1
|
Tang K, Ye T, He Y, Ba X, Xia D, Peng E, Chen Z, Ye Z, Yang X. Ferroptosis, necroptosis, and pyroptosis in calcium oxalate crystal-induced kidney injury. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167791. [PMID: 40086520 DOI: 10.1016/j.bbadis.2025.167791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/24/2025] [Accepted: 03/04/2025] [Indexed: 03/16/2025]
Abstract
Kidney stones represent a highly prevalent urological disorder worldwide, with high incidence and recurrence rates. Calcium oxalate (CaOx) crystal-induced kidney injury serves as the foundational mechanism for the formation and progression of CaOx stones. Regulated cell death (RCD) such as ferroptosis, necroptosis, and pyroptosis are essential in the pathophysiological process of kidney injury. Ferroptosis, a newly discovered RCD, is characterized by its reliance on iron-mediated lipid peroxidation. Necroptosis, a widely studied programmed necrosis, initiates with a necrotic phenotype that resembles apoptosis in appearance. Pyroptosis, a type of RCD that involves the gasdermin protein, is accompanied by inflammation and immune response. In recent years, increasing amounts of evidence has demonstrated that ferroptosis, necroptosis, and pyroptosis are significant pathophysiological processes involved in CaOx crystal-induced kidney injury. Herein, we summed up the roles of ferroptosis, necroptosis, and pyroptosis in CaOx crystal-induced kidney injury. Furthermore, we delved into the curative potential of ferroptosis, necroptosis, and pyroptosis in CaOx crystal-induced kidney injury.
Collapse
Affiliation(s)
- Kun Tang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Ye
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu He
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaozhuo Ba
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ding Xia
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ejun Peng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiqiang Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhangqun Ye
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoqi Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
2
|
Zhou C, Luo Z, Zhang Z, Ye Q, Wang D, Meng H, Zhang J, Zhu S, Hu L, Mao J. Screening and Identification of Novel DNA Aptamer for Targeted Delivery to Injured Podocytes in Glomerular Diseases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412356. [PMID: 40178289 PMCID: PMC12120727 DOI: 10.1002/advs.202412356] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 02/28/2025] [Indexed: 04/05/2025]
Abstract
Selective drug delivery to podocytes remains a challenge. Aptamers, nucleic acids that bind specific cells, offer a potential solution, though podocyte-targeting aptamers have not yet been developed. Podocytes stimulated with adriamycin, puromycin aminonucleoside, and high glucose are used to screen an single-stranded DNA (ssDNA) library (10¹⁵ sequences). High-throughput sequencing identifies nucleotide sequences, and the aptamer's affinity, stability, cytotoxicity, uptake, biodistribution (especially to podocyte), target protein and ability to deliver siRNA are evaluated. After 11-14 rounds of selection, high-affinity pools are identified. Sequencing reveals 23,848 unique sequences, narrowed down to 12 candidates. Aptamer S7 is specifically bound to podocytes, and its truncated version, RLS-2, demonstrates superior affinity (50-70 nM) and improved stability with phosphorothioate modifications. RLS-2 exhibits no significant cytotoxicity, is internalized by podocytes, and localized to lysosomes. In adriamycin-induced and diabetic nephropathy mice, RLS-2 preferentially accumulates within glomeruli. Its specificity to podocyte is verified by colocalization examination and quantitated via flowcytometry. EPB41L5 is identified as a target protein. Aptamer-siRNA chimeras based on RLS-2 successfully downregulate gene expression without the need for transfection reagents in vitro. These findings underscore the potential of RLS-2 as a promising agent for the development of podocyte-targeted drug delivery systems.
