1
|
Lee HW, Kim JG. Multifunctional Polymer Synthesis via Sequential Postpolymerization Modification Using a Single Aldehyde Repeat Unit: Allylation and Orthogonal Esterification and Thiol-ene Reaction. ACS Macro Lett 2024; 13:1418-1424. [PMID: 39382407 DOI: 10.1021/acsmacrolett.4c00618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Herein, we present a highly efficient method for synthesizing multifunctional polymers. This method involves the sequential postpolymerization modification (PPM) of a highly reactive aldehyde polymer. We introduce an allylic alcohol functionality into the polymer backbone via Barbier-type allylation, a process facilitated by easy-to-handle indium(0) powder. This step enables the formation of orthogonal pendants, secondary alcohol, and terminal alkene, which can be further functionalized through esterification and thiol-ene click reactions. All of these processes are carried out under mild conditions, ensuring high efficiency and a wide range of functional groups. Our study underscores PPM's operational simplicity and versatility in developing advanced polymer materials and expanding the scope of multifunctional polymer design.
Collapse
Affiliation(s)
- Hyo Won Lee
- Department of Chemistry and Research Institute of Materials and Energy Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Jeung Gon Kim
- Department of Chemistry and Research Institute of Materials and Energy Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
2
|
Yang F, Wang M, Zhang YJ. Synthesis of polyvinylethylene glycols (PVEGs) via polyetherification of vinylethylene carbonate by synergistic catalysis. Chem Commun (Camb) 2024; 60:3539-3542. [PMID: 38454880 DOI: 10.1039/d3cc05580a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
An efficient and controllable polyetherification of vinylethylene carbonate (VEC) using diols as initiators is developed. By using a synergistic catalysis with palladium and boron reagents under mild conditions, the polymerization process enables the regioselective production of a series of polyvinylethylene glycols (PVEGs) bearing pendent vinyl groups in high yields with accurate molecular weight control and narrow molecular weight distribution. The utility of PVEGs is demonstrated by the production of functional polyurethanes and post-polymerization modification via thiol-ene photo-click chemistry.
Collapse
Affiliation(s)
- Fan Yang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
- Sichuan Research Institute, Shanghai Jiao Tong University, Chengdu 610042, P. R. China
| | - Minghang Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
- Sichuan Research Institute, Shanghai Jiao Tong University, Chengdu 610042, P. R. China
| | - Yong Jian Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
- Sichuan Research Institute, Shanghai Jiao Tong University, Chengdu 610042, P. R. China
| |
Collapse
|
3
|
Fornaciari C, Lemaur V, Pasini D, Coulembier O. Quasi-alternating copolymerization of oxiranes driven by a benign acetate-based catalyst. Commun Chem 2023; 6:235. [PMID: 37898680 PMCID: PMC10613202 DOI: 10.1038/s42004-023-01031-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/17/2023] [Indexed: 10/30/2023] Open
Abstract
Alternating copolymers are distinctly unique in comparison with other copolymers. Herein, an in-depth investigation of the oxyanionic ring-opening copolymerization of propylene oxide (PO) and allyl glycidyl ether (AGE) from benzyl alcohol (BnOH) activated with potassium acetate (KOAc) complexed by 18-crown-6 ether (18C6) is described. We demonstrate that the 18C6/KOAc complex is an efficient and benign catalytic system to promote copolymerization of both oxirane monomers, leading to well-defined polyethers with varied comonomer content and low dispersity values (ƉM < 1.20). Kinetic analysis confirmed the controlled nature of the (co)polymerization process, and the determination of reactivity ratios revealed a quasi-alternating copolymerization profile, according to the Fineman-Ross method. The comparison between the quasi-alternating-type PO/AGE copolymerization and block or gradient copolymerization revealed significant differences, to confirm the different sequence incorporation in the different topological copolymers. These results highlight the great potential of 18C6/KOAc-mediated copolymerization process for the controlled sythesis of a series of copolymer topologies.
