1
|
Ren L, Lu X, Yan J, Zhang A, Li W. Hierarchical assembly of thermoresponsive helical dendronized poly(phenylacetylene)s through photo-crosslinking of the thermal aggregates. J Colloid Interface Sci 2025; 677:928-940. [PMID: 39128287 DOI: 10.1016/j.jcis.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024]
Abstract
Supramolecular assembly of helical homopolymers to form stable chiral entities in water is highly valuable for creating chiral nanostructures and fabricating chiral biomaterials. Here we report on thermally induced supramolecular assembly of helical dendronized poly(phenylacetylene)s (PPAs) in aqueous solutions, and their in-situ photo-crosslinking at elevated temperatures to afford crosslinked nano-assemblies with hierarchical structures and stabilized helicities. These helical dendronized homopolymers carry cinnamate-cored dendritic oligoethylene glycol (OEG) pendants, which exhibit characteristic thermoresponsive behavior. Their thermal aggregation confers hexagonal packing of the polymer chains, and simultaneously resulting in enhancement of their chiralities. Assisted by radial amphiphilicity and worm-like molecular geometry, these dendronized PPAs form supramolecular twisted fibers, spheroid particles or toroids via thermal aggregation. Through UV photoirradiation above their cloud points (Tcps), cycloaddition of cinnamate moieties from the dendritic pendants promotes intermolecular crosslinking of dendronized PPA chains within the thermal aggregates, and simultaneously, the dynamic morphologies and supramolecular chirality from the dendronized PPAs through thermally induced aggregation can be fixed. In addition, photo-crosslinking can be occurred solely within individual aggregates due to the protection of densely packed dendritic OEGs. Therefore, various crosslinked assemblies from the dendronized homopolymers with tailorable morphologies and stabilized chirality are fabricated by tuning their thermally induced dynamic aggregations followed by in-situ photo-crosslinking. We believe that this work paves a convenient route to fabricate chiral assemblies with stabilized morphologies and fixed chiralities from dynamic helical homopolymers through intermolecular crosslinking, which can be promising for various chiral applications.
Collapse
Affiliation(s)
- Liangxuan Ren
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Mailbox 152, 99 Shangda Road, Shanghai 200444, China
| | - Xueting Lu
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Mailbox 152, 99 Shangda Road, Shanghai 200444, China
| | - Jiatao Yan
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Mailbox 152, 99 Shangda Road, Shanghai 200444, China
| | - Afang Zhang
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Mailbox 152, 99 Shangda Road, Shanghai 200444, China
| | - Wen Li
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Mailbox 152, 99 Shangda Road, Shanghai 200444, China
| |
Collapse
|
2
|
Shen L, Cao Y, Wang L, Zhang X, Zhang A, Li W. Compressible Hydrogels with Stabilized Chirality from Thermoresponsive Helical Dendronized Poly(phenylacetylene)s. Angew Chem Int Ed Engl 2024; 63:e202407552. [PMID: 38770786 DOI: 10.1002/anie.202407552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 05/22/2024]
Abstract
Fabrication of chiral hydrogels from thermoresponsive helical dendronized phenylacetylene copolymers (PPAs) carrying three-fold dendritic oligoethylene glycols (OEGs) is reported. Three different temperatures, i.e. below or above cloud point temperatures (Tcps) of the copolymers, and under freezing condition, were utilized, affording thermoresponsive hydrogels with different morphologies and mechanical properties. At room temperature, transparent hydrogels were obtained through crosslinking among different copolymer chains. Differently, opaque hydrogels with much improved mechanical properties were formed at elevated temperatures through crosslinking from the thermally dehydrated and collapsed copolymer aggregates, leading to heterogeneity for the hydrogels with highly porous morphology. While crosslinking at freezing temperature synergistically through ice templating, these amphiphilic dendronized copolymers formed hydrogels with highly porous lamellar structures, which exhibited remarkable compressible properties as human articular cartilage with excellent fatigue resistance. Amphiphilicity of the dendronized copolymers played a pivotal role in modulating the network formation during the gelation, as well as morphology and mechanical performance of the resulting hydrogels. Through crosslinking, these dendronized copolymers featured with typical dynamic helical conformations were transformed into hydrogels with unprecedently stabilized helicities due to the restrained chain mobilities in the three-dimensional networks.