Collapse
Affiliation(s)
- Chao Zhou
- Department of NephrologyChildren's HospitalNational Clinical Research Center for Child HealthZhejiang University School of MedicineHangzhou310052China
- Liangzhu LaboratoryZhejiang University School of MedicineHangzhou310058China
| | - Zhaofeng Luo
- The Key Laboratory of Zhejiang Province for Aptamers and TheranosticAptamer Selection CenterHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
| | - Zheng Zhang
- The Key Laboratory of Zhejiang Province for Aptamers and TheranosticAptamer Selection CenterHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
| | - Qing Ye
- Department of NephrologyChildren's HospitalNational Clinical Research Center for Child HealthZhejiang University School of MedicineHangzhou310052China
| | - Dongjie Wang
- Department of NephrologyChildren's HospitalNational Clinical Research Center for Child HealthZhejiang University School of MedicineHangzhou310052China
| | - Hanyan Meng
- Department of NephrologyChildren's HospitalNational Clinical Research Center for Child HealthZhejiang University School of MedicineHangzhou310052China
| | - Jiayu Zhang
- Department of NephrologyChildren's HospitalNational Clinical Research Center for Child HealthZhejiang University School of MedicineHangzhou310052China
| | - Shifan Zhu
- Department of NephrologyChildren's HospitalNational Clinical Research Center for Child HealthZhejiang University School of MedicineHangzhou310052China
| | - Lidan Hu
- Department of NephrologyChildren's HospitalNational Clinical Research Center for Child HealthZhejiang University School of MedicineHangzhou310052China
| | - Jianhua Mao
- Department of NephrologyChildren's HospitalNational Clinical Research Center for Child HealthZhejiang University School of MedicineHangzhou310052China
- Liangzhu LaboratoryZhejiang University School of MedicineHangzhou310058China
| |
Collapse
|
3
|
Zhang Y, Wang L, Yang X, Fan L, Li Y, Zhu F, Zhu A, Du S, Min H, Qi Y. LRG1-Targeted Nintedanib Delivery for Enhanced Renal Fibrosis Mitigation. NANO LETTERS 2024; 24:11097-11107. [PMID: 39185720 DOI: 10.1021/acs.nanolett.4c03315] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Renal fibrosis lacks effective nephroprotective drugs in clinical settings due to poor accumulation of therapeutic agents in damaged kidneys, underscoring the urgent need for advanced renal-targeted delivery systems. Herein, we exploited the significantly increased expression of the leucine-rich α-2 glycoprotein 1 (LRG1) protein during renal fibrosis to develop a novel drug delivery system. Our engineered nanocarrier, DENNM, preferentially targets fibrotic kidneys via the decorated ET peptide's high affinity for LRG1. Once internalized by damaged renal cells, DENNM releases its encapsulated nintedanib, triggered by the active caspase-3 protease, disrupting the nanomedicine's structural integrity. The released nintedanib effectively reduces the level of expression of the extracellular matrix and impedes the progression of renal fibrosis by inhibiting the transforming growth factor-β (TGF-β)-Smad2/3 pathway. Our comprehensive in vitro and in vivo studies validate DENNM's antifibrotic efficacy, emphasizing LRG1's potential in renal targeted drug delivery and introducing an innovative approach to nanomedicine for treating renal fibrosis.
Collapse
Affiliation(s)
- Yana Zhang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450003, China
| | - Longdi Wang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450003, China
| | - Xi Yang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450003, China
| | - Linyao Fan
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450003, China
| | - Yongzheng Li
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Furong Zhu
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Anying Zhu
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Shengnan Du
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Huan Min
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450003, China
| | - Yingqiu Qi
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
4
|
Gu XR, Tai YF, Liu Z, Zhang XY, Liu K, Zhou LY, Yin WJ, Deng YX, Kong DL, Midgley AC, Zuo XC. Layer-by-Layer Assembly of Renal-Targeted Polymeric Nanoparticles for Robust Arginase-2 Knockdown and Contrast-Induced Acute Kidney Injury Prevention. Adv Healthc Mater 2024; 13:e2304675. [PMID: 38688026 DOI: 10.1002/adhm.202304675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/27/2024] [Indexed: 05/02/2024]
Abstract
The mitochondrial enzyme arginase-2 (Arg-2) is implicated in the pathophysiology of contrast-induced acute kidney injury (CI-AKI). Therefore, Arg-2 represents a candid target for CI-AKI prevention. Here, layer-by-layer (LbL) assembled renal-targeting polymeric nanoparticles are developed to efficiently deliver small interfering RNA (siRNA), knockdown Arg-2 expression in renal tubules, and prevention of CI-AKI is evaluated. First, near-infrared dye-loaded poly(lactic-co-glycolic acid) (PLGA) anionic cores are electrostatically coated with cationic chitosan (CS) to facilitate the adsorption and stabilization of Arg-2 siRNA. Next, nanoparticles are coated with anionic hyaluronan (HA) to provide protection against siRNA leakage and shielding against early clearance. Sequential electrostatic layering of CS and HA improves loading capacity of Arg-2 siRNA and yields LbL-assembled nanoparticles. Renal targeting and accumulation is enhanced by modifying the outermost layer of HA with a kidney targeting peptide (HA-KTP). The resultant kidney-targeting and siRNA loaded nanoparticles (PLGA/CS/HA-KTP siRNA) exhibit proprietary accumulation in kidneys and proximal tubular cells at 24 h post-tail vein injection. In iohexol-induced in vitro and in vivo CI-AKI models, PLGA/CS/HA-KTP siRNA delivery alleviates oxidative and nitrification stress, and rescues mitochondrial dysfunction while reducing apoptosis, thereby demonstrating a robust and satisfactory therapeutic effect. Thus, PLGA/CS/HA-KTP siRNA nanoparticles offer a promising candidate therapy to protect against CI-AKI.
