1
|
Artschwager R, Kalidindi TM, Johnson D, Brennan C, Samuels ZV, Lito P, Pillarsetty NVK. Preclinical Evaluation of [ 124I]-Sotorasib for the Imaging of Kirsten Rat Sarcoma G12C Mutant Tumors. ACS Pharmacol Transl Sci 2024; 7:3867-3878. [PMID: 39698284 PMCID: PMC11650727 DOI: 10.1021/acsptsci.4c00425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 12/20/2024]
Abstract
Kirsten rat sarcoma (KRAS) is a frequently mutated oncogene responsible for several oncogenic KRAS variants and for driving tumor proliferation. Some nonsmall cell lung cancer (NSCLC) tumors exhibit KRAS G12C mutations, which can be targeted for inhibition using covalent and more recently noncovalent inhibitors. Sotorasib was the first FDA-approved G12C inhibitor that has shown efficacy in lung cancer patients, but with mixed responses. The lack of efficacy can be attributed to tumor heterogeneity (lack of G12C mutations) and/or inefficient delivery. Targeted KRAS G12C imaging has potential to identify NSCLC lesions with the targeted mutation and elucidate the oncogene's role in driving tumor growth and correlating responses to treatment. Toward this goal, we have developed a sotorasib-based molecular agent for PET imaging and tested its efficacy in targeting tumor lesions with KRAS G12C mutations. Here, we describe the synthesis, in vitro and in vivo evaluation of an [124I]I-Sotorasib analog in targeting G12C mutant tumor lesions using PET imaging.
Collapse
Affiliation(s)
- Raik Artschwager
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, 1275 York Avenue, New York, New York 10065, United States
| | - Teja M. Kalidindi
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, 1275 York Avenue, New York, New York 10065, United States
| | - Delissa Johnson
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, 1275 York Avenue, New York, New York 10065, United States
| | - Christopher Brennan
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, 1275 York Avenue, New York, New York 10065, United States
| | - Zachary V. Samuels
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, 1275 York Avenue, New York, New York 10065, United States
- Department
of Chemistry, Hunter College, City University
of New York, New York, New York 10065, United States
- Ph.D.
Program in Chemistry, Graduate Center of
City University of New York, New York, New York 10016, United States
| | - Piro Lito
- Department
of Medicine, Memorial Sloan Kettering Cancer
Center, 1275 York Avenue, New York, New York 10065, United States
| | - Naga Vara Kishore Pillarsetty
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, 1275 York Avenue, New York, New York 10065, United States
- Department
of Radiology, Weill Cornell Medical College, New York, New York 10021, United States
| |
Collapse
|
2
|
Fang J, Wang X, Meng L, Zhang J, Zhuang R, Li Y, Zhang X, Guo Z. Preclinical Evaluation of 131I/ 18F-Labeled Covalent Small-Molecule Inhibitors for STING Status Imaging. ACS Pharmacol Transl Sci 2024; 7:1783-1794. [PMID: 38898942 PMCID: PMC11184601 DOI: 10.1021/acsptsci.3c00398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/24/2024] [Accepted: 04/30/2024] [Indexed: 06/21/2024]
Abstract
The stimulator of interferon genes (STING) is a vital protein to the immune surveillance of the tumor microenvironment. In this study, we develop novel inhibitor-based radioligands and evaluate their feasibility for noninvasive visualization of STING expression in tumor-bearing mice. Analogous compounds to STING inhibitors C170 and C176 were synthesized and labeled with 131I and 18F to attain [131I]I-NFIP and [18F]F-NFEP, respectively. The radiosynthesis was achieved with high radiochemical purity (>95%) and molar activity (28.56-48.89 GBq/μmol). The affinity and specificity of tracers were assessed through cell uptake and docking experiments, demonstrating that [131I]I-NFIP exhibited high specificity for STING, with a cell-based IC50 value of 7.56 nM. Small-animal PET/SPECT imaging and biodistribution studies in tumor-bearing mice models were performed to verify the tracers' pharmacokinetics and tumor-targeting capabilities (n = 3/group). SPECT imaging demonstrated that [131I]I-NFIP rapidly accumulated in the Panc02 tumor quickly at 30 min post-injection, with a tumor-to-muscle (T/M) ratio of 2.03 ± 0.30. This ratio significantly decreased in the blocking group (1.10 ± 0.14, **P < 0.01, n = 3). Furthermore, tumor uptake and the T/M ratio of [131I]I-NFIP were positively associated with STING expression. In summary, [131I]I-NFIP is the first STING-specific inhibitor-based radioligand offering the potential for visualizing STING status in tumors.
