1
|
Richlitzki C, Manapov F, Holzgreve A, Rabe M, Werner RA, Belka C, Unterrainer M, Eze C. Advances of PET/CT in Target Delineation of Lung Cancer Before Radiation Therapy. Semin Nucl Med 2025; 55:190-201. [PMID: 40064578 DOI: 10.1053/j.semnuclmed.2025.02.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 03/17/2025]
Abstract
In the clinical management of lung cancer, radiotherapy remains a cornerstone of multimodal treatment strategies, often used alongside surgery or in combination with systemic therapies such as chemotherapy, tyrosine kinase inhibitors, and immune checkpoint inhibitors. While conventional imaging modalities like computed tomography (CT) and magnetic resonance imaging (MRI) continue to play a central role in staging, response assessment, and radiotherapy planning, advanced imaging techniques, particularly [18F]FDG PET/CT, are being increasingly integrated into routine clinical practice. These advanced techniques address the limitations of standard imaging by providing insight into molecular and metabolic tumor characteristics, enabling precise tumor visualization, accurate target volume delineation, and early treatment response assessment. This review examines the role of radiotherapy in the multidisciplinary management of lung cancer, detailing current concepts of morphological and functional imaging for staging and treatment planning. It also highlights the growing importance of PET-based radiotherapy planning, emphasizing its contributions to target volume definition and predictive value for treatment outcomes. Recent methodological advances, including the integration of artificial intelligence (AI), radiomics, technical innovations, and novel PET ligands, are discussed, highlighting their potential to improve the precision, efficacy, and personalization of lung cancer radiotherapy planning.
Collapse
Affiliation(s)
- Cedric Richlitzki
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Farkhad Manapov
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Adrien Holzgreve
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany; Ahmanson Translational Theranostics Division, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Moritz Rabe
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Rudolf Alexander Werner
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany; The Russell H Morgan Department of Radiology and Radiological Science, Division of Nuclear Medicine and Molecular Imaging, Johns Hopkins School of Medicine, Baltimore, MD
| | - Claus Belka
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany; German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany; Comprehensive Pneumology Center Munich, Member of the German Center for Lung Research, Munich, Germany; Bavarian Cancer Research Center, Munich, Germany
| | - Marcus Unterrainer
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany; Die Radiologie, Munich, Germany
| | - Chukwuka Eze
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany.
| |
Collapse
|
2
|
He S, Jia L, Zheng X, Wang Y, Liu Y, Zhang L. Preliminary Research of Radiolabeled Atezolizumab for the Noninvasive Evaluation of TNBC PD-L1 Expression In Vivo. J Labelled Comp Radiopharm 2024; 67:384-391. [PMID: 39210726 DOI: 10.1002/jlcr.4122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/23/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Programmed death-ligand 1 (PD-L1) expression is related to the efficacy and prognosis in triple-negative breast cancer. This study employed an indirect labeling method to synthesize [125I]PI-Atezolizumab. The in vitro stability of [125I]PI-Atezolizumab was assessed through incubation in phosphate buffered saline and fetal bovine serum, revealing sustained stability. Specific binding of [125I]PI-Atezolizumab to MDA-MB-231 cells expressing humanized PD-L1 was assessed through in vitro incubation, yielding a Kd value comparable to that of Atezolizumab. This suggests that the labeling process did not compromise the affinity of the Atezolizumab to PD-L1. Subsequently, pharmacokinetic studies were conducted in normal mice and biodistribution experiments in tumor-bearing mice. A comparison of the biodistribution results between [125I]PI-Atezolizumab and 125I-labeled Atezolizumab indicated better in vivo stability for the former. Single photon emission computed tomography (SPECT)/CT imaging further confirmed the targeted specificity of [125I]PI-Atezolizumab for PD-L1 in MDA-MB-231 xenografts, which were validated by immunohistochemistry staining. This research underscores the utility of [125I]PI-Atezolizumab, prepared via indirect labeling, for monitoring PD-L1 in triple-negative breast cancer models.