Collapse
Affiliation(s)
- Xu-Rui Gu
- Department of Pharmacy, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Yi-Fan Tai
- Key Laboratory of Bioactive Materials for the Ministry of Education and State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Zhen Liu
- Key Laboratory of Bioactive Materials for the Ministry of Education and State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xin-Yan Zhang
- Key Laboratory of Bioactive Materials for the Ministry of Education and State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Kun Liu
- Department of Pharmacy, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Ling-Yun Zhou
- Department of Pharmacy, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Wen-Jun Yin
- Department of Pharmacy, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Yi-Xuan Deng
- Department of Pharmacy, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - De-Ling Kong
- Key Laboratory of Bioactive Materials for the Ministry of Education and State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Adam C Midgley
- Key Laboratory of Bioactive Materials for the Ministry of Education and State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xiao-Cong Zuo
- Department of Pharmacy, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| |
Collapse
|
5
|
Lu B, Wei L, Shi G, Du J. Nanotherapeutics for Alleviating Anesthesia-Associated Complications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308241. [PMID: 38342603 PMCID: PMC11022745 DOI: 10.1002/advs.202308241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/22/2023] [Indexed: 02/13/2024]
Abstract
Current management of anesthesia-associated complications falls short in terms of both efficacy and safety. Nanomaterials with versatile properties and unique nano-bio interactions hold substantial promise as therapeutics for addressing these complications. This review conducts a thorough examination of the existing nanotherapeutics and highlights the strategies for developing prospective nanomedicines to mitigate anesthetics-related toxicity. Initially, general, regional, and local anesthesia along with the commonly used anesthetics and related prevalent side effects are introduced. Furthermore, employing nanotechnology to prevent and alleviate the complications of anesthetics is systematically demonstrated from three aspects, that is, developing 1) safe nano-formulization for anesthetics; 2) nano-antidotes to sequester overdosed anesthetics and alter their pharmacokinetics; 3) nanomedicines with pharmacodynamic activities to treat anesthetics toxicity. Finally, the prospects and challenges facing the clinical translation of nanotherapeutics for anesthesia-related complications are discussed. This work provides a comprehensive roadmap for developing effective nanotherapeutics to prevent and mitigate anesthesia-associated toxicity, which can potentially revolutionize the management of anesthesia complications.
Collapse
Affiliation(s)
- Bin Lu
- Department of AnesthesiologyThird Hospital of Shanxi Medical UniversityShanxi Bethune HospitalShanxi Academy of Medical SciencesTongji Shanxi HospitalTaiyuan030032China
- Key Laboratory of Cellular Physiology at Shanxi Medical UniversityMinistry of EducationTaiyuanShanxi Province030001China
| | - Ling Wei
- Shanxi Bethune Hospital Center Surgery DepartmentShanxi Academy of Medical SciencesTongji Shanxi HospitalThird Hospital of Shanxi Medical UniversityTaiyuan030032China
| | - Gaoxiang Shi
- Department of AnesthesiologyThird Hospital of Shanxi Medical UniversityShanxi Bethune HospitalShanxi Academy of Medical SciencesTongji Shanxi HospitalTaiyuan030032China
| | - Jiangfeng Du
- Key Laboratory of Cellular Physiology at Shanxi Medical UniversityMinistry of EducationTaiyuanShanxi Province030001China
- Department of Medical ImagingShanxi Key Laboratory of Intelligent Imaging and NanomedicineFirst Hospital of Shanxi Medical UniversityTaiyuanShanxi Province030001China
| |
Collapse
|
6
|
Sun J, Zhao X, Shen H, Dong J, Rong S, Cai W, Zhang R. CD44-targeted melanin-based nanoplatform for alleviation of ischemia/reperfusion-induced acute kidney injury. J Control Release 2024; 368:1-14. [PMID: 38367863 DOI: 10.1016/j.jconrel.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/24/2024] [Accepted: 02/14/2024] [Indexed: 02/19/2024]
Abstract