Collapse
Affiliation(s)
- Lefei Shen
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science & Engineering, Shanghai University, 333 Nanchen Road, Shanghai, 200444, China
| | - Yuexin Cao
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science & Engineering, Shanghai University, 333 Nanchen Road, Shanghai, 200444, China
| | - Lei Wang
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science & Engineering, Shanghai University, 333 Nanchen Road, Shanghai, 200444, China
| | - Xiacong Zhang
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science & Engineering, Shanghai University, 333 Nanchen Road, Shanghai, 200444, China
| | - Afang Zhang
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science & Engineering, Shanghai University, 333 Nanchen Road, Shanghai, 200444, China
| | - Wen Li
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science & Engineering, Shanghai University, 333 Nanchen Road, Shanghai, 200444, China
| |
Collapse
|
3
|
Gu Y, Liu L, Wang Y, Zhang C, Satoh T. Chromaticity sensor for discriminatory identification of aliphatic and aromatic primary amines based on conformational changes of polyacetylene. Talanta 2024; 268:125361. [PMID: 37925824 DOI: 10.1016/j.talanta.2023.125361] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/17/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
The design and construction of suitable sensors that can selectively recognize chemically similar substances such as aliphatic and aromatic amines remain challenging. In this work, we reported a poly(phenylacetylene) bearing two aldehyde pendants as the color indicator for discriminative identification of amines. Reversible Schiff-base reaction of the aldehyde group with the amine resulted in a conformational transition of the polyacetylene backbone from cis-cisoid to cis-transoid, which further achieved a colorimetric change. Thirteen aliphatic amines and aromatic amines had been studied. Compared with aromatic amines, aliphatic amines generally caused the polyene backbone to display perceivable colorimetric change. Steric and electronic effect played a significant role in the colorimetric response. In addition, external environment, including amine content, polymer concentration, and temperature, had influence on the sensitivity of this colorimetric indicator system. The amines-induced colorimetric variation was further demonstrated by the CIELAB color space. Moreover, the colorimetric sensor exhibited excellent reversibility and recyclability.
Collapse
Affiliation(s)
- Yuanyuan Gu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Lijia Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China; Yantai Research Institute of Harbin Engineering University, Yantai, 264006, China.
| | - Yudan Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China.
| | - Chunhong Zhang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China; Yantai Research Institute of Harbin Engineering University, Yantai, 264006, China
| | - Toshifumi Satoh
- Faculty of Engineering, Hokkaido University, Sapporo, 060-8628, Japan
| |
Collapse
|
4
|
Lago-Silva M, Fernández-Míguez M, Rodríguez R, Quiñoá E, Freire F. Stimuli-responsive synthetic helical polymers. Chem Soc Rev 2024; 53:793-852. [PMID: 38105704 DOI: 10.1039/d3cs00952a] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Synthetic dynamic helical polymers (supramolecular and covalent) and foldamers share the helix as a structural motif. Although the materials are different, these systems also share many structural properties, such as helix induction or conformational communication mechanisms. The introduction of stimuli responsive building blocks or monomer repeating units in these materials triggers conformational or structural changes, due to the presence/absence of the external stimulus, which are transmitted to the helix resulting in different effects, such as assymetry amplification, helix inversion or even changes in the helical scaffold (elongation, J/H helical aggregates). In this review, we show through selected examples how different stimuli (e.g., temperature, solvents, cations, anions, redox, chiral additives, pH or light) can alter the helical structures of dynamic helical polymers (covalent and supramolecular) and foldamers acting on the conformational composition or molecular structure of their components, which is also transmitted to the macromolecular helical structure.