Collapse
Affiliation(s)
- Shuhua He
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lina Jia
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | - Xiaobei Zheng
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yang Wang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuxia Liu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | - Lan Zhang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
- Shanghai Vista Pharmaceutical Technology Co., Ltd, Shanghai, China
| |
Collapse
|
3
|
Fan M, Yao J, Zhao Z, Zhang X, Lu J. Application of 99mTc-Labeled WL12 Peptides as a Tumor PD-L1-Targeted SPECT Imaging Agent: Kit Formulation, Preclinical Evaluation, and Study on the Influence of Coligands. Pharmaceuticals (Basel) 2024; 17:906. [PMID: 39065756 PMCID: PMC11279916 DOI: 10.3390/ph17070906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
With the development of PD-1/PD-L1 immune checkpoint inhibitor therapy, the ability to monitor PD-L1 expression in the tumor microenvironment is important for guiding therapy. This study was performed to develop a novel radiotracer with optimal pharmacokinetic properties to reflect PD-L1 expression in vivo via single-photon emission computed tomography (SPECT) imaging. [99mTc]Tc-HYNIC-WL12-tricine/M (M = TPPTS, PDA, ISONIC, 4-PSA) complexes with high radiochemical purity (>97%) and suitable molar activity (from 100.5 GBq/μmol to 300 GBq/μmol) were prepared through a kit preparation process. All 99mTc-labeled HYNIC-WL12 radiotracers displayed good in vitro stability for 4 h. The affinity and specificity of the four radiotracers for PD-L1 were demonstrated both in vitro and in vivo. The results of biodistribution studies displayed that the pharmacokinetics of the 99mTc-HYNIC-conjugated radiotracers were significantly influenced by the coligands of the radiotracers. Among them, [99mTc]Tc-HYNIC-WL12-tricine/ISONIC exhibited the optimal pharmacokinetic properties (t1/2α = 8.55 min, t1/2β = 54.05 min), including the fastest clearance in nontarget tissues, highest tumor-to-background contrast (e.g., tumor-to-muscle ratio, tumor-to-blood ratio: 40.42 ± 1.59, 14.72 ± 2.77 at 4 h p.i., respectively), and the lowest estimated radiation absorbed dose, highlighting its potential as a clinical SPECT imaging probe for tumor PD-L1 detection.
Collapse
Affiliation(s)
- Mingxuan Fan
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China; (M.F.)
| | - Jingjing Yao
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China; (M.F.)
| | - Zuoquan Zhao
- Theranostics and Translational Research Center, Institute of Clinical Medicine, Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Xianzhong Zhang
- Theranostics and Translational Research Center, Institute of Clinical Medicine, Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Jie Lu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China; (M.F.)
| |
Collapse
|
4
|
Li Z, Yang H, Li X, She T, Tao Z, Zhong Y, Su T, Feng Y, Shi Q, Li L, Tian R, Wang S, Cheng J, Cai H, Lu X. Platelet-derived growth factor receptor β-targeted positron emission tomography imaging for the noninvasive monitoring of liver fibrosis. Eur J Nucl Med Mol Imaging 2024; 51:1530-1543. [PMID: 38189910 DOI: 10.1007/s00259-023-06577-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/15/2023] [Indexed: 01/09/2024]
Abstract
PURPOSE Noninvasive quantifying activated hepatic stellate cells (aHSCs) by molecular imaging is helpful for assessing disease progression and therapeutic responses of liver fibrosis. Our purpose is to develop platelet-derived growth factor receptor β (PDGFRβ)-targeted radioactive tracer for assessing liver fibrosis by positron emission tomography (PET) imaging of aHSCs. METHODS Comparative transcriptomics, immunofluorescence staining and flow cytometry were used to evaluate PDGFRβ as biomarker for human aHSCs and determine the correlation of PDGFRβ with the severity of liver fibrosis. The high affinity affibody for PDGFRβ (ZPDGFRβ) was labeled with gallium-68 (68Ga) for PET imaging of mice with carbon tetrachloride (CCl4)-induced liver fibrosis. Binding of the [68Ga]Ga-labeled ZPDGFRβ ([68Ga]Ga-DOTA-ZPDGFRβ) for aHSCs in human liver tissues was measured by autoradiography. RESULTS PDGFRβ overexpressed in aHSCs was highly correlated with the severity of liver fibrosis in patients and CCl4-treated mice. The 68Ga-labeled ZPDGFRβ affibody ([68Ga]Ga-DOTA-ZPDGFRβ) showed PDGFRβ-dependent binding to aHSCs. According to the PET imaging, hepatic uptake of [68Ga]Ga-DOTA-ZPDGFRβ increased with the accumulation of aHSCs and collagens in the fibrotic livers of mice. In contrast, hepatic uptake of [68Ga]Ga-DOTA-ZPDGFRβ decreased with spontaneous recovery or treatment of liver fibrosis, indicating that the progression and therapeutic responses of liver fibrosis in mice could be visualized by PDGFRβ-targeted PET imaging. [68Ga]Ga-DOTA-ZPDGFRβ also bound human aHSCs and visualized fibrosis in patient-derived liver tissues. CONCLUSIONS PDGFRβ is a reliable biomarker for both human and mouse aHSCs. PDGFRβ-targeted PET imaging could be used for noninvasive monitoring of liver fibrosis in mice and has great potential for clinical translation.