Collapse
Affiliation(s)
- Charlotte Fornaciari
- Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons, Place du Parc, 20, Mons, 7000, Belgium
- Department of Chemistry, University of Pavia, Viale Taramelli, 10, Pavia, 27100, Italy
| | - Vincent Lemaur
- Laboratory for Chemistry of Novel Materials, Materials Research Institute, University of Mons, Place du Parc, 20, 7000, Mons, Belgium
| | - Dario Pasini
- Department of Chemistry, University of Pavia, Viale Taramelli, 10, Pavia, 27100, Italy.
| | - Olivier Coulembier
- Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons, Place du Parc, 20, Mons, 7000, Belgium.
| |
Collapse
|
4
|
Van Guyse JFR, Bernhard Y, Podevyn A, Hoogenboom R. Non-activated Esters as Reactive Handles in Direct Post-Polymerization Modification. Angew Chem Int Ed Engl 2023; 62:e202303841. [PMID: 37335931 DOI: 10.1002/anie.202303841] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/26/2023] [Accepted: 06/19/2023] [Indexed: 06/21/2023]
Abstract
Non-activated esters are prominently featured functional groups in polymer science, as ester functional monomers display great structural diversity and excellent compatibility with a wide range of polymerization mechanisms. Yet, their direct use as a reactive handle in post-polymerization modification has been typically avoided due to their low reactivity, which impairs the quantitative conversion typically desired in post-polymerization modification reactions. While activated ester approaches are a well-established alternative, the modification of non-activated esters remains a synthetic and economically valuable opportunity. In this review, we discuss past and recent efforts in the utilization of non-activated ester groups as a reactive handle to facilitate transesterification and aminolysis/amidation reactions, and the potential of the developed methodologies in the context of macromolecular engineering.
Collapse
Affiliation(s)
- Joachim F R Van Guyse
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
- Leiden Academic Center for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Yann Bernhard
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
- Université de Lorraine, UMR CNRS 7053 L2CM, Faculté des Sciences et Technologies, BP 70239, 54506, Vandoeuvre-lès-Nancy Cedex, France
| | - Annelore Podevyn
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| |
Collapse
|
5
|
Park J, Kim A, Kim BS. Anionic ring-opening polymerization of functional epoxide monomers in the solid state. Nat Commun 2023; 14:5855. [PMID: 37730802 PMCID: PMC10511433 DOI: 10.1038/s41467-023-41576-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 09/08/2023] [Indexed: 09/22/2023] Open
Abstract
Despite recent advancements in mechanochemical polymerization, understanding the unique mechanochemical reactivity during the ball milling polymerization process still requires extensive investigations. Herein, solid-state anionic ring-opening polymerization is used to synthesize polyethers from various functional epoxide monomers. The critical parameters of the monomers are investigated to elucidate the unique reactivity of ball milling polymerization. The controllable syntheses of the desired polyethers are characterized via NMR, GPC, and MALDI-ToF analyses. Interestingly, bulky monomers exhibit faster conversions in the solid-state in clear contrast to that observed for solution polymerization. Particularly, a close linear correlation is observed between the conversion of the ball milling polymerization and melting point of the functional epoxide monomers, indicating melting point as a critical predictor of mechanochemical polymerization reactivity. This study provides insights into the efficient design and understanding of mechanochemical polymerization.