Collapse
Affiliation(s)
- María Lago-Silva
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| | - Manuel Fernández-Míguez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| | - Rafael Rodríguez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| | - Emilio Quiñoá
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| | - Félix Freire
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| |
Collapse
|
5
|
Ren L, Lu X, Li W, Yan J, Whittaker AK, Zhang A. Thermoresponsive Helical Dendronized Poly(phenylacetylene)s: Remarkable Stabilization of Their Helicity via Photo-Dimerization of the Dendritic Pendants. J Am Chem Soc 2023. [PMID: 37922243 DOI: 10.1021/jacs.3c09333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
Dynamic helical polymers can change their helicity according to external stimuli due to the low helix-inversion barriers, while helicity stabilization for polymers is important for applications in chiral recognition or chiral separations. Here, we present a convenient methodology to stabilize dynamic helical conformations of polymers through intramolecular cross-linking. Thermoresponsive dendronized poly(phenylacetylene)s (PPAs) carrying 3-fold dendritic oligoethylene glycol pendants containing cinnamate moieties were synthesized. These polymers exhibit typical features of dynamic helical structures in different solvents, that is, racemic contracted conformations in less polar organic solvents and predominantly one-handed stretched helical conformations in highly polar solvents. This dynamic helicity can be enhanced through selective solvation by increasing the polarity of the organic solvents or simply via their thermally mediated dehydration in water. However, through photocycloaddition of the cinnamate moieties between the neighboring pendants via UV irradiation, these dendronized PPAs adopt stable helical conformations either below or above their phase transition temperatures in water, and their helical conformations can even be retained in less polar organic solvents. Spectroscopic and atomic force microscopy measurements demonstrate that photocycloaddition between the cinnamate moieties occurs on the individual molecular level, and this is found to be helpful in restraining the photodegradation of the PPA backbones. Molecular dynamics simulations reveal that the spatial orientation of the pendants along the rigid polyene backbone is crucial for the photodimerization of cinnamates within one helix pitch.
Collapse
Affiliation(s)
- Liangxuan Ren
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science & Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Xueting Lu
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science & Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Wen Li
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science & Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Jiatao Yan
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science & Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Andrew K Whittaker
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence for Green Electrochemical Transformation of Carbon Dioxide, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Afang Zhang
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science & Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| |
Collapse
|
6
|
Visualized thermoresponsive helix-helix switch of polyphenylacetylene with a wide-range tunable transition temperature. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1422-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
7
|
Fan X, Liu X, Liu F, Gu H. Thermo/β-cyclodextrin-responsive ferrocenyl hydrogels constructed by ROMP reaction. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
8
|
Wang Q, Liu Y, Gao R, Wu Z. Selective synthesis of helical polymers. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Qian Wang
- College of Materials and Chemical Engineering West Anhui University Lu'an China
| | - Yu‐Qi Liu
- College of Materials and Chemical Engineering West Anhui University Lu'an China
| | - Run‐Tan Gao
- School of Chemistry, State Key Laboratoy of Supramolecular Structures and Materials Jilin University Changchun China
| | - Zong‐Quan Wu
- School of Chemistry, State Key Laboratoy of Supramolecular Structures and Materials Jilin University Changchun China
| |
Collapse
|
9
|
Rey‐Tarrío F, Guisán‐Ceinos S, Cuerva JM, Miguel D, Ribagorda M, Quiñoá E, Freire F. Photostability and Dynamic Helical Behavior in Chiral Poly(phenylacetylene)s with a Preferred Screw‐Sense. Angew Chem Int Ed Engl 2022; 61:e202207623. [PMID: 35731840 PMCID: PMC9543806 DOI: 10.1002/anie.202207623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Indexed: 11/18/2022]
Abstract
Helical polymers such as poly(phenylacetylene)s (PPAs) are interesting materials due to the possibility of tuning their helical scaffold (sense and elongation) once they have been prepared and by the presence of external stimuli. The main limitation in the application of PPAs is their poor photostability. These polymers degrade under visible light exposure through a photochemical electrocyclization process. In this work, it was demonstrated, through a selected example, how the photochemical degradation in PPAs is directly related to their dynamic helical behavior. Thus, while PPAs with dynamic helical structures show poor photostability under UV/Vis light exposure, poly‐(R)‐1, bearing an enantiopure sulfoxide group as pendant group and designed to have a quasi‐static helical behavior, shows a large photostability due to the restricted conformational composition at the polyene backbone, needed to orient the conjugated double bonds prior to the photochemical electrocyclization process and the subsequent degradation of the material.
