1
|
Ji Y, Yu H. Manipulation of photoresponsive liquid-crystalline polymers and their applications: from nanoscale to macroscale. JOURNAL OF MATERIALS CHEMISTRY C 2024; 12:10246-10266. [DOI: 10.1039/d4tc02213k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
We summarize the molecular design of photoresponsive liquid-crystalline polymers, manipulation at multiple scales and various applications based on their intrinsic properties, providing an opportunity for future development in this field.
Collapse
Affiliation(s)
- Yufan Ji
- School of Material Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing, 100871, China
| | - Haifeng Yu
- School of Material Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing, 100871, China
| |
Collapse
|
2
|
Luminous Self-Assembled Fibers of Azopyridines and Quantum Dots Enabled by Synergy of Halogen Bond and Alkyl Chain Interactions. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238165. [PMID: 36500259 PMCID: PMC9739974 DOI: 10.3390/molecules27238165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022]
Abstract
Herein, a simple approach for the fabrication of luminous self-assembled fibers based on halogen-bonded azopyridine complexes and oleic acid-modified quantum dots (QDs) is reported. The QDs uniformly align on the edge of the self-assembled fibers through the formation of van der Waals force between the alkyl chain of oleic acid on the QD surface and the alkyl chain of the halogen-bonded complexes, 15Br or 15I. Furthermore, the intermolecular interaction mechanism was elucidated by using Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, and density functional theory (DFT) calculations. This approach results in retention of the fluorescence properties of the QDs in the fibers. In addition, the bromine-bonded fibers can be assembled into tailored directional fibers upon evaporation of the solvent (tetrahydrofuran) when using capillaries via the capillary force. Interestingly, the mesogenic properties of the halogen-bonded complexes are preserved in the easily prepared halogen-bonded fluorescent fibers; this provides new insight into the design of functional self-assembly materials.
Collapse
|
3
|
Ren H, Yang P, Yu H. Recent Progress in Azopyridine-Containing Supramolecular Assembly: From Photoresponsive Liquid Crystals to Light-Driven Devices. Molecules 2022; 27:molecules27133977. [PMID: 35807219 PMCID: PMC9268027 DOI: 10.3390/molecules27133977] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/16/2022] [Accepted: 06/18/2022] [Indexed: 02/05/2023] Open
Abstract
Azobenzene derivatives have become one of the most famous photoresponsive chromophores in the past few decades for their reversible molecular switches upon the irradiation of actinic light. To meet the ever-increasing requirements for applications in materials science, biomedicine, and light-driven devices, it is usually necessary to adjust their photochemical property from the molecular level by changing the substituents on the benzene rings of azobenzene groups. Among the diverse azobenzene derivatives, azopyridine combines the photoresponsive feature of azobenzene groups and the supramolecular function of pyridyl moieties in one molecule. This unique feature provides pH-responsiveness and hydrogen/halogen/coordination binding sites in the same chromophore, paving a new way to prepare multi-functional responsive materials through non-covalent interactions and reversible chemical reactions. This review summarizes the photochemical and photophysical properties of azopyridine derivatives in supramolecular states (e.g., hydrogen/halogen bonding, coordination interactions, and quaternization reactions) and illustrates their applications from photoresponsive liquid crystals to light-driven devices. We hope this review can highlight azopyridine as one more versatile candidate molecule for designing novel photoresponsive materials towards light-driven applications.
Collapse
Affiliation(s)
- Hao Ren
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China;
| | - Peng Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China;
- Correspondence: (P.Y.); (H.Y.)
| | - Haifeng Yu
- Institute of New Structural Materials, School of Material Science and Engineering, Peking University, Beijing 100871, China
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, China
- Correspondence: (P.Y.); (H.Y.)
| |
Collapse
|
4
|
Zenati A. Triblock Azo copolymers: RAFT synthesis, properties, thin film self-assembly and applications. POLYM-PLAST TECH MAT 2022. [DOI: 10.1080/25740881.2021.2015779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Athmen Zenati
- Refining and Petrochemistry, Division of Method and Operation, Sonatrach, Arzew, Algeria
- Central Directorate of Research and Development, Sonatrach, Boumerdes, Algeria
| |
Collapse
|
5
|
Li W, Zhang H, Zhai Z, Huang X, Shang S, Song Z. Photo-controlled self-assembly behavior of novel amphiphilic polymers with a rosin-based azobenzene group. NEW J CHEM 2022. [DOI: 10.1039/d1nj04575j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel ‘bola’ rosin-based photo-responsive amphiphilic polymers PMPn show an extremely high photoresponsive efficiency and various assembly morphological changes.