Ischemia/reperfusion (I/R)-induced acute kidney injury (AKI) is a serious kidney disease with high morbidity and mortality. However, there is no effective clinical treatment strategy. Herein, we developed a CD44 targeting nanoplatform based on HA-assembled melanin NPs covalently coupled with dexamethasone for I/R-induced AKI therapy by alleviating oxidative/inflammatory- induced damage. The constructed HA-MNP-DXM NPs had good dispersion, stability, and broad-spectrum scavenging capabilities against multiple reactive free radicals. Moreover, the NPs could be efficiently internalized and exhibited antioxidative, anti-inflammatory, and antiapoptotic effects in CoCl2-stimulated renal tubular epithelial NRK-52E cells. Furthermore, the I/R-induced AKI murine model was established to evaluate the in vivo performance of NPs. The results suggested the NPs could specifically target impaired kidneys upon intravenous administration according to NIR-II fluorescence imaging and showed high biosafety. Importantly, the NPs could improve renal function, alleviate oxidative stress and inflammatory reactions, inhibit apoptosis of tubular cells, and restore mitochondrial structure and function, exhibiting excellent therapeutic effects. Further therapeutic mechanism indicated the NPs maintained the cellular/mitochondrial redox balance by modulating the Nrf2 and HO-1 expression. Therefore, the NPs can be a promising therapeutic candidate for the treatment of I/R-induced AKI.
Collapse
Affiliation(s)
- Jinghua Sun
- First Hospital of Shanxi Medical University, Taiyuan, 030001, China; Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Xuhui Zhao
- First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Hao Shen
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, China
| | - Jie Dong
- Shanxi Medical University, Taiyuan, 030001, China
| | - Shuo Rong
- Shanxi Medical University, Taiyuan, 030001, China
| | - Wenwen Cai
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Ruiping Zhang
- The Radiology Department of Shanxi Provincial People' Hospital, Five Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
7
|
Liu D, Song Y, Chen H, You Y, Zhu L, Zhang J, Xu X, Hu J, Huang X, Wu X, Xu X, Jiang S, Du Y. Anti-VEGFR2 F(ab') 2 drug conjugate promotes renal accumulation and glomerular repair in diabetic nephropathy. Nat Commun 2023; 14:8268. [PMID: 38092739 PMCID: PMC10719340 DOI: 10.1038/s41467-023-43847-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 11/22/2023] [Indexed: 12/17/2023] Open
Abstract
Poor renal distribution of antibody-based drugs is the key factor contributing to low treatment efficiency for renal diseases and side effects. Here, we prepare F(ab')2 fragmented vascular endothelial growth factor receptor 2 antibody (anti-VEGFR2 (F(ab')2) to block VEGFR2 overactivation in diabetic nephropathy (DN). We find that the anti-VEGFR2 F(ab')2 has a higher accumulation in DN male mice kidneys than the intact VEGFR2 antibody, and simultaneously preserves the binding ability to VEGFR2. Furthermore, we develop an antibody fragment drug conjugate, anti-VEGFR2 F(ab')2-SS31, comprising the anti-VEGFR2 F(ab')2 fragment linked to the mitochondria-targeted antioxidant peptide SS31. We find that introduction of SS31 potentiates the efficacy of anti-VEGFR2 F(ab')2. These findings provide proof of concept for the premise that antibody fragment drug conjugate improves renal distribution and merits drug validation in renal disease therapy.
Collapse
Affiliation(s)
- Di Liu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Yanling Song
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Hui Chen
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Yuchan You
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Luwen Zhu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Jucong Zhang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Xinyi Xu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Jiahao Hu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Xiajie Huang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Xiaochuan Wu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Xiaoling Xu
- Shulan International Medical College, Zhejiang Shuren University, 310015, Hangzhou, China.
| | - Saiping Jiang
- Department of Pharmacy, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, Hangzhou, China.
| | - Yongzhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China.
