1
|
Yu C, Zeng C, Han M, Liu J, Zhu R, Wang L, Shan G, Bao Y, Zheng Y, Pan P. Defect Crystal Formation and Thermal-Induced Structural Ordering of Semicrystalline Copolymers Induced by Comonomer Inclusion/Exclusion. J Phys Chem Lett 2025; 16:281-287. [PMID: 39720897 DOI: 10.1021/acs.jpclett.4c03219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
Comonomer defects can induce semicrystalline polymers to form unique crystalline structures (e.g., defect crystals), which can greatly influence the materials' physical properties. However, the formation mechanism and structural evolution of defect polymer crystals are not yet well understood. Herein, we chose the poly(l-lactic acid) (PLA) containing glycolic acid (GA) units as the model defect-containing polymer and investigated its crystallization structure and phase transition. The presence of GA units reduces the crystallizability of PLA and leads to the formation of unique defect crystals with enlarged unit cell size. The formation of defect crystals is favored at a low crystallization temperature or high content of GA units due to the inclusion of more comonomer defects. The defect crystals are metastable and undergo structural ordering to form thermally stable α-crystals upon heating and high-temperature annealing, as governed by the exclusion of comonomer defects. This work sheds light on the crystallization and phase transition of defect-containing polymers.
Collapse
Affiliation(s)
- Chengtao Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, China
| | - Chang Zeng
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Mengzhe Han
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Junfeng Liu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, China
| | - Ronghua Zhu
- Zhejiang Hisun Biomaterials Corporation Limited, Taizhou 318000, China
| | - Lunhe Wang
- Zhejiang Hisun Biomaterials Corporation Limited, Taizhou 318000, China
| | - Guorong Shan
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, China
| | - Yongzhong Bao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, China
| | - Ying Zheng
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, China
| | - Pengju Pan
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, China
| |
Collapse
|
2
|
Safari M, Torres J, Pérez-Camargo RA, Martínez de Ilarduya A, Mugica A, Zubitur M, Sardon H, Liu G, Wang D, Müller AJ. How the Aliphatic Glycol Chain Length Determines the Pseudoeutectic Composition in Biodegradable Isodimorphic poly(alkylene succinate- ran-caprolactone) Random Copolyesters. Biomacromolecules 2024; 25:7392-7409. [PMID: 39431378 DOI: 10.1021/acs.biomac.4c01073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
We synthesize four series of novel biodegradable poly(alkylene succinate-ran-caprolactone) random copolyesters using a two-step ring-opening/transesterification and polycondensation process with ε-caprolactone (PCL) as a common comonomer. The second comonomers are succinic acid derivatives, with variations in the number of methylene groups (nCH2) in the glycol segment, nCH2 = 2, 4, 8, and 12. The obtained copolyesters were poly(ethylene succinate-ran-PCL) (ESxCLy), poly(butylene succinate-ran-PCL) (BSxCLy), poly(octamethylene succinate-ran-PCL) (OSxCLy), and poly(dodecylene succinate-ran-PCL) (DSxCLy). We discovered a new mixed isodimorphic/comonomer exclusion crystallization in ESxCLy copolymers. The BSxCLy, OSxCLy, and DSxCLy copolymers display isodimorphic behavior. Our findings revealed a significant variation in the pseudoeutectic point position, from mixed isodimorphism/comonomer exclusion crystallization to isodimorphism with pseudoeutectic point variation from 54% to up to 90%. Moreover, we established a link between the melting temperature depression slope variation and the comonomer inclusion/exclusion balance, providing valuable insights into the complex topic of isodimorphic random copolymers.
