1
|
Glova A, Karttunen M. Learning glass transition temperatures via dimensionality reduction with data from computer simulations: Polymers as the pilot case. J Chem Phys 2024; 161:184902. [PMID: 39513447 DOI: 10.1063/5.0229161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024] Open
Abstract
Machine learning methods provide an advanced means for understanding inherent patterns within large and complex datasets. Here, we employ the principal component analysis (PCA) and the diffusion map (DM) techniques to evaluate the glass transition temperature (Tg) from low-dimensional representations of all-atom molecular dynamic simulations of polylactide (PLA) and poly(3-hydroxybutyrate) (PHB). Four molecular descriptors were considered: radial distribution functions (RDFs), mean square displacements (MSDs), relative square displacements (RSDs), and dihedral angles (DAs). By applying Gaussian Mixture Models (GMMs) to analyze the PCA and DM projections and by quantifying their log-likelihoods as a density-based metric, a distinct separation into two populations corresponding to melt and glass states was revealed. This separation enabled the Tg evaluation from a cooling-induced sharp increase in the overlap between log-likelihood distributions at different temperatures. Tg values derived from the RDF and MSD descriptors using DM closely matched the standard computer simulation-based dilatometric and dynamic Tg values for both PLA and PHB models. This was not the case for PCA. The DM-transformed DA and RSD data resulted in Tg values in agreement with experimental ones. Overall, the fusion of atomistic simulations and DMs complemented with the GMMs presents a promising framework for computing Tg and studying the glass transition in a unified way across various molecular descriptors for glass-forming materials.
Collapse
Affiliation(s)
- Artem Glova
- Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7, Canada
| | - Mikko Karttunen
- Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7, Canada
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
| |
Collapse
|
2
|
Guseva DV, Glagolev MK, Lazutin AA, Vasilevskaya VV. Revealing Structural and Physical Properties of Polylactide: What Simulation Can Do beyond the Experimental Methods. POLYM REV 2023. [DOI: 10.1080/15583724.2023.2174136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- D. V. Guseva
- A. N. Nesmeyanov Institute of Organoelement Compounds RAS, Moscow, Russia
| | - M. K. Glagolev
- A. N. Nesmeyanov Institute of Organoelement Compounds RAS, Moscow, Russia
| | - A. A. Lazutin
- A. N. Nesmeyanov Institute of Organoelement Compounds RAS, Moscow, Russia
| | - V. V. Vasilevskaya
- A. N. Nesmeyanov Institute of Organoelement Compounds RAS, Moscow, Russia
- Chemistry Department, M. V. Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
3
|
Majerczak K, Wadkin‐Snaith D, Magueijo V, Mulheran P, Liggat J, Johnston K. Polyhydroxybutyrate: a review of experimental and simulation studies on the effect of fillers on crystallinity and mechanical properties. POLYM INT 2022. [DOI: 10.1002/pi.6402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Katarzyna Majerczak
- Department of Pure and Applied Chemistry Thomas Graham Building, 295 Cathedral Street, University of Strathclyde Glasgow G1 1XL United Kingdom
| | - Dominic Wadkin‐Snaith
- Department of Chemical and Processing Engineering James Weir Building, 75 Montrose Street, University of Strathclyde Glasgow G1 1XJ United Kingdom
| | - Vitor Magueijo
- Department of Chemical and Processing Engineering James Weir Building, 75 Montrose Street, University of Strathclyde Glasgow G1 1XJ United Kingdom
| | - Paul Mulheran
- Department of Chemical and Processing Engineering James Weir Building, 75 Montrose Street, University of Strathclyde Glasgow G1 1XJ United Kingdom
| | - John Liggat
- Department of Pure and Applied Chemistry Thomas Graham Building, 295 Cathedral Street, University of Strathclyde Glasgow G1 1XL United Kingdom
| | - Karen Johnston
- Department of Chemical and Processing Engineering James Weir Building, 75 Montrose Street, University of Strathclyde Glasgow G1 1XJ United Kingdom
| |
Collapse
|
4
|
Smirnov MA, Tolmachev DA, Glova AD, Sokolova MP, Geydt PV, Lukasheva NV, Lyulin SV. Combined Use of Atomic Force Microscopy and Molecular Dynamics in the Study of Biopolymer Systems. POLYMER SCIENCE SERIES C 2021. [DOI: 10.1134/s1811238221020089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
5
|