Collapse
Affiliation(s)
- Jihye Park
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Ahyun Kim
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Byeong-Su Kim
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
6
|
Park J, Yu Y, Lee JW, Kim BS. Anionic Ring-Opening Polymerization of a Functional Epoxide Monomer with an Oxazoline Protecting Group for the Synthesis of Polyethers with Carboxylic Acid Pendants. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jihye Park
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Yeji Yu
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Joo Won Lee
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Byeong-Su Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
7
|
Functionalization of poly(methyl acrylate) with formate esters and polyester through ester‐ester exchange reaction. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Ferreira RMM, Ambrosi A, Conceição TF. Post‐polymerization modification of polyetherimide by
Friedel‐Crafts
acylation:
Physical–chemical
characterization and performance as gas separation membrane. J Appl Polym Sci 2022. [DOI: 10.1002/app.52330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Alan Ambrosi
- Laboratory of Membrane Processes, Department of Chemical and Food Engineering Federal University of Santa, Catarina University Campus Florianópolis Brazil
| | - Thiago Ferreira Conceição
- Department of Chemistry Federal University of Santa Catarina, University Campus Florianópolis Brazil
| |
Collapse
|
9
|
Kim M, Park J, Lee KM, Shin E, Park S, Lee J, Lim C, Kwak SK, Lee DW, Kim BS. Peptidomimetic Wet-Adhesive PEGtides with Synergistic and Multimodal Hydrogen Bonding. J Am Chem Soc 2022; 144:6261-6269. [PMID: 35297615 DOI: 10.1021/jacs.1c11737] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The remarkable underwater adhesion of mussel foot proteins has long been an inspiration in the design of peptidomimetic materials. Although the synergistic wet adhesion of catechol and lysine has been recently highlighted, the critical role of the polymeric backbone has remained largely underexplored. Here, we present a peptidomimetic approach using poly(ethylene glycol) (PEG) as a platform to evaluate the synergistic compositional relation between the key amino acid residues (i.e., DOPA and lysine), as well as the role of the polyether backbone in interfacial adhesive interactions. A series of PEG-based peptides (PEGtides) were synthesized using functional epoxide monomers corresponding to catechol and lysine via anionic ring-opening polymerization. Using a surface force apparatus, highly synergistic surface interactions among these PEGtides with respect to the relative compositional ratio were revealed. Furthermore, the critical role of the catechol-amine synergy and diverse hydrogen bonding within the PEGtides in the superior adhesive interactions was verified by molecular dynamics simulations. Our study sheds light on the design of peptidomimetic polymers with reduced complexity within the framework of a polyether backbone.
Collapse
Affiliation(s)
- Minseong Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea.,Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jinwoo Park
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Kyung Min Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Eeseul Shin
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Suebin Park
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Joonhee Lee
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Chanoong Lim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sang Kyu Kwak
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Dong Woog Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Byeong-Su Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
10
|
Lee JW, Park J, Lee J, Park S, Kim JG, Kim BS. Solvent-Free Mechanochemical Post-Polymerization Modification of Ionic Polymers. CHEMSUSCHEM 2021; 14:3801-3805. [PMID: 34245491 DOI: 10.1002/cssc.202101131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/04/2021] [Indexed: 06/13/2023]
Abstract
Despite their superior stability and facile handling, ionic polymers have limited solubility in most organic solvents, restricting the range of substrates and reaction conditions to which they can be applied. To overcome this solubility issue, the present study presents a solvent-free mechanochemical reaction. Specifically, a post-polymerization modification of ammonium-functionalized polyether was demonstrated using a solvent-free vibrational ball-milling technique. The formation of imine bonds between the ionic polymer and an aromatic aldehyde led to the complete conversion to imine within 1 h without any bond breakage on the polymer backbone. The viability of this approach for a wide range of aldehydes was also evaluated, highlighting the potential of the mechanochemical post-polymerization modification of polymers that are inaccessible by conventional solution approaches.
Collapse
Affiliation(s)
- Joo Won Lee
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jihye Park
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Joonhee Lee
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sora Park
- Department of Chemistry, Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Jeung Gon Kim
- Department of Chemistry, Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Byeong-Su Kim
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
11
|
Kim M, Mun W, Jung WH, Lee J, Cho G, Kwon J, Ahn DJ, Mitchell RJ, Kim BS. Antimicrobial PEGtides: A Modular Poly(ethylene glycol)-Based Peptidomimetic Approach to Combat Bacteria. ACS NANO 2021; 15:9143-9153. [PMID: 33988968 DOI: 10.1021/acsnano.1c02644] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Despite their high potency, the widespread implementation of natural antimicrobial peptides is still challenging due to their low scalability and high hemolytic activities. Herein, we address these issues by employing a modular approach to mimic the key amino acid residues present in antimicrobial peptides, such as lysine, leucine, and serine, but on the highly biocompatible poly(ethylene glycol) (PEG) backbone. A series of these PEG-based peptides (PEGtides) were developed using functional epoxide monomers, corresponding to each key amino acid, with several possessing highly potent bactericidal activities and controlled selectivities, with respect to their hemolytic behavior. The critical role of the composition and the structure of the PEGtides in their selectivities was further supported by coarse-grained molecular dynamic simulations. This modular approach is anticipated to provide the design principles necessary for the future development of antimicrobial polymers.