Collapse
Affiliation(s)
- Maryam Safari
- Maastricht University-Aachen Maastricht Institute for Biobased Materials (AMIBM), Urmonderbaan 22, Geleen 6167 RD, The Netherlands
- Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU and POLYMAT, Paseo Manuel de Lardizabal, 3, Donostia-San Sebastián 20018, Spain
| | - Juan Torres
- Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU and POLYMAT, Paseo Manuel de Lardizabal, 3, Donostia-San Sebastián 20018, Spain
| | - Ricardo A Pérez-Camargo
- Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU and POLYMAT, Paseo Manuel de Lardizabal, 3, Donostia-San Sebastián 20018, Spain
| | - Antxon Martínez de Ilarduya
- Departament d'Enginyeria Química, Universitat Politècnica de Catalunya, ETSEIB, Diagonal 647, Barcelona 08028, Spain
| | - Agurtzane Mugica
- Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU and POLYMAT, Paseo Manuel de Lardizabal, 3, Donostia-San Sebastián 20018, Spain
| | - Manuela Zubitur
- Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU and POLYMAT, Paseo Manuel de Lardizabal, 3, Donostia-San Sebastián 20018, Spain
- Faculty of Engineering of Gipuzkoa, University of the Basque Country UPV/EHU, Plaza de Europa, 1, Donostia-San Sebastián 20018, Spain
| | - Haritz Sardon
- Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU and POLYMAT, Paseo Manuel de Lardizabal, 3, Donostia-San Sebastián 20018, Spain
| | - Guoming Liu
- CAS Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Dujin Wang
- CAS Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Alejandro J Müller
- Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU and POLYMAT, Paseo Manuel de Lardizabal, 3, Donostia-San Sebastián 20018, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Spain
| |
Collapse
|
3
|
Zhu L, Liu L, Varlas S, Wang RY, O'Reilly RK, Tong Z. Understanding the Seeded Heteroepitaxial Growth of Crystallizable Polymers: The Role of Crystallization Thermodynamics. ACS NANO 2023. [PMID: 37979190 DOI: 10.1021/acsnano.3c09130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2023]
Abstract
Seeded heteroepitaxial growth is a "living" crystallization-driven self-assembly (CDSA) method that has emerged as a promising route to create uniform segmented nanoparticles with diverse core chemistries by using chemically distinct core-forming polymers. Our previous results have demonstrated that crystallization kinetics is a key factor that determines the occurrence of heteroepitaxial growth, but an in-depth understanding of controlling heteroepitaxy from the perspective of crystallization thermodynamics is yet unknown. Herein, we select crystallizable aliphatic polycarbonates (PxCs) with a different number of methylene groups (xCH2, x = 4, 6, 7, 12) in their repeating units as model polymers to explore the effect of lattice match and core compatibility on the seeded growth behavior. Seeded growth of PxCs-containing homopolymer/block copolymer blend unimers from poly(ε-caprolactone) (PCL) core-forming seed platelet micelles exhibits distinct crystal growth behavior at subambient temperatures, which is governed by the lattice match and core compatibility. A case of seeded growth with better core compatibility and a smaller lattice mismatch follows epitaxial growth, where the newly created crystal domain has the same structural orientation as the original platelet substrate. In contrast, a case of seeded growth with better core compatibility but a larger lattice mismatch shows nonepitaxial growth with less-defined crystal orientations in the platelet plane. Additionally, a case of seeded growth with poor core compatibility and larger lattice mismatch results in polydisperse platelet micelles, whereby crystal formation is not nucleated from the crystalline substrate. These findings reveal important factors that govern the specific crystal growth during a seeded growth approach by using compositionally distinct cores, which would further guide researchers in designing 2D segmented materials via polymer crystallization approaches.