- Innovation Center of Translational Pharmacy, Jinhua Institute of Zhejiang University, 321299, Jinhua, China.
| |
Collapse
|
8
|
Fang H, Xu S, Wang Y, Yang H, Su D. Endogenous stimuli-responsive drug delivery nanoplatforms for kidney disease therapy. Colloids Surf B Biointerfaces 2023; 232:113598. [PMID: 37866237 DOI: 10.1016/j.colsurfb.2023.113598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/10/2023] [Accepted: 10/14/2023] [Indexed: 10/24/2023]
Abstract
Kidney disease is one of the most life-threatening health problems, affecting millions of people in the world. Commonly used steroids and immunosuppressants often fall exceptionally short of outcomes with inescapable systemic toxicity. With the booming research in nanobiotechnology, stimuli-responsive nanoplatform has come an appealing therapeutic strategy for kidney disease. Endogenous stimuli-responsive materials have shown profuse promise owing to their enhanced spatiotemporal control and precise to the location of the lesion. This review focuses on recent advances stimuli-responsive drug delivery nano-architectonics for kidney disease. First, a brief introduction of pathogenesis of kidney disease and pathological microenvironment were provided. Then, various endogenous stimulus involved in drug delivery nanoplatforms including pH, ROS, enzymes, and glucose were categorized based on the pathological mechanisms of kidney disease. Next, we separately summarized literature examples of endogenous stimuli-responsive nanomaterials, and outlined the design strategies and response mechanisms. Finally, the paper was concluded by discussing remaining challenges and future perspectives of endogenous stimuli-responsive drug delivery nanoplatform for expediting the speed of development and clinical applications.
Collapse
Affiliation(s)
- Hufeng Fang
- Department of Pharmacy, the Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213100, China.
| | - Shan Xu
- Department of Pharmacy, the Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213100, China
| | - Yu Wang
- Department of Pharmacy, the Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213100, China
| | - Hao Yang
- Department of Pharmacy, the Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213100, China
| | - Dan Su
- Department of Pharmacy, the Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213100, China.
| |
Collapse
|
9
|
Yang Y, Nan Y, Chen Q, Xiao Z, Zhang Y, Zhang H, Huang Q, Ai K. Antioxidative 0-dimensional nanodrugs overcome obstacles in AKI antioxidant therapy. J Mater Chem B 2023; 11:8081-8095. [PMID: 37540219 DOI: 10.1039/d3tb00970j] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Acute kidney injury (AKI) is a commonly encountered syndrome associated with various aetiologies and pathophysiological processes leading to enormous health risks and economic losses. In the absence of specific drugs to treat AKI, hemodialysis remains the primary clinical treatment for AKI patients. The revelation of the pathology opens new horizons for antioxidant therapy in the treatment of AKI. However, small molecule antioxidant drugs and common nanozymes have failed to challenge AKI due to their unsatisfactory drug properties and renal physiological barriers. 0-Dimensional (0D) antioxidant nanodrugs stand out at this time thanks to their small size and high performance. Recently, a number of research studies have been carried out around 0D nanodrugs for alleviating AKI, and their multi-antioxidant enzyme mimetic activities, smooth glomerular filtration barrier permeability and excellent biocompatibility have been investigated. Here, we comprehensively summarize recent advances in 0D nanodrugs for AKI antioxidant therapy. We classify these representative studies into three categories according to the characteristics of 0D nanomaterials, namely ultra-small metal nanodots, inorganic non-metallic quantum dots and polymer nanodots. We focus on the antioxidant mechanisms and their distribution in vivo in each inspiring work, and the purpose and ingenuity of each design are rigorously captured and described. Finally, we provide our reflections and prospects for 0D antioxidant nanodrugs in AKI treatment. This mini review provides unique insights and valuable clues in the design of 0D nanodrugs and other kidney absorbable drugs.
Collapse
Affiliation(s)
- Yuqi Yang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yayun Nan
- Geriatric Medical Center, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750002, China
| | - Qiaohui Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China.
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Zuoxiu Xiao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China.
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Yuntao Zhang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China.
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Huanan Zhang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China.
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Qiong Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China.