Collapse
Affiliation(s)
- Wanbing Li
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Lab. of Biomass Energy and Material, Nanjing 210042, Jiangsu Province, P. R. China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Haibo Zhang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Lab. of Biomass Energy and Material, Nanjing 210042, Jiangsu Province, P. R. China
| | - Zhaolan Zhai
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Lab. of Biomass Energy and Material, Nanjing 210042, Jiangsu Province, P. R. China
| | - Xujuan Huang
- School of Chemical and Chemistry, Yancheng Institute of Technology, Yancheng 210042, Jiangsu Province, P. R. China
| | - Shibin Shang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Lab. of Biomass Energy and Material, Nanjing 210042, Jiangsu Province, P. R. China
| | - Zhanqian Song
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Lab. of Biomass Energy and Material, Nanjing 210042, Jiangsu Province, P. R. China
| |
Collapse
|
6
|
Lee C, Ndaya D, Bosire R, Kim NK, Kasi RM, Osuji CO. Fast Photoswitchable Order-Disorder Transitions in Liquid-Crystalline Block Co-oligomers. J Am Chem Soc 2021; 144:390-399. [PMID: 34962798 DOI: 10.1021/jacs.1c10256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Optically driven ordering transitions are rarely observed in macromolecular systems, often because of kinetic limitations. Here, we report a series of block co-oligomers (BCOs) that rapidly order and disorder at room temperature in response to optical illumination, and the absence thereof. The system is a triblock where rigid azobenzene (Azo) mesogens are attached to each end of a flexible siloxane chain. UV-induced trans-to-cis Azo isomerization, and vice versa in the absence of UV light, drive disordering and ordering of lamellar superstructures and smectic mesophases, as manifested by liquefaction and solidification of the material, respectively. The impacts of chemical structure on BCO self-assembly and photoswitching kinetics are explored by in situ microscopy and X-ray measurements for different mesogen end groups (NO2 or CN), and different carbon chain lengths (0C or 12C) between the siloxane and the mesogen. The presence of the 12C spacer leads to hierarchical ordering with smectic layers of mesogens existing alongside larger length-scale lamellae, versus only smectic ordering without the spacer. These hierarchically ordered BCOs display highly persistent lamellar sheets that contrast with the tortuous, low-persistence "fingerprint"-type structures seen in conventional block copolymers. The reordering kinetics upon removal of UV illumination are extremely rapid (<5 s). This fast response is due to the electron-withdrawing NO2 and CN, which facilitate cis-to-trans isomerization via thermal relaxation at room temperature without additional stimuli. This work elucidates structure-property relationships in photoswitching BCOs and advances the possibility of developing systems in which ordered nanostructures can be easily optically written and erased.
Collapse
Affiliation(s)
- Changyeon Lee
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Dennis Ndaya
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States.,Polymer Program, Institute of Material Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Reuben Bosire
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States.,Polymer Program, Institute of Material Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Na Kyung Kim
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Rajeswari M Kasi
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States.,Polymer Program, Institute of Material Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Chinedum O Osuji
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
7
|
Zheng J, Suwardi A, Wong CJE, Loh XJ, Li Z. Halogen bonding regulated functional nanomaterials. NANOSCALE ADVANCES 2021; 3:6342-6357. [PMID: 36133496 PMCID: PMC9419782 DOI: 10.1039/d1na00485a] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/22/2021] [Indexed: 06/16/2023]
Abstract
Non-covalent interactions have gained increasing attention for use as a driving force to fabricate various supramolecular architectures, exhibiting great potential in crystal and materials engineering and supramolecular chemistry. As one of the most powerful non-covalent bonds, the halogen bond has recently received increasing attention in functional nanomaterial design. The present review describes the latest studies based on halogen bonding induced self-assembly and its applications. Due to the high directionality and controllable interaction strength, halogen bonding can provide a facile platform for the design and synthesis of a myriad of nanomaterials. In addition, both the fundamental aspects and the real engineering applications are discussed, which encompass molecular recognition and sensing, organocatalysis, and controllable multifunctional materials and surfaces.