Collapse
Affiliation(s)
- Lingyuan Zhu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Liping Liu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Spyridon Varlas
- Department of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield S3 7HF, U.K
| | - Rui-Yang Wang
- Shaanxi International Research Center for Soft Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Rachel K O'Reilly
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Zaizai Tong
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| |
Collapse
|
4
|
Liao Y, Pérez-Camargo RA, Sardon H, Martínez de Ilarduya A, Hu W, Liu G, Wang D, Müller AJ. Challenging Isodimorphism Concepts: Formation of Three Crystalline Phases in Poly(hexamethylene- ran-octamethylene carbonate) Copolymers. Macromolecules 2023; 56:8199-8213. [PMID: 37900097 PMCID: PMC10601535 DOI: 10.1021/acs.macromol.3c01265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/01/2023] [Indexed: 10/31/2023]
Abstract
In this work, poly(hexamethylene-ran-octamethylene carbonate) copolycarbonates were synthesized by melt polycondensation in a wide range of compositions. The copolymers displayed some of the characteristic isodimorphic thermal behavior, such as crystallization for all the compositions and a pseudoeutectic behavior of the melting temperature (Tm) versus composition. The pseudoeutectic point was located at 33 mol % poly(octamethylene carbonate) (POC) content (i.e., corresponding to the PH67O33C copolymer). Surprisingly, the crystallinities (Xc) for a wide range of copolymer compositions were higher than those of the parent components, a phenomenon that has not been observed before in isodimorphic random copolymers. The structural characterization, performed by wide-angle X-ray scattering (WAXS) and small-angle X-ray scattering experiments, revealed unexpected results depending on composition. On the one hand, the poly(hexamethylene carbonate) (PHC)- and POC-rich copolymers crystallize in PHC- and POC-type crystals, as expected. Moreover, upon cooling and heating, in situ WAXS experiments evidenced that these materials undergo reversible solid-solid transitions [δ-α (PHC) and δ-α-β (POC)] present in the parent components but at lower temperatures. On the other hand, a novel behavior was found for copolymers with 33-73 mol % POC (including the pseudoeutectic point), which are those with higher crystallinities than the parent components. For these copolymers, a new crystalline phase that is different from that of both homopolymers was observed. The in situ WAXS results for these copolymers confirmed that this novel phase is stable upon cooling and heating and does not show any crystallographic feature of the parent components or their solid-solid transitions. FTIR experiments confirmed this behavior, revealing that the new phase adopts a polyethylene-like chain conformation that differs from the trans-dominant ones exhibited by the parent components. This finding challenges the established concepts of isodimorphism and questions whether a combination of crystallization modes (isodimorphism and isomorphism) is possible in the same family of random copolymers just by changing the composition.
Collapse
Affiliation(s)
- Yilong Liao
- POLYMAT
and Department of Polymers and Advanced Materials: Physics, Chemistry,
and Technology, Faculty of Chemistry, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, Donostia-San Sebastián 20018, Spain
| | - Ricardo A. Pérez-Camargo
- POLYMAT
and Department of Polymers and Advanced Materials: Physics, Chemistry,
and Technology, Faculty of Chemistry, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, Donostia-San Sebastián 20018, Spain
| | - Haritz Sardon
- POLYMAT
and Department of Polymers and Advanced Materials: Physics, Chemistry,
and Technology, Faculty of Chemistry, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, Donostia-San Sebastián 20018, Spain
| | - Antxon Martínez de Ilarduya
- Department
of Chemical Engineering, Polytechnic University
of Catalonia ETSEIB-UPC, Diagonal 647, Barcelona 08028, Spain
| | - Wenxian Hu
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Guoming Liu
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Dujin Wang
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Alejandro J. Müller
- POLYMAT
and Department of Polymers and Advanced Materials: Physics, Chemistry,
and Technology, Faculty of Chemistry, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, Donostia-San Sebastián 20018, Spain
- Ikerbasque,
Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Spain
| |
Collapse
|
5
|
Hung Y, Xiang W, Zou Z, Zhang Y, Wang B, Yu C, Zheng Y, Pan P. Isodimorphic crystallization and thermally-induced crystal transitions in poly(octamethylene-ran-decamethylene carbonate): Critical role of comonomer defects. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
6
|
Wang F, Li C, Wang H, Yu L, Zhang F, Linhardt RJ. Amphiphilic O(Phe-r-Glu) oligopeptides randomly polymerized via papain exhibiting a pH-insensitive emulsification property. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
7
|
Zhao XT, Men YF. Thermal Fractionation of Polyolefins: Brief History, New Developments and Future Perspective. POLYMER SCIENCE SERIES A 2022. [DOI: 10.1134/s0965545x22700419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Abstract
For semi-crystalline polymer materials, the difference in chain structure often leads to different physical properties; therefore, in-depth analysis of the chain structure is of great significance. With the continuous development of advanced instruments, many research means have emerged to characterize the structure of molecular chains. Among them, fractionation techniques provide effectively structural information on inter- and intra-molecular comonomer distribution, branching degree, and sequence length, etc. This work briefly presents the history of developments of various classical fractionation means such as temperature-rising elution fractionation, stepwise crystallization and successive self-nucleation and annealing, while focusing on the present and future of their applications.
