1
|
Serag E, El-Fakharany EM, Hammad SF, El-Khouly ME. Metal-organic framework MIL-101(Fe) functionalized with folic acid as a multifunctional nanocarrier for targeted chemotherapy-photodynamic therapy. Biomater Sci 2025; 13:2351-2367. [PMID: 40099560 DOI: 10.1039/d4bm01738b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
A novel folic acid-conjugated, iron-based MOF (MIL-101(Fe)) loaded with 1,8-acridinediones (DO8) was developed for targeted photodynamic therapy (PDT) of HepG-2 cells. This composite aims to trigger an anticancer response through sequential PDT and chemotherapy. The nanocomposite exhibited high stability in a physiological environment with a pH of 7.4. It was also able to release DO8 continuously in an acidic environment with a pH of 5, which shows that it can adapt to the conditions in the tumor microenvironment. The MIL-101(Fe)MOF-FA@DO8 nanoparticles (NPs) with 30% and 50% DO8 have been studied in vitro under different conditions (light and dark) and have been shown to be compatible with living tissues and specifically target HepG-2 cells. The IC50 values of 50% DO8 and 30% DO8 loaded MOF-FA were found to be 88.67 and 105.9 μg mL-1 under dark conditions, respectively. Under light conditions, they demonstrated the highest efficacy in inhibiting tumor cell growth. The IC50 values were found to be 8.94 and 11.78 μg mL-1. Flow cytometry analysis of annexin V/PI-stained apoptotic and necrotic cells in HepG-2 cells treated with the modified MIL-101-FA@50% DO8 NPs at IC50 doses under both dark and light conditions indicates that the primary mechanism of cell death is necrosis, likely due to the enhanced formation of reactive oxygen species (ROS) under light conditions compared to that under dark conditions. This increased reactive oxygen species (ROS) generation leads to extensive membrane rupture, resulting in significant cell damage after treatment with the modified MIL-101-FA@50% DO8 NPs. These findings underscore the potential of this nanocomposite as an effective PDT agent for targeted cancer therapy.
Collapse
Affiliation(s)
- Eman Serag
- Nanoscience Program, Institute of Basic and Applied Science, Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City, Alexandria, Egypt.
- Marine Pollution Department, Environmental Division, National Institute of Oceanography and Fisheries, Kayet Bey, Elanfoushy, Alexandria, Egypt
| | - Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria 21934, Egypt
- Pharmaceutical and Fermentation Industries Development Centre (PFIDC), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria, Egypt
- Pharos University in Alexandria; Canal El Mahmoudia Street, Beside Green Plaza Complex 21648, Alexandria, Egypt
| | - Sherif F Hammad
- PharmD program, Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City, Alexandria, Egypt
| | - Mohamed E El-Khouly
- Nanoscience Program, Institute of Basic and Applied Science, Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City, Alexandria, Egypt.
| |
Collapse
|
2
|
Nishimura K, Kono N, Oshige A, Takahashi H, Yamana K, Kawasaki R, Ikeda A. Improving the Photodynamic Activity of Water-Soluble Porphyrin-Polysaccharide Complexes by Folic Acid Modification. ChemMedChem 2024; 19:e202400268. [PMID: 38924356 DOI: 10.1002/cmdc.202400268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/12/2024] [Accepted: 06/26/2024] [Indexed: 06/28/2024]
Abstract
Studies have shown that folate receptors are highly expressed in various cancer cells. Here, we synthesized folic acid-conjugated pullulan (FAPL) as a solubilizing agent to improve the photodynamic activity of porphyrin derivative-polysaccharide complexes. The porphyrin derivative-FAPL complex exhibited long-term stability in an aqueous solution, attributed to the folic acid modification. Furthermore, in vitro and in vivo experiments highlighted the enhanced photodynamic activity of the porphyrin derivative-FAPL complex toward 4T1 breast-cancer cells, compared with the activities of the porphyrin derivative-pullulan complex and Photofrin. This enhanced activity is attributed to the improvement of intracellular uptake by the folate receptor.