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| |
Collapse
|
10
|
Wang Y, Jiang H, Zhang L, Yao P, Wang S, Yang Q. Nanosystems for oxidative stress regulation in the anti-inflammatory therapy of acute kidney injury. Front Bioeng Biotechnol 2023; 11:1120148. [PMID: 36845189 PMCID: PMC9949729 DOI: 10.3389/fbioe.2023.1120148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Acute kidney injury (AKI) is a clinical syndrome that results from a rapid decline in renal structure or renal functional impairment with the main pathological feature of sublethal and lethal damage to renal tubular cells. However, many potential therapeutic agents cannot achieve the desired therapeutic effect because of their poor pharmacokinetics and short retention time in the kidneys. With the recent emergence and progress of nanotechnology, nanodrugs with unique physicochemical properties could prolong circulation time, enhance efficient targeted delivery, and elevate the accumulation of therapeutics that can cross the glomerular filtration barrier and indicate comprehensive application prospects in the prevention and treatment of AKI. In this review, various types of nanosystems (such as liposomes, polymeric nanosystems, inorganic nanoparticles and cell-derived extracellular vesicles) are designed and applied to improve the pharmacokinetics of drug formation, which could further relieve the burden on the kidneys caused by the final cumulative dose of drugs in conventional treatments. Moreover, the passive or active targeting effect of nanosystems can also reduce the total therapeutic dose and off-target adverse effects on other organs. Nanodelivery systems for treating AKI that alleviate oxidative stress-induced renal cell damage and regulate the inflammatory kidney microenvironment are summarized.
Collapse
Affiliation(s)
- Yue Wang
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China,Center of Scientific Research, Chengdu Medical College, Chengdu, Sichuan, China
| | - Hong Jiang
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China,Center of Scientific Research, Chengdu Medical College, Chengdu, Sichuan, China
| | - Longyao Zhang
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China,Center of Scientific Research, Chengdu Medical College, Chengdu, Sichuan, China
| | - Peng Yao
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China
| | - Shaoqing Wang
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China,*Correspondence: Shaoqing Wang, ; Qian Yang,
| | - Qian Yang
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China,Center of Scientific Research, Chengdu Medical College, Chengdu, Sichuan, China,*Correspondence: Shaoqing Wang, ; Qian Yang,
| |
Collapse
|
11
|
|
12
|
L-Serine-Modified Poly-L-Lysine as a Biodegradable Kidney-Targeted Drug Carrier for the Efficient Radionuclide Therapy of Renal Cell Carcinoma. Pharmaceutics 2022; 14:pharmaceutics14091946. [PMID: 36145694 PMCID: PMC9503061 DOI: 10.3390/pharmaceutics14091946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 12/02/2022] Open
Abstract
In the present study, L-serine (Ser)-modified poly-L-lysine (PLL) was synthesized to develop a biodegradable, kidney-targeted drug carrier for efficient radionuclide therapy in renal cell carcinoma (RCC). Ser-PLL was labeled with 111In/90Y via diethylenetriaminepentaacetic acid (DTPA) chelation for biodistribution analysis/radionuclide therapy. In mice, approximately 91% of the total dose accumulated in the kidney 3 h after intravenous injection of 111In-labeled Ser-PLL. Single-photon emission computed tomography/computed tomography (SPECT/CT) imaging showed that 111In-labeled Ser-PLL accumulated in the renal cortex following intravenous injection. An intrarenal distribution study showed that fluorescein isothiocyanate (FITC)-labeled Ser-PLL accumulated mainly in the renal proximal tubules. This pattern was associated with RCC pathogenesis. Moreover, 111In-labeled Ser-PLL rapidly degraded and was eluted along with the low-molecular-weight fractions of the renal homogenate in gel filtration chromatography. Continuous Ser-PLL administration over five days had no significant effect on plasma creatinine, blood urea nitrogen (BUN), or renal histology. In a murine RCC model, kidney tumor growth was significantly inhibited by the administration of the beta-emitter 90Y combined with Ser-PLL. The foregoing results indicate that Ser-PLL is promising as a biodegradable drug carrier for kidney-targeted drug delivery and efficient radionuclide therapy in RCC.