Collapse
Affiliation(s)
- Francisco Rey‐Tarrío
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Santiago Guisán‐Ceinos
- Departamento de Química Orgánica Facultad de Ciencias Universidad Autónoma de Madrid 28049 Madrid Spain
| | - Juan M. Cuerva
- Departamento de Química Orgánica. Facultad de Ciencias Universidad de Granada (UGR) Unidad de Excelencia de Química Aplicada a la Biomedicina y Medioambiente (UEQ) 18071 Granada Spain
| | - Delia Miguel
- Departamento de Fisicoquímica. Facultad de Farmacia Universidad de Granada (UGR, UEQ) 18071 Granada Spain
| | - Maria Ribagorda
- Departamento de Química Orgánica Facultad de Ciencias Universidad Autónoma de Madrid 28049 Madrid Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem) Universidad Autónoma de Madrid 28049 Madrid Spain
| | - Emilio Quiñoá
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Félix Freire
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| |
Collapse
|
10
|
Zhang H, Yang C, Shan S, Wen L, Chen D, Zou G. Signal Inversion and Amplification of Circularly Polarized Luminescence in a Poly(phenylacetylene)-Based Composite System Assisted by Achiral PMMA. ACS APPLIED MATERIALS & INTERFACES 2022; 14:36157-36165. [PMID: 35882540 DOI: 10.1021/acsami.2c09861] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Multichannel regulable circularly polarized luminescence (CPL) is fascinating because of its fundamental and application interest. There are few reports on helical sense (P-/M-helix) modulation and chiral signal amplification of polyacetylenes with the assistance of achiral polymers and further applications in precisely and conveniently regulating CPL handedness and magnitude. Herein, a helical poly(phenylacetylene)-based CPL-active system was constructed, in which CPL inversion occurred by adding achiral PMMA into a helical poly(phenylacetylene)-CHCl3 solution. Significantly, there is almost 10 times magnification of luminescence dissymmetry factor values (|glum|) during this process. The above phenomena could be ascribed to the PMMA-assisted polyene backbone elongation and the formation of a more ordered helical structure for the poly(phenylacetylene)s. More interestingly, the CPL signal can be facilely inverted and switched by simply changing the thickness of the PPhAD/PMMA layer. The temperature-driven dynamic CPL handedness inversion and magnitude modulation can also be achieved. Based on the multiple regulations for CPL, logic operations were developed, and the practical application is further facilitated by designing various CPL patterns. This study establishes effective and convenient strategies to switch the handedness, magnitude, and wavelength of CPL, which may generate a breakthrough in the manufacturing of CPL-active smart materials and devices with promising application potential.
Collapse
Affiliation(s)
- Hongli Zhang
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, P. R. China
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, iChEM, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Cui Yang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, iChEM, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Sizhen Shan
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, iChEM, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Li Wen
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, iChEM, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Dazhu Chen
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, P. R. China
| | - Gang Zou
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, iChEM, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| |
Collapse
|
11
|
Rey-Tarrío F, Guisán-Ceinos S, Cuerva JM, Miguel D, Ribagorda M, Quiñoá E, Freire F. Photostability and Dynamic Helical Behavior in Chiral Poly(phenylacetylene)s with a Preferred Screw‐Sense. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Francisco Rey-Tarrío
- Universidade de Santiago de Compostela - Campus de Santiago: Universidade de Santiago de Compostela CiQUS SPAIN
| | - Santiago Guisán-Ceinos
- Universidad Autonoma de Madrid - Campus de Cantoblanco: Universidad Autonoma de Madrid Química Orgánica SPAIN
| | | | - Delia Miguel
- University of Granada: Universidad de Granada Physical Chemistry Department SPAIN
| | - Maria Ribagorda
- Universidad Autonoma de Madrid - Campus de Cantoblanco: Universidad Autonoma de Madrid Química Orgánica SPAIN
| | - Emilio Quiñoá
- Universidade de Santiago de Compostela - Campus de Santiago: Universidade de Santiago de Compostela CiQUS SPAIN
| | - Felix Freire
- Universidade de Santiago de Compostela Jenaro de la Fuente street s/n 15782 Santiago de Compostela SPAIN
| |
Collapse
|
12
|
Li X, Zhou Z, Dong J, Sun Y, Ma G, Wei Q, Ma N, Jia X. From a single helix to a helical porous metalloenzyme catalyst based on temperature sensitive polyionic liquids. Polym Chem 2022. [DOI: 10.1039/d2py00616b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It is a challenging task to construct helical structures through the assembly of achiral polymers.