Collapse
Affiliation(s)
- Jianyang Fang
- State
Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular
Imaging and Translational Medicine, Xiang An Biomedicine Laboratory,
School of Public Health, Xiamen University, 4221-116 Xiang’An South Rd, Xiamen 361102, China
| | - Xiaobo Wang
- Department
of Nuclear Medicine, Xijing Hospital, Fourth
Military Medical University, Xi’an 71003, China
| | - Lingxin Meng
- State
Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular
Imaging and Translational Medicine, Xiang An Biomedicine Laboratory,
School of Public Health, Xiamen University, 4221-116 Xiang’An South Rd, Xiamen 361102, China
| | - Jingru Zhang
- State
Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular
Imaging and Translational Medicine, Xiang An Biomedicine Laboratory,
School of Public Health, Xiamen University, 4221-116 Xiang’An South Rd, Xiamen 361102, China
| | - Rongqiang Zhuang
- State
Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular
Imaging and Translational Medicine, Xiang An Biomedicine Laboratory,
School of Public Health, Xiamen University, 4221-116 Xiang’An South Rd, Xiamen 361102, China
| | - Yesen Li
- Department
of Nuclear Medicine and Minnan PET Center, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Xianzhong Zhang
- Theranostics
and Translational Research Center, Institute of Clinical Medicine,
Department of Nuclear Medicine, Peking Union
Medical College Hospital, Chinese Academy of Medical Sciences and
Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, Beijing 100730, China
| | - Zhide Guo
- State
Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular
Imaging and Translational Medicine, Xiang An Biomedicine Laboratory,
School of Public Health, Xiamen University, 4221-116 Xiang’An South Rd, Xiamen 361102, China
| |
Collapse
|
3
|
Zhang J, Kang F, Wang X, Chen X, Yang X, Yang Z, Wang J. Recent Advances in Radiotracers Targeting Novel Cancer-Specific Biomarkers in China: A Brief Overview. J Nucl Med 2024; 65:38S-45S. [PMID: 38719241 DOI: 10.2967/jnumed.123.266314] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/23/2024] [Indexed: 07/16/2024] Open
Abstract
Radiopharmaceuticals play a critical role in nuclear medicine, providing novel tools for specifically delivering radioisotopes for the diagnosis and treatment of cancers. As the starting point for developing radiopharmaceuticals, cancer-specific biomarkers are important and receive worldwide attention. This field in China is currently experiencing a rapid expansion, with multiple radiotracers targeting novel targets being developed and translated into clinical studies. This review provides a brief overview of the exploration of novel imaging targets, preclinical evaluation of their targeting ligands, and translational research in China from 2020 to 2023, for detecting cancer, guiding targeted therapy, and visualizing the immune microenvironment. We believe that China will play an even more important role in the development of nuclear medicine in the world in the future.
Collapse
Affiliation(s)
- Jingming Zhang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
- Department of Nuclear Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Fei Kang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiao Wang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Xuejiao Chen
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Xing Yang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
- Department of Central Laboratory, Peking University First Hospital, Beijing, China
- Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Beijing, China
- International Cancer Institute, Peking University Health Science Center, Beijing, China; and
| | - Zhi Yang
- Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Beijing, China;
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, China
| | - Jing Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China;
| |
Collapse
|
4
|
Li X, Ye J, Wang J, Quan Z, Li G, Ma W, Zhang M, Yang W, Wang J, Ma T, Kang F, Wang J. First-in-Humans PET Imaging of KRASG12C Mutation Status in Non-Small Cell Lung and Colorectal Cancer Patients Using [ 18F]PFPMD. J Nucl Med 2023; 64:1880-1888. [PMID: 37827842 DOI: 10.2967/jnumed.123.265715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 09/07/2023] [Indexed: 10/14/2023] Open
Abstract
Kirsten rat sarcoma (KRAS) mutations are an important marker for tumor-targeted therapy. In this study, we sought to develop a KRASG12C oncoprotein-targeted PET tracer and to evaluate its translational potential for noninvasive imaging of the KRASG12C mutation in non-small cell lung cancer (NSCLC) and colorectal cancer (CRC) patients. Methods: [18F]PFPMD was synthesized on the basis of AMG510 (sotorasib) by attaching a polyethylene glycol chain to the quinazolinone structure. The binding selectivity and imaging potential of [18F]PFPMD were verified by cellular uptake, internalization, and blocking (H358: KRASG12C mutation; A549: non-KRASG12C mutation) studies, as well as by a small-animal PET/CT imaging study on tumor-bearing mice. Five healthy volunteers were enrolled to assess the safety, biodistribution, and dosimetry of [18F]PFPMD. Subsequently, 14 NSCLC or CRC patients with or without the KRASG12C mutation underwent [18F]PFPMD and [18F]FDG PET/CT imaging. The SUVmax of tumor uptake of [18F]PFPMD was measured and compared between patients with and without the KRASG12C mutation. Results: [18F]PFPMD was obtained with a high radiochemical yield, radiochemical purity, and stability. The protein-binding assay showed that [18F]PFPMD selectively binds to the KRASG12C protein. [18F]PFPMD uptake was significantly higher in H358 than in A549 and was decreased by pretreatment with AMG510 (H358 vs. A549: 3.22% ± 0.28% vs. 2.50% ± 0.25%, P < 0.05; block: 2.06% ± 0.13%, P < 0.01). Similar results were observed in tumor-bearing mice on PET imaging (H358 vs. A549: 3.93% ± 0.24% vs. 2.47% ± 0.26% injected dose/g, P < 0.01; block: 2.89% ± 0.29% injected dose/g; P < 0.05). [18F]PFPMD was safe in humans and was excreted primarily by the gallbladder and intestines. The whole-body effective dose was comparable to that of [18F]FDG. The accumulation of [18F]PFPMD in KRASG12C mutation tumors was significantly higher than that in non-KRASG12C mutation tumors (SUVmax: 3.73 ± 0.58 vs. 2.39 ± 0.22, P < 0.01) in NSCLC and CRC patients. Conclusion: [18F]PFPMD is a safe and promising PET tracer for noninvasive screening of the KRASG12C mutation status in NSCLC and CRC patients.