Tolmachev D, Mamistvalov G, Lukasheva N, Larin S, Karttunen M. Effects of Amino Acid Side-Chain Length and Chemical Structure on Anionic Polyglutamic and Polyaspartic Acid Cellulose-Based Polyelectrolyte Brushes. Polymers (Basel) 2021; 13:polym13111789. [PMID: 34071693 PMCID: PMC8199235 DOI: 10.3390/polym13111789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 11/25/2022] Open
Abstract
We used atomistic molecular dynamics (MD) simulations to study polyelectrolyte brushes based on anionic α,L-glutamic acid and α,L-aspartic acid grafted on cellulose in the presence of divalent CaCl2 salt at different concentrations. The motivation is to search for ways to control properties such as sorption capacity and the structural response of the brush to multivalent salts. For this detailed understanding of the role of side-chain length, the chemical structure and their interplay are required. It was found that in the case of glutamic acid oligomers, the longer side chains facilitate attractive interactions with the cellulose surface, which forces the grafted chains to lie down on the surface. The additional methylene group in the side chain enables side-chain rotation, enhancing this effect. On the other hand, the shorter and more restricted side chains of aspartic acid oligomers prevent attractive interactions to a large degree and push the grafted chains away from the surface. The difference in side-chain length also leads to differences in other properties of the brush in divalent salt solutions. At a low grafting density, the longer side chains of glutamic acid allow the adsorbed cations to be spatially distributed inside the brush resulting in a charge inversion. With an increase in grafting density, the difference in the total charge of the aspartic and glutamine brushes disappears, but new structural features appear. The longer sides allow for ion bridging between the grafted chains and the cellulose surface without a significant change in main-chain conformation. This leads to the brush structure being less sensitive to changes in salt concentration.
Collapse
Affiliation(s)
- Dmitry Tolmachev
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 Petersburg, Russia; (N.L.); (S.L.)
- Correspondence: (D.T.); (M.K.)
| | - George Mamistvalov
- Faculty of Physics, St. Petersburg State University, Petrodvorets, 198504 Petersburg, Russia;
| | - Natalia Lukasheva
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 Petersburg, Russia; (N.L.); (S.L.)
| | - Sergey Larin
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 Petersburg, Russia; (N.L.); (S.L.)
- Faculty of Physics, St. Petersburg State University, Petrodvorets, 198504 Petersburg, Russia;
| | - Mikko Karttunen
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 Petersburg, Russia; (N.L.); (S.L.)
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
- Department of Applied Mathematics, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
- The Centre of Advanced Materials and Biomaterials Research, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
- Correspondence: (D.T.); (M.K.)
| |
Collapse
|
6
|
Gordievskaya YD, Kramarenko EY. Conformational transitions and helical structures of a dipolar chain in external electric fields. SOFT MATTER 2021; 17:1376-1387. [PMID: 33325981 DOI: 10.1039/d0sm01868f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The conformational behavior of a single dipolar chain in a uniform electric field is investigated by molecular dynamics simulations. The dipolar chain is modeled as a backbone bead-on-spring chain of equally charged beads, each connected by a rigid spring with an oppositely charged side bead that can freely rotate around the backbone bead. In the strong coupling regime, when the dipolar chain is in the globular state due to a strong electrostatic correlational attraction, the application of an electric field causes the chain swelling and elongation along the field direction. In the weak coupling regime, a qualitatively new regime is found when the swollen dipolar chain shrinks along the field direction adopting flattened conformations due to the field-induced anisotropy of the chain rigidity and the head-to-tail attraction of the dipoles orienting along the field lines. A novel helical conformation is detected for low-polar media and strong electric fields. An increasing rigidity of the backbone chain leads to some stabilization of the helical conformation and the formation of double and triple helices as well as flat spread springs. Fine tuning of the interplay between dipolar and volume interactions by external electric fields induces re-orientation of rod-like dipolar chains in dilute solutions. The obtained results can provide new ways to control dipolar polymer conformations and design materials with responsive properties.