Collapse
Affiliation(s)
- Xinjuan Li
- Henan Key Laboratory of Green Chemistry, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China
| | - Zhangquan Zhou
- Henan Key Laboratory of Green Chemistry, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China
| | - Jiaxin Dong
- Henan Key Laboratory of Green Chemistry, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China
| | - Yanping Sun
- Henan Key Laboratory of Green Chemistry, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China
| | - Guanglei Ma
- Henan Key Laboratory of Green Chemistry, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China
| | - Qingcong Wei
- Henan Key Laboratory of Green Chemistry, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China
| | - Nana Ma
- Henan Key Laboratory of Green Chemistry, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China
| | - Xianbin Jia
- Henan Key Laboratory of Green Chemistry, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China
| |
Collapse
|
13
|
Aoki D, Miyake A, Tachaboonyakiat W, Ajiro H. Remarkable diastereomeric effect on thermoresponsive behavior of polyurethane based on lysine and tartrate ester derivatives. RSC Adv 2021; 11:35607-35613. [PMID: 35493186 PMCID: PMC9043254 DOI: 10.1039/d1ra05877k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/23/2021] [Indexed: 11/24/2022] Open
Abstract
This study describes the long-distance diastereomeric effect on thermoresponsive properties in water-soluble diastereomeric polyurethanes (PUs) composed of an l-lysine ethyl ester diisocyanate and a trimethylene glycol l-/d-tartrate ester, which have differences in spatial arrangements of the ethyl esters in the mirror image. The PUs based on l-lysine and l-/d-tartrate ester, named l-PU and d-PU, were synthesized with various number average molecular weights from 4700 to 13 100. In turbidimetry, l-PU showed a steep phase transition from 100%T to 0%T within about 10 °C at 4 g L−1, whereas d-PU did not change completely to 0%T transmittance even at 80 °C at 4 g L−1. In addition, the thermoresponsive properties of l-PU were less affected by concentration than those of d-PU. This long-distance diastereomeric effect on thermoresponsive behavior between l-PU and d-PU appeared in common among 6 samples with 4700 to 13 100 number average molecular weight. In the dynamic light scattering experiments at each transmittance, the hydrodynamic diameter (Dh) of l-PU increased up to 1000 nm, while the Dh of d-PU remained almost at 200–300 nm. The C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
O stretching vibration of FT-IR spectra showed that d-PU has more hydrogen-bonded ester groups than L-PU. Thus, we speculated that the difference in the retention of polymer chains in the micelle to promote intermicellar bridging generates the long-distance diastereomeric effect. The long-distance diastereomeric effect on thermoresponsive properties in a polyurethane system consisting of chiral monomers was reported.![]()
Collapse
Affiliation(s)
- Daisuke Aoki
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology 8916-5 Takayama-cho Ikoma Nara 630-0192 Japan
| | - Akihiro Miyake
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology 8916-5 Takayama-cho Ikoma Nara 630-0192 Japan
| | - Wanpen Tachaboonyakiat
- Department of Materials Science, Faculty of Science, Chulalongkorn University Phayathai, Pathumwan Bangkok 10330 Thailand
| | - Hiroharu Ajiro
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology 8916-5 Takayama-cho Ikoma Nara 630-0192 Japan .,Data Science Center, Nara Institute of Science and Technology 8916-5 Takayama-cho Ikoma Nara 630-0192 Japan
| |
Collapse
|
14
|
Feng L, Liu R, Zhang X, Li J, Zhu L, Li Z, Li W, Zhang A. Thermo-Gelling Dendronized Chitosans as Biomimetic Scaffolds for Corneal Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2021; 13:49369-49379. [PMID: 34636236 DOI: 10.1021/acsami.1c16087] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Biomimetic scaffolds with transparent, biocompatible, and in situ-forming properties are highly desirable for corneal tissue engineering, which can deeply fill corneal stromal defects with irregular shapes and support tissue regeneration. We here engineer a novel class of corneal scaffolds from oligoethylene glycol (OEG)-based dendronized chitosans (DCs), whose aqueous solutions show intriguing sol-gel transitions triggered by physiological temperature, resulting in highly transparent hydrogels. Gelling points of these hydrogels can be easily tuned, and furthermore, their mechanical strengths can be significantly enhanced when injected into PBS at 37 °C instead of pure water. In vitro tests indicate that these DC hydrogels exhibit excellent biocompatibility and can promote proliferation and migration of keratocyte. When applied in the rabbit eyes with corneal stromal defects, in situ formed DC hydrogels play a positive effect for new tissue regeneration. Overall, this thermo-gelling DCs possess appealing features as corneal tissue substitutes with their excellent biocompatibility and unprecedented thermoresponsiveness.