Collapse
Affiliation(s)
- Xiang Li
- Department of Nuclear Medicine and State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jiajun Ye
- Department of Nuclear Medicine and State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jingyi Wang
- Department of Nuclear Medicine and State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhiyong Quan
- Department of Nuclear Medicine and State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Guiyu Li
- Department of Nuclear Medicine and State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wenhui Ma
- Department of Nuclear Medicine and State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Mingru Zhang
- Department of Nuclear Medicine and State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Weidong Yang
- Department of Nuclear Medicine and State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Junling Wang
- Department of Nuclear Medicine and State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Taoqi Ma
- Department of Nuclear Medicine and State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Fei Kang
- Department of Nuclear Medicine and State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jing Wang
- Department of Nuclear Medicine and State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
5
|
Zhang M, Ye J, Xie Z, Wang Y, Ma W, Kang F, Yang W, Wang J, Chen X. Combined Probe Strategy to Increase the Enzymatic Digestion Rate and Accelerate the Renal Radioactivity Clearance of Peptide Radiotracers. Mol Pharm 2022; 19:1548-1556. [PMID: 35357154 DOI: 10.1021/acs.molpharmaceut.2c00051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
High and sustained renal radioactivity accumulation is a major challenge in peptide-based radionuclide imaging and therapy. However, neutral endopeptidase (NEP)-based enzymatic hydrolysis to release and excrete the radioactive fragments has been proven to be an effective and promising way to reduce renal accumulation. Despite the improvement, the effect is still far from being satisfactory. To further reduce kidney uptake, we studied the relationship between the enzymatic reaction rate and the substrate concentration and came up with a combined probe strategy. Model compounds Boc-MVK-Dde and Boc-MFK-Dde were used for an in vitro enzymatic digestion study. NOTA-Exendin 4 and NOTA-MVK-Exendin 4 were labeled with 64Cu for in vivo dose-dependent micro-positron emission tomography (PET) studies. Groups 1 and 2 were injected with 0.2 and 0.8 nmol of 64Cu-NOTA-Exendin 4, respectively. Groups 3-6 were injected with 0.2, 0.8, 1.0, and 1.4 nmol of 64Cu-NOTA-MVK-Exendin 4, respectively. Groups 7 and 8 were co-injected with 0.2 nmol of 64Cu-NOTA-MVK-Exendin 4 and NOTA-MVK-PEG5K (1.3 and 2.6 nmol). The radioactivity uptakes were determined and compared within and among the groups. The in vitro cleavage study for both Boc-MVK-Dde and Boc-MFK-Dde indicated that within a certain concentration range, the enzyme digestion rate increased with increasing substrate concentration. The microPET images showed that the renal clearance could be accelerated significantly by increasing the injection dose of 64Cu-NOTA-MVK-Exendin 4, with the kidney uptakes being 60.98, 43.01, and 16.10 % ID/g at 1 h for groups 3, 4 and 5, respectively. Unfortunately, the tumor uptakes were also significantly inhibited as the injected dose of the tracer increased. However, with the co-injection of NOTA-MVK-PEG5K, the renal accumulation was significantly decreased without hampering the tumor uptake. As a result, the tumor-to-kidney ratios were significantly improved, which were 1.93, 3.47, 1.74, and 3.38 times that of group 3 at 1, 4, 24, and 48 h, respectively. The enzymatic reaction rate of NEP is dependent on the concentration of the substrates both in vitro and in vivo. The combined probe strategy developed in this study can dramatically reduce the renal accumulation of a peptide radioligand without affecting the tumor uptake, which shows great potential in peptide-based radiotheranostics.
Collapse
Affiliation(s)
- Mingru Zhang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jiajun Ye
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zhaojuan Xie
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yirong Wang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Wenhui Ma
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Fei Kang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Weidong Yang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jing Wang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore 119074, Singapore.,Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.,Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| |
Collapse
|