Collapse
Affiliation(s)
- Zhao Li
- Department of Nuclear Medicine, NHC Key Lab of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Nuclear Medicine , West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hao Yang
- Department of Nuclear Medicine, NHC Key Lab of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Sichuan Provincial Engineering Laboratory of Pathology in Clinical Application, West China Hospital, Sichuan University, Chengdu, 610041, China
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xin Li
- Department of Nuclear Medicine , West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Tianshan She
- Department of Nuclear Medicine, NHC Key Lab of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ze Tao
- Department of Nuclear Medicine, NHC Key Lab of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Sichuan Provincial Engineering Laboratory of Pathology in Clinical Application, West China Hospital, Sichuan University, Chengdu, 610041, China
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yi Zhong
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics , West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Tao Su
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics , West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yanru Feng
- Department of Nuclear Medicine, NHC Key Lab of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiuxiao Shi
- Department of Nuclear Medicine, NHC Key Lab of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lin Li
- Department of Nuclear Medicine , West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rong Tian
- Department of Nuclear Medicine , West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shisheng Wang
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics , West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jingqiu Cheng
- Department of Nuclear Medicine, NHC Key Lab of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Sichuan Provincial Engineering Laboratory of Pathology in Clinical Application, West China Hospital, Sichuan University, Chengdu, 610041, China
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Huawei Cai
- Department of Nuclear Medicine , West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Xiaofeng Lu
- Department of Nuclear Medicine, NHC Key Lab of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Sichuan Provincial Engineering Laboratory of Pathology in Clinical Application, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
5
|
Zhu S, Liang B, Zhou Y, Chen Y, Fu J, Qiu L, Lin J. Development of novel peptide-based radiotracers for detecting PD-L1 expression and guiding cancer immunotherapy. Eur J Nucl Med Mol Imaging 2024; 51:625-640. [PMID: 37878029 DOI: 10.1007/s00259-023-06480-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/15/2023] [Indexed: 10/26/2023]
Abstract
PURPOSE Due to tumor heterogeneity, immunohistochemistry (IHC) showed poor accuracy in detecting the expression of programmed cell death ligand-1 (PD-L1) in patients. Positron emission tomography (PET) imaging is considered as a non-invasive technique to detect PD-L1 expression at the molecular level visually, real-timely and quantitatively. This study aimed to develop novel peptide-based radiotracers [68Ga]/[18F]AlF-NOTA-IMB for accurately detecting the PD-L1 expression and guiding the cancer immunotherapy. METHODS NOTA-IMB was prepared by connecting 2,2'-(7-(2-((2,5-dioxopyrrolidin-1-yl)oxy)- 2-oxoethyl)-1,4,7-triazonane-1,4-diyl) diacetic acid (NOTA-NHS) with PD-L1-targeted peptide IMB, and further radiolabeled with 68Ga or 18F-AlF. In vitro binding assay was conducted to confirm the ability of [68Ga]/[18F]AlF-NOTA-IMB to detect the expression of PD-L1. In vivo PET imaging of [68Ga]NOTA-IMB and [18F]AlF-NOTA-IMB in different tumor-bearing mice was performed, and dynamic changes of PD-L1 expression level induced by immunotherapy were monitored. Radioautography, western blotting, immunofluorescence staining and biodistribution analysis were carried out to further evaluate the specificity of radiotracers and efficacy of PD-L1 antibody immunotherapy. RESULTS [68Ga]NOTA-IMB and [18F]AlF-NOTA-IMB were both successfully prepared with high radiochemical yield (> 95% and > 60%, n = 5) and radiochemical purity (> 95% and > 98%, n = 5). Both tracers