Collapse
Affiliation(s)
- Jie Zheng
- Institute of Materials Research and Engineering, ASTAR (Agency for Science, Technology and Research) Fusionopolis Way, Innovis, #08-03 Singapore 138634 Singapore
| | - Ady Suwardi
- Institute of Materials Research and Engineering, ASTAR (Agency for Science, Technology and Research) Fusionopolis Way, Innovis, #08-03 Singapore 138634 Singapore
| | - Claris Jie Ee Wong
- Department of Material Science and Engineering, National University of Singapore S117576 Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, ASTAR (Agency for Science, Technology and Research) Fusionopolis Way, Innovis, #08-03 Singapore 138634 Singapore
| | - Zibiao Li
- Institute of Materials Research and Engineering, ASTAR (Agency for Science, Technology and Research) Fusionopolis Way, Innovis, #08-03 Singapore 138634 Singapore
| |
Collapse
|
8
|
Wang Z, Mai Y, Yang Y, Shen L, Yan C. Highly Ordered Pt-Based Nanoparticles Directed by the Self-Assembly of Block Copolymers for the Oxygen Reduction Reaction. ACS APPLIED MATERIALS & INTERFACES 2021; 13:38138-38146. [PMID: 34355891 DOI: 10.1021/acsami.1c04259] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Designing Pt-based nanoparticle (NP) catalysts is of great interest for the lowering of Pt usage and the enhancement of catalytic activity on the proton-exchange membrane fuel cells (PEMFCs). However, it is still challenging to develop well-arrayed catalyst NPs on supports over multiple-length scales. Herein, we presented a facile strategy of producing well-ordered Pt-based NPs toward oxygen reduction reaction (ORR) catalysts assisted by the self-assembly of block copolymers. In contrast to the conventional Pt/C ORR catalysts with a random dispersion on carbon, the as-prepared Pt, PtCo, and PtCo@Pt NPs in our work were hexagonally arranged with a uniform quasi-spherical shape and ordered distribution. The systematic study related to their ORR activities revealed that the PtCo@Pt core-shell NP arrays were more active and more durable than PtCo, Pt, and the commercial Pt/C catalyst. In the rotating-disk electrode test, a half-wave potential (E1/2) of 0.86 V versus RHE and a 4-e ORR mechanism were found for PtCo@Pt. Single-cell performance showed that the current density and the peak power density of PtCo@Pt achieved 0.86 A/cm2@0.7 V and 1.05 W/cm2, respectively, with a Pt loading of ∼0.15 mg/cm2 on the cathode. Also, they held 81.4 and 82.9% retention, respectively, after the durability test in the single-cell test. Density functional theory calculation results revealed that PtCo@Pt NPs had a lower d-band center and a weaker oxygen binding energy compared to Pt and PtCo, which contributed to the enhancement of the ORR activity.
Collapse
Affiliation(s)
- Zhida Wang
- Hydrogen Production and Utilization Lab, CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Yilang Mai
- Hydrogen Production and Utilization Lab, CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yi Yang
- Hydrogen Production and Utilization Lab, CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Lisha Shen
- Hydrogen Production and Utilization Lab, CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Changfeng Yan
- Hydrogen Production and Utilization Lab, CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| |
Collapse
|
9
|
Lee C, Osuji CO. 100th Anniversary of Macromolecular Science Viewpoint: Opportunities for Liquid Crystal Polymers in Nanopatterning and Beyond. ACS Macro Lett 2021; 10:945-957. [PMID: 35549196 DOI: 10.1021/acsmacrolett.1c00350] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Liquid-crystal polymers (LCPs) integrate at a molecular level the characteristics of two important material classes, i.e., liquid crystals (LCs) and polymers. As a result, they exhibit a wide variety of intriguing physical phenomena and have useful properties in various settings. In the nearly 50 years since the discovery of the first melt-processable LCPs, there has been a remarkable expansion in the field encompassing the development of new chain architectures, the incorporation of new classes of mesogens, and the exploration of new properties and applications. As engineering materials, LCPs are historically best known in the context of high strength fibers. In a more contemporary study, the pairing of LC mesophase assembly with block copolymer (BCP) self-assembly in LC BCPs has resulted in a fascinating interplay of ordering phenomena and rich phase behavior, while lightly cross-linked networks, LC elastomers, are extensively investigated as shape memory materials based on their thermomechanical actuation. As this Viewpoint describes, these and other examples are active areas of research in which new, compelling opportunities for LCPs are emerging. We highlight a few selected areas that we view as being potentially significant in the near future, with a particular emphasis on nanopatterning. Here, the ability to readily access small feature sizes, the fluidity of the LC mesophase, and LC-based handles for achieving orientation control present a compelling combination. Opportunities for LCPs are also presented under the broad rubric of "beyond nanopatterning", and we discuss relevant challenges and potential new directions in the field.