Collapse
Affiliation(s)
- Kotaro Nishimura
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, 739-8527, Hiroshima, Japan
| | - Nanami Kono
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, 739-8527, Hiroshima, Japan
| | - Ayano Oshige
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, 739-8527, Hiroshima, Japan
| | - Haruko Takahashi
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526, Hiroshima, Japan
| | - Keita Yamana
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, 739-8527, Hiroshima, Japan
| | - Riku Kawasaki
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, 739-8527, Hiroshima, Japan
| | - Atsushi Ikeda
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, 739-8527, Hiroshima, Japan
| |
Collapse
|
3
|
Guido MC, Lopes NDM, Albuquerque CI, Tavares ER, Jensen L, Carvalho PDO, Tavoni TM, Dias RR, Pereira LDV, Laurindo FRM, Maranhão RC. Treatment With Methotrexate Associated With Lipid Core Nanoparticles Prevents Aortic Dilation in a Murine Model of Marfan Syndrome. Front Cardiovasc Med 2022; 9:893774. [PMID: 35757348 PMCID: PMC9226570 DOI: 10.3389/fcvm.2022.893774] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
In Marfan syndrome (MFS), dilation, dissection, and rupture of the aorta occur. Inflammation can be involved in the pathogenicity of aortic defects and can thus be a therapeutic target for MFS. Previously, we showed that the formulation of methotrexate (MTX) associated with lipid nanoparticles (LDE) has potent anti-inflammatory effects without toxicity. To investigate whether LDEMTX treatment can prevent the development of aortic lesions in the MFS murine model. MgΔloxPneo MFS (n = 40) and wild-type (WT, n = 60) mice were allocated to 6 groups weekly injected with IP solutions of: (1) only LDE; (2) commercial MTX; (3) LDEMTX (dose = 1mg/kg) between 3rd and 6th months of life. After 12 weeks of treatments, animals were examined by echocardiography and euthanatized for morphometric and molecular studies. MFS mice treated with LDEMTX showed narrower lumens in the aortic arch, as well as in the ascending and descending aorta. LDEMTX reduced fibrosis and the number of dissections in MFS but not the number of elastic fiber disruptions. In MFS mice, LDEMTX treatment lowered protein expression of pro-inflammatory factors macrophages (CD68), T-lymphocytes (CD3), tumor necrosis factor-α (TNF-α), apoptotic factor cleaved-caspase 3, and type 1 collagen and lowered the protein expression of the transforming growth factor-β (TGF-β), extracellular signal-regulated kinases ½ (ERK1/2), and SMAD3. Protein expression of CD68 and CD3 had a positive correlation with an area of aortic lumen (r2 = 0.36; p < 0.001), suggesting the importance of inflammation in the causative mechanisms of aortic dilation. Enhanced adenosine availability by LDEMTX was suggested by higher aortic expression of an anti-adenosine A2a receptor (A2a) and lower adenosine deaminase expression. Commercial MTX had negligible effects. LDEMTX prevented the development of MFS-associated aortic defects and can thus be a candidate for testing in clinical studies.
Collapse
Affiliation(s)
- Maria Carolina Guido
- Laboratory of Metabolism and Lipids, Heart Institute (InCor) of the Medical School Hospital, University of São Paulo, São Paulo, Brazil
| | - Natalia de Menezes Lopes
- Laboratory of Metabolism and Lipids, Heart Institute (InCor) of the Medical School Hospital, University of São Paulo, São Paulo, Brazil
| | - Camila Inagaki Albuquerque
- Laboratory of Metabolism and Lipids, Heart Institute (InCor) of the Medical School Hospital, University of São Paulo, São Paulo, Brazil
| | - Elaine Rufo Tavares
- Laboratory of Metabolism and Lipids, Heart Institute (InCor) of the Medical School Hospital, University of São Paulo, São Paulo, Brazil
| | - Leonardo Jensen
- Laboratory of Hypertension, Heart Institute (InCor) of the Medical School Hospital, University of São Paulo, São Paulo, Brazil
| | - Priscila de Oliveira Carvalho
- Laboratory of Metabolism and Lipids, Heart Institute (InCor) of the Medical School Hospital, University of São Paulo, São Paulo, Brazil
| | - Thauany Martins Tavoni
- Laboratory of Metabolism and Lipids, Heart Institute (InCor) of the Medical School Hospital, University of São Paulo, São Paulo, Brazil
| | - Ricardo Ribeiro Dias
- Department of Cardiovascular Surgery, Heart Institute (InCor), Medical School Hospital, University of São Paulo, São Paulo, Brazil
| | - Lygia da Veiga Pereira
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | | | - Raul Cavalcante Maranhão
- Laboratory of Metabolism and Lipids, Heart Institute (InCor) of the Medical School Hospital, University of São Paulo, São Paulo, Brazil
- *Correspondence: Raul Cavalcante Maranhão
| |
Collapse
|
4
|
Hao BB, Deng XZ, Yang JK, Jia YD, Shang XJ, Shi YL, Yan XQ. Preparation of Folic Conjugated Magnetic Silica Mesoporous Nanoparticles and Their Encapsulated 10-HCPT Anticancer Behavior. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02338-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|