showed high affinity to human and murine PD-L1 with the dissociation constant (Kd) of 1.00 ± 0.16/1.09 ± 0.21 nM (A375-hPD-L1, n = 3) and 1.56 ± 0.58/1.21 ± 0.39 nM (MC38, n = 3), respectively. In vitro cell uptake assay revealed that both tracers can specifically bind to PD-L1 positive cancer cells A375-hPD-L1 and MC38 (5.45 ± 0.33/3.65 ± 0.15%AD and 5.87 ± 0.27/2.78 ± 0.08%AD at 120 min, n = 3). In vivo PET imaging and biodistribution analysis showed that the tracer [68Ga]NOTA-IMB and [18F]AlF-NOTA-IMB had high accumulation in A375-hPD-L1 and MC38 tumors, but low uptake in A375 tumor. Treatment of Atezolizumab induced dynamic changes of PD-L1 expression in MC38 tumor-bearing mice, and the tumor uptake of [68Ga]NOTA-IMB decreased from 3.30 ± 0.29%ID/mL to 1.58 ± 0.29%ID/mL (n = 3, P = 0.026) after five treatments. Similarly, the tumor uptake of [18F]AlF-NOTA-IMB decreased from 3.27 ± 0.63%ID/mL to 0.89 ± 0.18%ID/mL (n = 3, P = 0.0004) after five treatments. However, no significant difference was observed in the tumor uptake before and after PBS treatment. Biodistribution, radioautography, western blotting and immunofluorescence staining analysis further demonstrated that the expression level of PD-L1 in tumor-bearing mice treated with Atezolizumab significantly reduced about 3 times and correlated well with the PET imaging results. CONCLUSION [68Ga]NOTA-IMB and [18F]AlF-NOTA-IMB were successfully prepared for PET imaging the PD-L1 expression noninvasively and quantitatively. Dynamic changes of PD-L1 expression caused by immunotherapy can be sensitively detected by both tracers. Hence, the peptide-based radiotracers [68Ga]NOTA-IMB and [18F]AlF-NOTA-IMB can be applied for accurately detecting the PD-L1 expression in different tumors and monitoring the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Shiyu Zhu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Beibei Liang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China
| | - Yuxuan Zhou
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Yinfei Chen
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Jiayu Fu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Ling Qiu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China.
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
| | - Jianguo Lin
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China.
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
6
|
Qin S, Yang Y, Zhang J, Yin Y, Liu W, Zhang H, Fan X, Yang M, Yu F. Effective Treatment of SSTR2-Positive Small Cell Lung Cancer Using 211At-Containing Targeted α-Particle Therapy Agent Which Promotes Endogenous Antitumor Immune Response. Mol Pharm 2023; 20:5543-5553. [PMID: 37788300 PMCID: PMC10630944 DOI: 10.1021/acs.molpharmaceut.3c00427] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/15/2023] [Accepted: 09/15/2023] [Indexed: 10/05/2023]
Abstract
Small cell lung cancer (SCLC) is a neuroendocrine tumor with a high degree of malignancy. Due to limited treatment options, patients with SCLC have a poor prognosis. We have found, however, that intravenously administered octreotide (Oct) armed with astatine-211 ([211At]SAB-Oct) is effective against a somatostatin receptor 2 (SSTR2)-positive SCLC tumor in SCLC tumor-bearing BALB/c nude mice. In biodistribution analysis, [211At]SAB-Oct achieved the highest concentration in the SCLC tumors up to 3 h after injection as time proceeded. A single intravenous injection of [211At]SAB-Oct (370 kBq) was sufficient to suppress SSTR2-positive SCLC tumor growth in treated mice by inducing DNA double-strand breaks. Additionally, a multitreatment course (370 kBq followed by twice doses of 370 kBq for a total of 1110 kBq) inhibited the growth of the tumor compared to the untreated control group without significant off-target toxicity. Surprisingly, we found that [211At]SAB-Oct could up-regulate the expressions of calreticulin and major histocompatibility complex I (MHC-I) on the tumor cell membrane surface, suggesting that α-particle internal irradiation may activate an endogenous antitumor immune response through the regulation of immune cells in the tumor microenvironment, which could synergically enhance the efficacy of immunotherapy. We conclude that [211At]SAB-Oct is a potential new therapeutic option for SSTR2-positive SCLC.
