1
|
Guo Y, Wang H, Zhu Q, Mao Y, Wen X, Zhang X, Mao S, Yuan H, Guan J. Exploration of enalapril-lacidipine co-amorphous system with superior dissolution, in vivo absorption and physical stability via incorporated into mesoporous silica. Eur J Pharm Sci 2025; 207:107033. [PMID: 39921148 DOI: 10.1016/j.ejps.2025.107033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 01/17/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
In the present study, enalapril (ENP) was taking as a potential co-former to fabricate co-amorphous system with lacidipine (LCDP). The ENP/LCDP co-amorphous system was firstly prepared with or without mesoporous SiO2 and characterized by DSC, XRD and SEM technologies. The potential molecular interactions were evaluated by FTIR spectrums. Furthermore, the dissolution and pharmacokinetics behavior of various formulations were also carried out. It was demonstrated that the completely co-amorphization was obtained at ENP/LCDP 2:1 molar ratio by the intermolecular interactions between ENP and LCDP. The ENP/LCDP co-amorphous system significantly improve the dissolution rate of LCDP and ENP respectively. Compared to the naked ENP/LCDP co-amorphous system, remarkable enhancement of dissolution rate and bioavailability of model drugs was observed by incorporated the co-amorphous system into mesoporous SiO2, and a superior physical stability was also observed after accelerated study. Raman mapping revealed that the less microstructure phase separation could be the main reason for the better stability in presence of mesoporous SiO2. In conclusion, ENP could be successfully used as a potential co-former to fabricate co-amorphous system with poorly water-soluble drugs and collaborates the co-amorphous with mesoporous SiO2 become a promising strategy to achieve stable amorphous formulation for further enhancement of dissolution rate and bioavailability.
Collapse
Affiliation(s)
- Yuhan Guo
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hanyu Wang
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qiang Zhu
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Ying Mao
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiangce Wen
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xin Zhang
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China
| | - Shirui Mao
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China
| | - Huiya Yuan
- Department of Forensic Analytical Toxicology, China Medical University School of Forensic Medicine, Shenyang 110112, China; Liaoning Province Key Laboratory of Forensic Bio-evidence Science, Shenyang 110112, China; China Medical University Center of Forensic Investigation, Shenyang 110112, China.
| | - Jian Guan
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China.
| |
Collapse
|
2
|
Volitaki C, Lewis A, Craig DQM, Buanz A. Electrospraying as a Means of Loading Itraconazole into Mesoporous Silica for Enhanced Dissolution. Pharmaceutics 2024; 16:1102. [PMID: 39204447 PMCID: PMC11359385 DOI: 10.3390/pharmaceutics16081102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/27/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Mesoporous silica particles (MSPs) have been investigated as potential carriers to increase the apparent solubility and dissolution rate of poorly water-soluble drugs by physically stabilising the amorphous nature of the loaded drug. In preparing such systems, it is recognized that the loading method has a critical impact on the physical state and performance of the drug. To date, there has been very limited investigation into the use of electrospraying for loading drugs into mesoporous silica. In this study, we further explore the use of this approach, in particular as a means of producing amorphous and high drug-loaded MSPs; the study includes an investigation of the effect of drug loading and MSP concentration on the formulation performance and process. A comparison with rotary evaporation, a more widely utilised loading technique, was conducted to assess the relative effectiveness of electrospraying. The physical state of the drug in the formulations was assessed using powder X-ray diffraction (PXRD) and differential scanning calorimetry (DSC). The drug release profiles were determined by a comparative in vitro drug release test. Electrospraying successfully produced formulations containing amorphous drug even at a high drug loading. In contrast, while itraconazole was present in amorphous form at the lower drug-loaded formulations produced by rotary evaporation, the drug was in the crystalline state at the higher loadings. The percentage of drug released was enhanced up to ten times compared to that of pure itraconazole for all the formulations apart from the highest loaded (crystalline) formulation prepared by rotary evaporation. Supersaturation for at least six hours was maintained by the formulations loaded with up to 30 mg/mL itraconazole produced by electrospraying. Overall, the results of this study demonstrate that electrospraying is capable of producing amorphous drug-loaded MSPs at high loadings, with associated favourable release characteristics. A comparison with the standard rotary evaporation approach indicates that electrospraying may be more effective for the production of higher loadings of amorphous material.