Collapse
Affiliation(s)
- Letian Feng
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Ruixing Liu
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Xiacong Zhang
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Jingguo Li
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Lei Zhu
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Zhanrong Li
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Wen Li
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Afang Zhang
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| |
Collapse
|
15
|
Cao Y, Ren L, Zhang Y, Lu X, Zhang X, Yan J, Li W, Masuda T, Zhang A. Remarkable Effects of Anions on the Chirality of Thermoresponsive Helical Dendronized Poly(phenylacetylene)s. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuexin Cao
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Materials Building Room 447, Nanchen Street 333, Shanghai 200444, China
| | - Liangxuan Ren
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Materials Building Room 447, Nanchen Street 333, Shanghai 200444, China
| | - Yangwen Zhang
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Materials Building Room 447, Nanchen Street 333, Shanghai 200444, China
| | - Xueting Lu
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Materials Building Room 447, Nanchen Street 333, Shanghai 200444, China
| | - Xiacong Zhang
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Materials Building Room 447, Nanchen Street 333, Shanghai 200444, China
| | - Jiatao Yan
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Materials Building Room 447, Nanchen Street 333, Shanghai 200444, China
| | - Wen Li
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Materials Building Room 447, Nanchen Street 333, Shanghai 200444, China
| | - Toshio Masuda
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Materials Building Room 447, Nanchen Street 333, Shanghai 200444, China
| | - Afang Zhang
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Materials Building Room 447, Nanchen Street 333, Shanghai 200444, China
| |
Collapse
|
16
|
Cai S, Chen J, Wang S, Zhang J, Wan X. Allostery-Mimicking Self-assembly of Helical Poly(phenylacetylene) Block Copolymers and the Chirality Transfer. Angew Chem Int Ed Engl 2021; 60:9686-9692. [PMID: 33580891 DOI: 10.1002/anie.202100551] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Indexed: 12/22/2022]
Abstract
Allostery can regulate protein self-assembly which further affects biological activities, and achieving precise control over the chiral suprastructures during self-assembly remains challenging. Herein, to mimic the allosterical nature of proteins, the poly(phenylacetylene) block copolymers PPA-b-PsmNap with the dynamic helical backbone were synthesized to investigate their conformational-transition-induced self-assembly. As the helical conformation of the block PsmNap spontaneously transforms from cis-transiod to cis-cisoid, the decreasing solubility of PsmNap blocks in THF induced self-assembly of PPA-b-PsmNap. The self-assembly structures of copolymers can sequentially evolve from vesicles to nanobelts to helical strands during the process of conformation transformation. The screw sense of final helical strands was strictly correlated to the helicity of the block PsmNap. This is helpful to understand the mechanism of allostery-modulated self-assembly.