Collapse
Affiliation(s)
- Shanshan Qin
- Department
of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, People’s Republic of China
- Institute
of Nuclear Medicine, Tongji University School
of Medicine, No. 301
Yan-chang-zhong Road, Shanghai 200072, People’s Republic
of China
| | - Yuanyou Yang
- Key
Laboratory of Radiation Physics and Technology, Ministry of Education,
Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, People’s
Republic of China
| | - Jiajia Zhang
- Department
of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, People’s Republic of China
- Institute
of Nuclear Medicine, Tongji University School
of Medicine, No. 301
Yan-chang-zhong Road, Shanghai 200072, People’s Republic
of China
| | - Yuzhen Yin
- Department
of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, People’s Republic of China
- Institute
of Nuclear Medicine, Tongji University School
of Medicine, No. 301
Yan-chang-zhong Road, Shanghai 200072, People’s Republic
of China
| | - Weihao Liu
- Key
Laboratory of Radiation Physics and Technology, Ministry of Education,
Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, People’s
Republic of China
| | - Han Zhang
- Department
of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, People’s Republic of China
- Institute
of Nuclear Medicine, Tongji University School
of Medicine, No. 301
Yan-chang-zhong Road, Shanghai 200072, People’s Republic
of China
| | - Xin Fan
- Department
of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, People’s Republic of China
- Institute
of Nuclear Medicine, Tongji University School
of Medicine, No. 301
Yan-chang-zhong Road, Shanghai 200072, People’s Republic
of China
| | - Mengdie Yang
- Department
of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, People’s Republic of China
- Institute
of Nuclear Medicine, Tongji University School
of Medicine, No. 301
Yan-chang-zhong Road, Shanghai 200072, People’s Republic
of China
| | - Fei Yu
- Department
of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, People’s Republic of China
- Institute
of Nuclear Medicine, Tongji University School
of Medicine, No. 301
Yan-chang-zhong Road, Shanghai 200072, People’s Republic
of China
| |
Collapse
|
7
|
Hu X, Lv G, Hua D, Zhang N, Liu Q, Qin S, Zhang L, Xi H, Qiu L, Lin J. Preparation and Bioevaluation of 18F-Labeled Small-Molecular Radiotracers via Sulfur(VI) Fluoride Exchange Chemistry for Imaging of Programmed Cell Death Protein Ligand 1 Expression in Tumors. Mol Pharm 2023; 20:4228-4235. [PMID: 37409670 DOI: 10.1021/acs.molpharmaceut.3c00355] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Nowadays, one of the most effective methods of tumor immunotherapy is blocking programmed cell death protein 1/programmed cell death protein ligand 1 (PD-1/PD-L1) immune checkpoints. However, there is still a significant challenge in selecting patients to benefit from immune checkpoint therapies. Positron emission tomography (PET), a noninvasive molecular imaging technique, offers a new approach to accurately detect PD-L1 expression and allows for a better prediction of response to PD-1/PD-L1 target immunotherapy. Here, we designed and synthesized a novel group of aryl fluorosulfate-containing small-molecule compounds (LGSu-1, LGSu-2, LGSu-3, and LGSu-4) based on the phenoxymethyl-biphenyl scaffold. After screening by the time-resolved fluorescence resonance energy transfer (TR-FRET) assay, the most potent compound LGSu-1 (half maximal inhibitory concentration (IC50): 15.53 nM) and the low-affinity compound LGSu-2 (IC50: 189.70 nM) as a control were selected for 18F-radiolabeling by sulfur(VI) fluoride exchange chemistry (SuFEx) to use for PET imaging. [18F]LGSu-1 and [18F]LGSu-2 were prepared by a one-step radiofluorination reaction in over 85% radioconversion and nearly 30% radiochemical yield. In B16-F10 melanoma cell assays, [18F]LGSu-1 (5.00 ± 0.06%AD) showed higher cellular uptake than [18F]LGSu-2 (2.55 ± 0.04%AD), in which cell uptake could be significantly blocked by the nonradioactivity LGSu-1. In vivo experiments, micro-PET imaging of B16-F10 tumor-bearing mice and radiographic autoradiography of tumor sections showed that [18F]LGSu-1 was more effectively accumulated in the tumor due to the higher binding affinity with PD-L1. The above experimental results confirmed the potential of the small-molecule probe LGSu-1 as a targeting PD-L1 imaging tracer in tumor tissues.