Collapse
Affiliation(s)
- Charitini Volitaki
- School of Pharmacy, Faculty of Life Sciences, UCL, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Andrew Lewis
- Quotient Sciences, Mere Way, Ruddington, Nottingham NG11 6JS, UK
| | - Duncan Q. M. Craig
- Faculty of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK;
| | - Asma Buanz
- School of Pharmacy, Faculty of Life Sciences, UCL, 29-39 Brunswick Square, London WC1N 1AX, UK
- School of Science, Faculty of Engineering and Science, University of Greenwich, Gillingham ME4 4TB, UK
| |
Collapse
|
3
|
Budiman A, Wardhana YW, Ainurofiq A, Nugraha YP, Qaivani R, Hakim SNAL, Aulifa DL. Drug-Coformer Loaded-Mesoporous Silica Nanoparticles: A Review of the Preparation, Characterization, and Mechanism of Drug Release. Int J Nanomedicine 2024; 19:281-305. [PMID: 38229702 PMCID: PMC10790662 DOI: 10.2147/ijn.s449159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/19/2023] [Indexed: 01/18/2024] Open
Abstract
Drug-coformer systems, such as coamorphous and cocrystal, are gaining recognition as highly effective strategies for enhancing the stability, solubility, and dissolution of drugs. These systems depend on the interactions between drug and coformer to prevent the conversion of amorphous drugs into the crystalline form and improve the solubility. Furthermore, mesoporous silica (MPS) is also a promising carrier commonly used for stabilization, leading to solubility improvement of poorly water-soluble drugs. The surface interaction of drug-MPS and the nanoconfinement effect prevent amorphous drugs from crystallizing. A novel method has been developed recently, which entails the loading of drug-coformer into MPS to improve the solubility, dissolution, and physical stability of the amorphous drug. This method uses the synergistic effects of drug-coformer interactions and the nanoconfinement effect within MPS. Several studies have reported successful incorporation of drug-coformer into MPS, indicating the potential for significant improvement in dissolution characteristics and physical stability of the drug. Therefore, this study aimed to discuss the preparation and characterization of drug-coformer within MPS, particularly the interaction in the nanoconfinement, as well as the impact on drug release and physical stability.
Collapse
Affiliation(s)
- Arif Budiman
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, West Java45363, Indonesia
| | - Yoga Windhu Wardhana
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, West Java45363, Indonesia
| | - Ahmad Ainurofiq
- Pharmaceutical Technology and Drug Delivery, Department of Pharmacy, Universitas Sebelas Maret, Surakarta, Central Java, 57126, Indonesia
| | - Yuda Prasetya Nugraha
- School of Pharmacy, Bandung Institute of Technology, Bandung, West Java, 40132, Indonesia
| | - Ridhatul Qaivani
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, West Java, 45363, Indonesia
| | - Siti Nazila Awaliyyah Lukmanul Hakim
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, West Java, 45363, Indonesia
| | - Diah Lia Aulifa
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, West Java, 45363, Indonesia
| |
Collapse
|
4
|
D’Abbrunzo I, Procida G, Perissutti B. Praziquantel Fifty Years on: A Comprehensive Overview of Its Solid State. Pharmaceutics 2023; 16:27. [PMID: 38258039 PMCID: PMC10821272 DOI: 10.3390/pharmaceutics16010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
This review discusses the entire progress made on the anthelmintic drug praziquantel, focusing on the solid state and, therefore, on anhydrous crystalline polymorphs, amorphous forms, and multicomponent systems (i.e., hydrates, solvates, and cocrystals). Despite having been extensively studied over the last 50 years, new polymorphs and the greater part of their cocrystals have only been identified in the past decade. Progress in crystal engineering science (e.g., the use of mechanochemistry as a solid form screening tool and more strategic structure-based methods), along with the development of analytical techniques, including Synchrotron X-ray analyses, spectroscopy, and microscopy, have furthered the identification of unknown crystal structures of the drug. Also, computational modeling has significantly contributed to the prediction and design of new cocrystals by considering structural conformations and interactions energy. Whilst the insights on praziquantel polymorphs discussed in the present review will give a significant contribution to controlling their formation during manufacturing and drug formulation, the detailed multicomponent forms will help in designing and implementing future praziquantel-based functional materials. The latter will hopefully overcome praziquantel's numerous drawbacks and exploit its potential in the field of neglected tropical diseases.
Collapse
Affiliation(s)
| | | | - Beatrice Perissutti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy (G.P.)
| |
Collapse
|
5
|
Nowak M, Dyba AJ, Gołkowska AM, Nieckarz A, Krajewska K, Malec K, Iuga D, Karolewicz B, Khimyak YZ, Nartowski KP. Probing fluconazole deposition inside mesoporous silica using solid-state NMR spectroscopy: Crystallization of a confined metastable form and phase transformations under storage conditions. Int J Pharm 2023; 645:123403. [PMID: 37716486 DOI: 10.1016/j.ijpharm.2023.123403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/08/2023] [Accepted: 09/09/2023] [Indexed: 09/18/2023]
Abstract
Encapsulation of molecules into mesoporous silica carriers continues to attract considerable interest in the area of drug delivery and crystal engineering. Here, MCM-41, SBA-15 and MCF silica matrices were used to encapsulate fluconazole (FLU), a pharmaceutically relevant molecule with known conformational flexibility, using the melting method. The composites have been characterized using 1H, 13C and 19F NMR spectroscopy, nitrogen adsorption, PXRD and thermal analysis (DSC, TGA). Drug loading up to 50 wt% allowed us to probe the crystallization process and to detect different local environments of confined FLU molecules. 19F NMR spectroscopy enabled us to detect the gradual pore filling of silica with FLU and differentiate the amorphous domains and surface species. The use of the complementary structural and thermal techniques enabled us to monitor crystallization of the metastable FLU form II in MCF. Using 1H and 19F NMR spectroscopy we observed pore-size dependent reversible dehydration/hydration behaviour in the MCM and SBA composites. As water content has considerable importance in understanding of physicochemical stability and shelf-life of pharmaceutical formulations, experimental evidence of the effect of API-water-carrier interactions on the API adsorption mechanism on silica surface is highlighted.