Collapse
|
8
|
Xia J, Xu S, Zheng Y, Zhou J, Yu C, Shan G, Bao Y, Pan P. Isodimorphic Crystallization and Tunable γ–α Phase Transition in Aliphatic Copolyamides: Critical Roles of Comonomer Defects and Conformational Evolution. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jianfei Xia
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Shanshan Xu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ying Zheng
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institue of Zhejiang University−Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| | - Jian Zhou
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institue of Zhejiang University−Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| | - Chengtao Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institue of Zhejiang University−Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| | - Guorong Shan
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institue of Zhejiang University−Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| | - Yongzhong Bao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institue of Zhejiang University−Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| | - Pengju Pan
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institue of Zhejiang University−Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| |
Collapse
|
9
|
Pérez-Camargo RA, Liu G, Meabe L, Zhao Y, Sardon H, Wang D, Müller AJ. Solid–Solid Crystal Transitions (δ to α) in Poly(hexamethylene carbonate) and Poly(octamethylene carbonate). Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ricardo A. Pérez-Camargo
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Guoming Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Leire Meabe
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Donostia-San Sebastián 20018, Spain
| | - Ying Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haritz Sardon
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Donostia-San Sebastián 20018, Spain
| | - Dujin Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Alejandro J. Müller
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Donostia-San Sebastián 20018, Spain
- IKESBASQUE, Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009 Spain
| |
Collapse
|
10
|
Safari M, Otaegi I, Aramburu N, Guerrica-Echevarria G, de Ilarduya AM, Sardon H, Müller AJ. Synthesis, Structure, Crystallization and Mechanical Properties of Isodimorphic PBS- ran-PCL Copolyesters. Polymers (Basel) 2021; 13:polym13142263. [PMID: 34301021 PMCID: PMC8309441 DOI: 10.3390/polym13142263] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/04/2022] Open
Abstract
Isodimorphic behavior is determined by partial inclusion of comonomer segments within the crystalline structure and arises from the comparatively similar repeating chain units of the parental homopolymers. Isodimorphic random copolymers are able to crystallize irrespective of their composition and exhibit a pseudo-eutectic behavior when their melting point values are plotted as a function of comonomer content. At the pseudo-eutectic point or region, two crystalline phases can coexist. On the right-hand and the left-hand side of the pseudo-eutectic point or region, only one single crystalline phase can form which is very similar to the crystalline structures of the parent homopolymers. This article aims to study the synthesis method, structure, crystallization behavior and mechanical properties of isodimorphic random PBS-ran-PCL copolyesters. Moreover, this study provides a comprehensive analysis of our main recent results on PBS-ran-PCL random copolyesters with three different molecular weights. The results show that the comonomer composition and crystallization conditions are the major factors responsible for the crystalline morphology, crystallization kinetics and mechanical performance of isodimorphic random copolyesters. Our studies demonstrate that in the pseudo-eutectic region, where both crystalline phases can coexist, the crystallization conditions determine the crystalline phase or phases of the copolymer. The relationships between the comonomer composition and mechanical properties are also addressed in this work.
Collapse
Affiliation(s)
- Maryam Safari
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal, 3, 20018 Donostia-San Sebastián, Spain; (M.S.); (I.O.); (N.A.); (G.G.-E.); (H.S.)
| | - Itziar Otaegi
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal, 3, 20018 Donostia-San Sebastián, Spain; (M.S.); (I.O.); (N.A.); (G.G.-E.); (H.S.)
| | - Nora Aramburu
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal, 3, 20018 Donostia-San Sebastián, Spain; (M.S.); (I.O.); (N.A.); (G.G.-E.); (H.S.)
| | - Gonzalo Guerrica-Echevarria
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal, 3, 20018 Donostia-San Sebastián, Spain; (M.S.); (I.O.); (N.A.); (G.G.-E.); (H.S.)
| | - Antxon Martínez de Ilarduya
- Departament d’Enginyeria Química, L’Escola Tècnica Superior d’Enginyeria Industrial de Barcelona (ETSEIB), Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Spain;
| | - Haritz Sardon
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal, 3, 20018 Donostia-San Sebastián, Spain; (M.S.); (I.O.); (N.A.); (G.G.-E.); (H.S.)
| | - Alejandro J. Müller
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal, 3, 20018 Donostia-San Sebastián, Spain; (M.S.); (I.O.); (N.A.); (G.G.-E.); (H.S.)