Collapse
Affiliation(s)
- Xin Hu
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Gaochao Lv
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Di Hua
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Nan Zhang
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Qingzhu Liu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Shuai Qin
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Lixia Zhang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Hongjie Xi
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Ling Qiu
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Jianguo Lin
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| |
Collapse
|
8
|
Cheng Y, Shi D, Ye R, Fu W, Ma P, Si Z, Xu Z, Li L, Lin Q, Cheng D. Noninvasive evaluation of PD-L1 expression in non-small cell lung cancer by immunoPET imaging using an acylating agent-modified antibody fragment. Eur J Nucl Med Mol Imaging 2023; 50:1585-1596. [PMID: 36759371 DOI: 10.1007/s00259-023-06130-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/26/2023] [Indexed: 02/11/2023]
Abstract
PURPOSE The aim of this study was to explore an effective 124I labeling strategy and improve the signal-to-noise ratio when evaluating the expression of PD-L1 using an 124I-iodinated durvalumab (durva) F(ab')2 fragment. METHODS The prepared durva F(ab')2 fragments were incubated with N-succinimidyl-3-(4-hydroxyphenyl) propionate (SHPP); after purification, the HPP-durva F(ab')2 was iodinated using Iodo-Gen method. After the radiochemical purity, stability, and specific activities were determined, the binding affinities of probes prepared using different labeling strategies were compared in vitro. The clinical application value of [124I]I-HPP-durva-F(ab')2 was confirmed by PET imaging. To more objectively evaluate the in vivo distribution and clearance of tracers, the pharmacokinetics and biodistribution assays were also performed. RESULTS After being modified with SHPP, the average conjugation number of SHPP per durva-F(ab')2 identified by LC-MS was about 8.92 ± 2.84. The prepared [124I]I-HPP-durva F(ab')2 was obtained with a satisfactory radiochemical purity of more than 98% and stability of more than 93% when incubated for 72 h. Compared with unmodified [124I]I-durva F(ab')2, the specific activity of [124I]I-HPP-durva-F(ab')2 was improved (52.91 ± 5.55 MBq/mg and 15.91 ± 0.74 MBq/mg), while the affinity did not significantly change. The biodistribution experiments and PET imaging showed that the prepared [124I]I-HPP-durva-F(ab')2 exhibited an accelerated clearance and improved tumor-to-background ratio compared with [124I]I-durva-F(ab')2. The specificity of [124I]I-HPP-durva-F(ab')2 to PD-L1 was well demonstrated both in vitro and in vivo. CONCLUSIONS A PD-L1 PET imaging probe [124I]I-HPP-durva F(ab')2 was successfully synthesized through the SHPP modification strategy. The prepared probe was able to accurately evaluate the PD-L1 expression level through high-contrast noninvasive imaging.