Collapse
Affiliation(s)
- Maciej Nowak
- Department of Drug Form Technology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Aleksandra J Dyba
- Department of Drug Form Technology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; Institute of Pharmacy, University of Innsbruck, Innrain 52c, 6020 Innsbruck, Austria
| | - Anna M Gołkowska
- Department of Drug Form Technology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Aleksandra Nieckarz
- Department of Drug Form Technology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Karolina Krajewska
- Department of Drug Form Technology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Katarzyna Malec
- Department of Drug Form Technology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Dinu Iuga
- Department of Physics, University of Warwick, CV4 7AL Coventry, United Kingdom
| | - Bożena Karolewicz
- Department of Drug Form Technology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Yaroslav Z Khimyak
- School of Pharmacy, University of East Anglia, Norwich Research Park, NR4 7TJ Norwich, United Kingdom.
| | - Karol P Nartowski
- Department of Drug Form Technology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; School of Pharmacy, University of East Anglia, Norwich Research Park, NR4 7TJ Norwich, United Kingdom
| |
Collapse
|
6
|
Wang Y, Li F, Xin J, Xu J, Yu G, Shi Q. Mesoporous Drug Delivery System: From Physical Properties of Drug in Solid State to Controlled Release. Molecules 2023; 28:molecules28083406. [PMID: 37110638 PMCID: PMC10145233 DOI: 10.3390/molecules28083406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Mesoporous materials, which exhibit great potential in the control of polymorphs and delivery of poorly water-soluble drugs, have obtained considerable attention in the field of pharmaceutical science. The physical properties and release behaviors of amorphous or crystalline drugs may be affected by formulating them into mesoporous drug delivery systems. In the past few decades, an increasing amount of papers have been written about mesoporous drug delivery systems, which play a crucial role in improving the properties of drugs. Herein, mesoporous drug delivery systems are comprehensively reviewed in terms of their physicochemical characteristics, control of polymorphic forms, physical stability, in vitro performance, and in vivo performance. Moreover, the challenges and strategies of developing robust mesoporous drug delivery systems are also discussed.
Collapse
Affiliation(s)
- Yanan Wang
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
- School of Pharmacy, Faculty of Health and Medical Science, Taylor's University, Subang Jaya 47500, Malaysia
| | - Fang Li
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| | - Junbo Xin
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| | - Jia Xu
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| | - Guanghua Yu
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| | - Qin Shi
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| |
Collapse
|
7
|
Cappuccino C, Spoletti E, Renni F, Muntoni E, Keiser J, Voinovich D, Perissutti B, Lusi M. Co-Crystalline Solid Solution Affords a High-Soluble and Fast-Absorbing Form of Praziquantel. Mol Pharm 2023; 20:2009-2016. [PMID: 36884008 PMCID: PMC10074383 DOI: 10.1021/acs.molpharmaceut.2c00984] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Praziquantel (PZQ) is a chiral class-II drug, and it is used as a racemate for the treatment of schistosomiasis. The knowledge of several cocrystals with dicarboxylic acids has prompted the realization of solid solutions of PZQ with both enantiomers of malic acid and tartaric acid. Here, the solid form landscape of such a six-component system has been investigated. In the process, two new cocrystals were structural-characterized and three non-stoichiometric, mixed crystal forms identified and isolated. Thermal and solubility analysis indicates a fourfold solubility advantage for the newly prepared solid solutions over the pure drug. In addition, a pharmacokinetic study was conducted in rats, which involved innovative mini-capsules for the oral administration of the solid samples. The available data indicate that the faster dissolution rate of the solid solutions translates in faster absorption of the drug and helps maintain a constant steady-state concentration.
Collapse
Affiliation(s)
- Chiara Cappuccino
- Department of Chemical Science and Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Enrico Spoletti
- Department of Chemical Science and Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Fiammetta Renni
- Department of Chemical Science and Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland.,Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy
| | - Elisabetta Muntoni
- Department of Drug Science and Technology, University of Turin, 10129 Turin, Italy
| | - Jennifer Keiser
- Department of Medical Parasitology, Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland.,University of Basel, Basel 4003 Switzerland
| | - Dario Voinovich
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy
| | - Beatrice Perissutti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy
| | - Matteo Lusi
- Department of Chemical Science and Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| |
Collapse
|