2) was found to be an effective catalyst for the ring-expansion cationic polymerizations of isobutyl vinyl ether (IBVE) initiated by a “cyclic” hemiacetal ester (HAE) bond-based initiator leading to the syntheses of cyclic poly(IBVE)s.
Collapse
Affiliation(s)
- Yuji Daito
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| | - Reina Kojima
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| | - Naoyuki Kusuyama
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| | - Yasuhiro Kohsaka
- Research Initiative for Supra-Materials (RISM)
- Shinshu University
- Japan
- Faculty of Textile Science and Technology
- Shinshu University
| | - Makoto Ouchi
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| |
Collapse
|
10
|
Boeck PT, Tanaka J, Liu S, You W. Importance of Nucleophilicity of Chain-Transfer Agents for Controlled Cationic Degenerative Chain-Transfer Polymerization. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00290] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Parker Thomas Boeck
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Joji Tanaka
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Shubin Liu
- Research Computing Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Wei You
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
11
|
Watanabe H, Yamamoto T, Kanazawa A, Aoshima S. Stereoselective cationic polymerization of vinyl ethers by easily and finely tunable titanium complexes prepared from tartrate-derived diols: isospecific polymerization and recognition of chiral side chains. Polym Chem 2020. [DOI: 10.1039/d0py00343c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Isotactic poly(vinyl ether)s were generated by titanium TADDOLates, which can be prepared from naturally abundant tartaric acid in a facile and economical manner with well-defined structures.
Collapse
Affiliation(s)
- Hironobu Watanabe
- Department of Macromolecular Science
- Graduate School of Science
- Osaka University
- Toyonaka
- Japan
| | - Takuya Yamamoto
- Department of Macromolecular Science
- Graduate School of Science
- Osaka University
- Toyonaka
- Japan
| | - Arihiro Kanazawa
- Department of Macromolecular Science
- Graduate School of Science
- Osaka University
- Toyonaka
- Japan
| | - Sadahito Aoshima
- Department of Macromolecular Science
- Graduate School of Science
- Osaka University
- Toyonaka
- Japan
| |
Collapse
|