Collapse
Affiliation(s)
- Siliang Cai
- Beijing National Laboratory for Molecular Science, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Junxian Chen
- Beijing National Laboratory for Molecular Science, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Sheng Wang
- Beijing National Laboratory for Molecular Science, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jie Zhang
- Beijing National Laboratory for Molecular Science, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Xinhua Wan
- Beijing National Laboratory for Molecular Science, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
17
|
Cai S, Chen J, Wang S, Zhang J, Wan X. Allostery‐Mimicking Self‐assembly of Helical Poly(phenylacetylene) Block Copolymers and the Chirality Transfer. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100551] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Siliang Cai
- Beijing National Laboratory for Molecular Science Key Laboratory of Polymer Chemistry and Physics of Ministry of Education College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Junxian Chen
- Beijing National Laboratory for Molecular Science Key Laboratory of Polymer Chemistry and Physics of Ministry of Education College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Sheng Wang
- Beijing National Laboratory for Molecular Science Key Laboratory of Polymer Chemistry and Physics of Ministry of Education College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Jie Zhang
- Beijing National Laboratory for Molecular Science Key Laboratory of Polymer Chemistry and Physics of Ministry of Education College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Xinhua Wan
- Beijing National Laboratory for Molecular Science Key Laboratory of Polymer Chemistry and Physics of Ministry of Education College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| |
Collapse
|
18
|
Gao Y, Gao T, Wang L, Ma X, Jin R, Kang C, Gao L. Chloride-promoted self-assembly and photoluminescence of naphthalene diimides tethered to polyacetylene. NEW J CHEM 2021. [DOI: 10.1039/d0nj05855f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A novel polyacetylene containing naphthalene diimides (NDIs) in the side chains is sensitive to Cl̄ by structural transformation of the polymer backbone and the NDI aggregates along with turning fluorescence emission on.
Collapse
Affiliation(s)
- Yuping Gao
- Laboratory of Polymer Composite and Engineering
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Tingting Gao
- Laboratory of Polymer Composite and Engineering
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Liangpeng Wang
- Laboratory of Polymer Composite and Engineering
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Xiaoye Ma
- Laboratory of Polymer Composite and Engineering
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Rizhe Jin
- Laboratory of Polymer Composite and Engineering
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Chuanqing Kang
- Laboratory of Polymer Composite and Engineering
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Lianxun Gao
- Laboratory of Polymer Composite and Engineering
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| |
Collapse
|
19
|
Xu G, Liu K, Xu B, Yao Y, Li W, Yan J, Zhang A. Confined Microenvironments from Thermoresponsive Dendronized Polymers. Macromol Rapid Commun 2020; 41:e2000325. [PMID: 32639094 DOI: 10.1002/marc.202000325] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 06/23/2020] [Indexed: 11/07/2022]
Abstract
Confined microenvironments in biomacromolecules arising from molecular crowding account for their well-defined biofunctions and bioactivities. To mimick this, synthetic polymers to form confined structures or microenvironments are of key scientific value, which have received significant attention recently. To create synthetic confined microenvironments, molecular crowding effects and topological cooperative effects have been applied successfully, and the key is balance between self-association of structural units and self-repulsion from crowding-induced steric hindrance. In this article, formation of confined microenvironments from stimuli-responsive dendronized polymers carrying densely dendritic oligoethylene glycols (OEGs) moieties in their pendants is presented. These wormlike thick macromolecules exhibit characteristic thermoresponsive properties, which can provide constrained microenvironments to encapsulate effectively guest molecules including dyes, proteins, or nucleic acids to prevent their protonation or biodegradation. This efficient shielding effect can also mediate chemical reactions in aqueous phase, and even enhance chirality transferring efficiency. All of these can be switched off simply through the thermally-induced dehydration and collapse of OEG dendrons due to the amphiphilicity of OEG chains. Furthermore, the switchable encapsulation and release of guests can be greatly enhanced when these dendronized polymers are used as major constituents for fabricating bulk hydrogels or nanogels, which provide a higher-level confinement.
Collapse
Affiliation(s)
- Gang Xu
- International Joint Laboratory of Smart and Biomimetic Polymers, School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Kun Liu
- International Joint Laboratory of Smart and Biomimetic Polymers, School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Biyi Xu
- International Joint Laboratory of Smart and Biomimetic Polymers, School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Yi Yao
- International Joint Laboratory of Smart and Biomimetic Polymers, School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Wen Li
- International Joint Laboratory of Smart and Biomimetic Polymers, School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Jiatao Yan
- International Joint Laboratory of Smart and Biomimetic Polymers, School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Afang Zhang
- International Joint Laboratory of Smart and Biomimetic Polymers, School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| |
Collapse
|