Collapse
Affiliation(s)
- Changyeon Lee
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Chinedum O. Osuji
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
10
|
Robertson M, Zhou Q, Ye C, Qiang Z. Developing Anisotropy in Self-Assembled Block Copolymers: Methods, Properties, and Applications. Macromol Rapid Commun 2021; 42:e2100300. [PMID: 34272778 DOI: 10.1002/marc.202100300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/23/2021] [Indexed: 01/03/2023]
Abstract
Block copolymers (BCPs) self-assembly has continually attracted interest as a means to provide bottom-up control over nanostructures. While various methods have been demonstrated for efficiently ordering BCP nanodomains, most of them do not generically afford control of nanostructural orientation. For many applications of BCPs, such as energy storage, microelectronics, and separation membranes, alignment of nanodomains is a key requirement for enabling their practical use or enhancing materials performance. This review focuses on summarizing research progress on the development of anisotropy in BCP systems, covering a variety of topics from established aligning techniques, resultant material properties, and the associated applications. Specifically, the significance of aligning nanostructures and the anisotropic properties of BCPs is discussed and highlighted by demonstrating a few promising applications. Finally, the challenges and outlook are presented to further implement aligned BCPs into practical nanotechnological applications, where exciting opportunities exist.
Collapse
Affiliation(s)
- Mark Robertson
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Qingya Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Changhuai Ye
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Zhe Qiang
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| |
Collapse
|
11
|
Kampes R, Zechel S, Hager MD, Schubert US. Halogen bonding in polymer science: towards new smart materials. Chem Sci 2021; 12:9275-9286. [PMID: 34349897 PMCID: PMC8278954 DOI: 10.1039/d1sc02608a] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/22/2021] [Indexed: 12/19/2022] Open
Abstract
The halogen bond is a special non-covalent interaction, which can represent a powerful tool in supramolecular chemistry. Although the halogen bond offers several advantages compared to the related hydrogen bond, it is currently still underrepresented in polymer science. The structural related hydrogen bonding assumes a leading position in polymer materials containing supramolecular interactions, clearly indicating the high potential of using halogen bonding for the design of polymeric materials. The current developments regarding halogen bonding containing polymers include self-assembly, photo-responsive materials, self-healing materials and others. These aspects are highlighted in the present perspective. Furthermore, a perspective on the future of this rising young research field is provided. The incorporation of halogen bonding into polymer architectures is a new approach for the design of functional materials. This perspective emphasizes the current development in the field of halogen bonding featuring polymer materials.![]()
Collapse
Affiliation(s)
- Robin Kampes
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena Humboldtstraße 10 07743 Jena Germany .,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena Philosophenweg 7 D-07743 Jena Germany
| | - Stefan Zechel
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena Humboldtstraße 10 07743 Jena Germany .,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena Philosophenweg 7 D-07743 Jena Germany
| | - Martin D Hager
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena Humboldtstraße 10 07743 Jena Germany .,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena Philosophenweg 7 D-07743 Jena Germany
| | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena Humboldtstraße 10 07743 Jena Germany .,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena Philosophenweg 7 D-07743 Jena Germany
| |
Collapse
|
12
|
|
13
|
Macroscopic Regulation of Hierarchical Nanostructures in Liquid-crystalline Block Copolymers towards Functional Materials. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-021-2531-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Ren H, Yang P, Winnik FM. Azopyridine: a smart photo- and chemo-responsive substituent for polymers and supramolecular assemblies. Polym Chem 2020. [DOI: 10.1039/d0py01093f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This mini-review summarizes key features of the photoisomerization of polymer-tethered azopyridine in aqueous media and describes recent accomplishments on the fast thermal cis-to-trans relaxation of azopyridinium or H-bonded azopyridine.
Collapse
Affiliation(s)
- Hao Ren
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi'an 710119
| | - Peng Yang
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi'an 710119
| | - Françoise M. Winnik
- Laboratory of Polymer Chemistry
- Department of Chemistry
- PB 55
- University of Helsinki
- Helsinki
| |
Collapse
|