Collapse
Affiliation(s)
- Yulia D Gordievskaya
- Faculty of Physics, Lomonosov Moscow State University, Leninskie gory, 1-2, 119991, Moscow, Russia. and A. N. Nesmeyanov Institute of Organoelement Compounds RAS, Vavilova St., 28, 119991, Moscow, Russia
| | - Elena Yu Kramarenko
- Faculty of Physics, Lomonosov Moscow State University, Leninskie gory, 1-2, 119991, Moscow, Russia. and A. N. Nesmeyanov Institute of Organoelement Compounds RAS, Vavilova St., 28, 119991, Moscow, Russia
| |
Collapse
|
7
|
Glova AD, Melnikova SD, Mercurieva AA, Larin SV, Nazarychev VM, Polotsky AA, Lyulin SV. Branched versus linear lactide chains for cellulose nanoparticle modification: an atomistic molecular dynamics study. Phys Chem Chem Phys 2021; 23:457-469. [PMID: 33320128 DOI: 10.1039/d0cp04556j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We studied the structure of brushes consisting of branched oligolactide (OLA) chains grafted onto the surface of cellulose nanoparticles (CNPs) in polylactide (PLA) and compared the outcomes to the case of grafting linear OLA chains using atomistic molecular dynamics simulations. The systems were considered in a melt state. The branched model OLA chains comprised one branching point and three branches, while the linear OLA chains examined had a molecular weight similar to the branched chains. It was shown that free branches of the branched OLA chains tend to fold back toward the CNPs due to dipole-dipole interactions within the grafted layer, in contrast to the well-established behavior of the grafted uncharged branched chains. This result, however, is in qualitative agreement with the conformational behavior known for linear OLA chains. At the same time, no significant difference in the effectiveness of covering the filler surface with grafted branched or linear OLA chains was found. In terms of the expelling ability of the grafted chains and the interaction between PLA and CNP or OLA, the linear chains were broadly similar (sparse grafting) or better (intermediate or dense grafting) compared to the branched ones. Thus, the grafted lactide chains with a linear architecture, rather than their branched counterpart, may be preferable for the covalent modification of cellulose nanoparticles.
Collapse
Affiliation(s)
- Artyom D Glova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoj pr. 31 (V.O.), St. Petersburg 199004, Russia.
| | | | | | | | | | | | | |
Collapse
|
8
|
Mikhailov IV, Amoskov VM, Darinskii AA, Birshtein TM. The Structure of Dipolar Polymer Brushes and Their Interaction in the Melt. Impact of Chain Stiffness. Polymers (Basel) 2020; 12:E2887. [PMID: 33276514 PMCID: PMC7760783 DOI: 10.3390/polym12122887] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/30/2020] [Accepted: 11/30/2020] [Indexed: 12/24/2022] Open
Abstract
By using the numerical lattice Scheutjens-Fleer self-consistent field (SF-SCF) method we have studied the effect of the restricted flexibility of grafted chains on the structure and mutual interaction of two opposing planar conventional and A-type dipolar brushes. Brushes are immersed in the solvent consisting of chains similar to the grafted ones. The increase of the chain rigidity enhances the segregation of grafted chains in a A-type dipolar brush into two populations: backfolded chains with terminal monomers near the grafting surface and chains with the ends at the brush periphery. The fraction of backfolded chains grows by an increase of the Kuhn segment length. It is shown that two opposite A-type dipolar brushes from semi-rigid chains are attracted to each other at short distances. The attraction becomes more pronounced and begins at larger distances for more rigid chains with the same brush characteristics: polymerization degree, grafting density, and dipole moments of monomer units. This attraction is connected with the dipole-dipole interactions between chains of oncoming brushes with oppositely directed dipoles penetrating deeply into each other upon contact. This effect of the chain rigidity is opposite to that for conventional brushes without dipoles in the chains. For such brushes, an increase in the chain rigidity leads to the enhanced repulsion between them.
Collapse
Affiliation(s)
- Ivan V. Mikhailov
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 199004 St. Petersburg, Russia; (V.M.A.); (A.A.D.); (T.M.B.)
| | | | | | | |
Collapse
|