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
- Correspondence: ; Tel.: +34-943-018-191
| |
Collapse
|
11
|
Pérez-Camargo RA, Meabe L, Liu G, Sardon H, Zhao Y, Wang D, Müller AJ. Even–Odd Effect in Aliphatic Polycarbonates with Different Chain Lengths: from Poly (Hexamethylene Carbonate) to Poly (Dodecamethylene Carbonate). Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c02374] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ricardo A. Pérez-Camargo
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Leire Meabe
- P.O.LYMAT and Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San Sebastián 20018, Spain
| | - Guoming Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haritz Sardon
- P.O.LYMAT and Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San Sebastián 20018, Spain
| | - Ying Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dujin Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Alejandro J. Müller
- P.O.LYMAT and Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San Sebastián 20018, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
12
|
Zheng Y, Pan P. Crystallization of biodegradable and biobased polyesters: Polymorphism, cocrystallization, and structure-property relationship. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2020.101291] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
Pérez-Camargo RA, Liu G, Cavallo D, Wang D, Müller AJ. Effect of the Crystallization Conditions on the Exclusion/Inclusion Balance in Biodegradable Poly(butylene succinate- ran-butylene adipate) Copolymers. Biomacromolecules 2020; 21:3420-3435. [PMID: 32662988 DOI: 10.1021/acs.biomac.0c00847] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Biomedical applications of polymers require precise control of the solid-state structure, which is of particular interest for biodegradable copolymers. In this work, we evaluated the influence of crystallization conditions on the comonomer exclusion/inclusion balance of biodegradable poly(butylene succinate-ran-butylene adipate) (PBSA) isodimorphic random copolymers. Regardless of the crystallization conditions, the copolymers retain their isodimorphic character, displaying a pseudo-eutectic behavior with crystallization in the entire composition range. This illustrates the thermodynamic nature of the isodimorphic behavior for PBSA random copolymers. However, depending on the composition, the crystallization conditions affect the exclusion/inclusion balance of the comonomers. Fast cooling favors butylene adipate (BA) inclusion inside the poly(butylene succinate) (PBS) crystals, whereas isothermal crystallization strongly limits it. PBA-rich compositions behave differently. Both fast and slow crystallization formed the β-phase, whereas BS unit inclusion is favored independently of the cooling conditions. During successive self-nucleation and annealing, the BA inclusion is intermediate between non-isothermal and isothermal conditions, while the crystalline structure of the PBA phase changes from the β-phase to the more stable α-phase. We propose a simple crystallographic model to explain the changes in the unit cell dimension of the copolymers.
Collapse
Affiliation(s)
- Ricardo Arpad Pérez-Camargo
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Guoming Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dario Cavallo
- Department of Chemistry and Industrial Chemistry, University of Genova, 16146 Genova, Italy
| | - Dujin Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Alejandro J Müller
- POLYMAT and Polymer Sciences and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain.,IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
14
|
Sangroniz L, Sangroniz A, Meabe L, Basterretxea A, Sardon H, Cavallo D, Müller AJ. Chemical Structure Drives Memory Effects in the Crystallization of Homopolymers. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00751] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Leire Sangroniz
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain
| | - Ainara Sangroniz
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain
| | - Leire Meabe
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain
| | - Andere Basterretxea
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain
| | - Haritz Sardon
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain
| | - Dario Cavallo
- Department of Chemistry and Industrial Chemistry, University of Genova, via Dodecaneso, 31, 16146 Genova, Italy
| | - Alejandro J. Müller
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao 48011, Spain
| |
Collapse
|