Collapse
|
13
|
Zeng H, Gao Y, Yu W, Liu J, Zhong C, Su X, Wen S, Liang H. Pharmacological Inhibition of STING/TBK1 Signaling Attenuates Myeloid Fibroblast Activation and Macrophage to Myofibroblast Transition in Renal Fibrosis. Front Pharmacol 2022; 13:940716. [PMID: 35924048 PMCID: PMC9340478 DOI: 10.3389/fphar.2022.940716] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/23/2022] [Indexed: 11/16/2022] Open
Abstract
Renal fibrosis is an important pathological biomarker of chronic kidney disease (CKD). Stimulator of interferon genes/TANK binding kinase 1 (STING/TBK1) axis has been identified as the main regulator of innate immune response and closely related to fibrotic disorder. However, the role of STING/TBK1 signaling pathway in kidney fibrosis is still unknown. In this study, we investigated the effect of pharmacological inhibition of STING/TBK1 signaling on renal fibrosis induced by folic acid (FA). In mice, TBK1 was significantly activated in interstitial cells of FA-injured kidneys, which was markedly inhibited by H-151 (a STING inhibitor) treatment. Specifically, pharmacological inhibition of STING impaired bone marrow-derived fibroblasts activation and macrophage to myofibroblast transition in folic acid nephropathy, leading to reduction of extracellular matrix proteins expression, myofibroblasts formation and development of renal fibrosis. Furthermore, pharmacological inhibition of TBK1 by GSK8612 reduced myeloid myofibroblasts accumulation and impeded macrophage to myofibroblast differentiation, resulting in less deposition of extracellular matrix protein and less severe fibrotic lesion in FA-injured kidneys. In cultured mouse bone marrow-derived monocytes, TGF-β1 activated STING/TBK1 signaling. This was abolished by STING or TBK1 inhibitor administration. In addition, GSK8612 treatment decreased levels of α-smooth muscle actin and extracellular matrix proteins and prevents bone marrow-derived macrophages to myofibroblasts transition in vitro. Collectively, our results revealed that STING/TBK1 signaling has a critical role in bone marrow-derived fibroblast activation, macrophages to myofibroblasts transition, and kidney fibrosis progression.
Collapse
Affiliation(s)
- Haimei Zeng
- Department of Anesthesiology, Foshan Women and Children Hospital, Foshan, China
- The First Clinical Medical College, Guangdong Medical University, Zhanjiang, China
- Department of Anesthesiology, Huidong People’s Hospital, Huizhou, China
| | - Ying Gao
- Department of Anesthesiology, The First People’s Hospital of Foshan, Foshan, China
| | - Wenqiang Yu
- Department of Anesthesiology, The First People’s Hospital of Foshan, Foshan, China
| | - Jiping Liu
- Department of Anesthesiology, Foshan Women and Children Hospital, Foshan, China
| | - Chaoqun Zhong
- Department of Anesthesiology, The First People’s Hospital of Foshan, Foshan, China
| | - Xi Su
- Department of Paediatrics, Foshan Women and Children Hospital, Foshan, China
- *Correspondence: Xi Su, ; Hua Liang,
| | - Shihong Wen
- Department of Anesthesiology, The First Affiliated Hospital of SUN YAT-SEN University, Guangzhou, China
| | - Hua Liang
- Department of Anesthesiology, Foshan Women and Children Hospital, Foshan, China
- The First Clinical Medical College, Guangdong Medical University, Zhanjiang, China
- *Correspondence: Xi Su, ; Hua Liang,
| |
Collapse
|
14
|
Davis G, Kurse A, Agarwal A, Sheikh-Hamad D, Kumar MNVR. Nano-encapsulation strategies to circumvent drug-induced kidney injury and targeted nanomedicines to treat kidney diseases. CURRENT OPINION IN TOXICOLOGY 2022. [DOI: 10.1016/j.cotox.2022.100346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Renal Nano-drug delivery for acute kidney Injury: Current status and future perspectives. J Control Release 2022; 343:237-254. [PMID: 35085695 DOI: 10.1016/j.jconrel.2022.01.033] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/11/2022]
Abstract
Acute kidney injury (AKI) causes considerable morbidity and mortality, particularly in the case of post-cardiac infarction or kidney transplantation; however, the site-specific accumulation of small molecule reno-protective agents for AKI has often proved ineffective due to dynamic fluid and solute excretion and non-selectivity, which impedes therapeutic efficacy. This article reviews the current status and future trajectories of renal nanomedicine research for AKI management from pharmacological and clinical perspectives, with a particular focus on appraising nanosized drug carrier (NDC) use for the delivery of reno-protective agents of different pharmacological classes and the effectiveness of NDCs in improving renal tissue targeting selectivity and efficacy of said agents. This review reveals the critical shift in the role of the small molecule reno-protective agents in AKI pharmacotherapy - from prophylaxis to treatment - when using NDCs for delivery to the kidney. We also highlight the need to identify the accumulation sites of NDCs carrying reno-protective agents in renal tissues during in vivo assessments and detail the less-explored pharmacological classes of reno-protective agents whose efficacies may be improved via NDC-based delivery. We conclude the paper by outlining the challenges and future perspectives of NDC-based reno-protective agent delivery for better clinical management of AKI.
Collapse
|