Collapse
Affiliation(s)
- Minseong Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | | | | | - Joonhee Lee
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | | | | | | | | | - Byeong-Su Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
12
|
Synthesis of functional and architectural polyethers via the anionic ring-opening polymerization of epoxide monomers using a phosphazene base catalyst. Polym J 2021. [DOI: 10.1038/s41428-021-00481-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Controlled post-polymerization modification through modulation of repeating unit reactivity: Proof of concept discussed using linear polyethylenimine example. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Han S, Lee J, Jung E, Park S, Sagawa A, Shibasaki Y, Lee D, Kim BS. Mechanochemical Drug Conjugation via pH-Responsive Imine Linkage for Polyether Prodrug Micelles. ACS APPLIED BIO MATERIALS 2021; 4:2465-2474. [DOI: 10.1021/acsabm.0c01437] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Sohee Han
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Joonhee Lee
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Eunkyeong Jung
- Department of Polymer Nano Science and Technology, Chonbuk National University, Jeonju 54896, Republic of Korea
| | - Suebin Park
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Aoi Sagawa
- Department of Chemistry and Biological Sciences, Faculty of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan
| | - Yuji Shibasaki
- Department of Chemistry and Biological Sciences, Faculty of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan
| | - Dongwon Lee
- Department of Polymer Nano Science and Technology, Chonbuk National University, Jeonju 54896, Republic of Korea
| | - Byeong-Su Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
15
|
Hong Y, Kim JM, Jung H, Park K, Hong J, Choi SH, Kim BS. Facile Synthesis of Poly(ethylene oxide)-Based Self-Healable Dynamic Triblock Copolymer Hydrogels. Biomacromolecules 2020; 21:4913-4922. [DOI: 10.1021/acs.biomac.0c01140] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Youngjoo Hong
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Jung-Min Kim
- Department of Chemical Engineering, Hongik University, Seoul 04066, Republic of Korea
| | - Hyunjoon Jung
- Department of Chemical Engineering, Hongik University, Seoul 04066, Republic of Korea
| | - Kyungtae Park
- Department of Chemical and Biochemical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jinkee Hong
- Department of Chemical and Biochemical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Soo-Hyung Choi
- Department of Chemical Engineering, Hongik University, Seoul 04066, Republic of Korea
| | - Byeong-Su Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
16
|
Ferrocene-containing cross-conjugated polymers synthesized by palladium-catalyzed cross-coupling polymerization. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
17
|
Geiselhart CM, Mutlu H, Tzvetkova P, Barner-Kowollik C. Chemiluminescent self-reporting supramolecular transformations on macromolecular scaffolds. Polym Chem 2020. [DOI: 10.1039/d0py00332h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We introduce the synthesis of a self-reporting system with chemiluminescent output, which is regulated via dynamic supramolecular complex formation.
Collapse
Affiliation(s)
- Christina M. Geiselhart
- Soft Matter Synthesis Laboratory
- Institut für Biologische Grenzflächen 3
- Karlsruhe Institute of Technology (KIT)
- 76344 Eggenstein-Leopoldshafen
- Germany
| | - Hatice Mutlu
- Soft Matter Synthesis Laboratory
- Institut für Biologische Grenzflächen 3
- Karlsruhe Institute of Technology (KIT)
- 76344 Eggenstein-Leopoldshafen
- Germany
| | - Pavleta Tzvetkova
- Institute for Organic Chemistry and Institute for Biological Interfaces 4 – Magnetic Resonance
- Karlsruhe Institute of Technology (KIT)
- 76344 Eggenstein-Leopoldshafen
- Germany
| | - Christopher Barner-Kowollik
- Macromolecular Architectures
- Institut für Technische Chemie und Polymerchemie
- Karlsruhe Institute of Technology (KIT)
- 76128 Karlsruhe
- Germany
| |
Collapse
|
18
|
Abstract
Amino-functional polyethers have emerged as a new class of “smart”, i.e. pH- and thermoresponsive materials. This review article summarizes the synthesis and applications of these materials, obtained from ring-opening of suitable epoxide monomers.
Collapse
Affiliation(s)
- Patrick Verkoyen
- Department of Chemistry
- Johannes Gutenberg University Mainz
- 55128 Mainz
- Germany
| | - Holger Frey
- Department of Chemistry
- Johannes Gutenberg University Mainz
- 55128 Mainz
- Germany
| |
Collapse
|