Collapse
Affiliation(s)
- Yuan Cheng
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
| | - Dai Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
| | - Renjie Ye
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
| | - Wenhui Fu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
| | - Pengcheng Ma
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
| | - Zhan Si
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
| | - Zhan Xu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
| | - Lixin Li
- Department of Hepatic Oncology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
| | - Qingyu Lin
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China. .,Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, China. .,Shanghai Institute of Medical Imaging, Shanghai, 200032, China.
| | - Dengfeng Cheng
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China. .,Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, China. .,Shanghai Institute of Medical Imaging, Shanghai, 200032, China.
| |
Collapse
|
9
|
Manapov F, Eze C, Holzgreve A, Käsmann L, Nieto A, Taugner J, Unterrainer M. PET/CT for Target Delineation of Lung Cancer Before Radiation Therapy. Semin Nucl Med 2022; 52:673-680. [PMID: 35781392 DOI: 10.1053/j.semnuclmed.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 11/11/2022]
Abstract
In clinical routine of patients suffering from lung cancer, radiotherapy/radiation oncology represents one of the therapeutic hallmarks in the multimodal treatment besides or in combination with other local treatments such as surgery, but also systemic treatments such as chemotherapy, tyrosine kinase, and immune check-point inhibitors. Conventional morphological imagings such as CT or MR are commonly used for staging, response assessment, but also for radiotherapy planning. However, advanced imaging techniques such as PET do continuously get increasing access to clinical routine overcoming limitations of standard imaging techniques by visualizing and quantifying molecular processes such as glucose metabolism, which is also of relevance for radiotherapy planning. This review article summarizes the current place of radiotherapy within the treatment regimens of patients with lung cancer and elucidates current concepts of standard morphological imaging for staging and radiotherapy planning. Moreover, the place of PET-based radiotherapy planning in a clinical context is presented and current methodological/technical advances that do comprise a potential role for radiotherapy planning in lung cancer patients are discussed.
Collapse
Affiliation(s)
- Farkhad Manapov
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Chukwuka Eze
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Adrien Holzgreve
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Lukas Käsmann
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Alexander Nieto
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Julian Taugner
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Marcus Unterrainer
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany.
| |
Collapse
|
10
|
Li D, Wang F, Jiang J, Hou X, Ding J, Wang Z, Chen Y, Liu T, Yang Z, Zhu H. Construction of an Iodine-Labeled CS1001 Antibody for Targeting PD-L1 Detection and Comparison with Low-Molecular-Peptide Micro-PET Imaging. Mol Pharm 2022; 19:4382-4389. [PMID: 36268880 DOI: 10.1021/acs.molpharmaceut.2c00789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Programmed death-1 (PD-1) and programmed death ligand-1 (PD-L1), the research focus in immune checkpoint regulation, play an important role in tumor immunotherapy. Inhibitors of this pathway are also the focus of tumor immunotherapy research. The PD-1/PD-L1 pathway can be blocked by selective binding to PD-L1. Clinical trials have been conducted in a variety of patients with advanced solid tumors. CS1001 is a high-affinity humanized full-length anti-PD-L1 monoclonal antibody with great clinical significance. We constructed a PD-L1-targeted radioactive molecular probe, 124/125I-labeled full-length antibody CS1001, and evaluated its binding specificity and targeting ability to PD-L1 in tumor cells and tumor models. Additionally, a comparison study with 68Ga-WL12, a PD-L1 targeting peptide, was conducted. The binding potency of 125I-CS1001 to human PD-L1 was evaluated by enzyme-linked immunosorbent assay (ELISA), and the Kd value was 52.1 ± 19.3 nM. The cellular uptake of 125I-CS1001 was examined in Chinese hamster ovary cells (CHO) and CHO expressing human PD-L1 (CHO-hPD-L1). At 2 h, the uptake values of 125I-CS1001 in CHO-hPD-L1 without blocking and in the presence of 0.1 mg non-radiolabeled CS1001 were 3.60 ± 0.08 and 0.09 ± 0.005 (%AD/2 × 105 cells, p < 0.001). Micro-PET imaging was performed between 8 to 192 h after injection of 124I-CS1001 into normal KM mice and CHO-hPD-L1 and HeLa tumor models. The standard uptake value (SUV) of relevant organs in PET images was calculated by drawing regions of interest (ROI). SUVmean of CHO-hPD-L1 tumors was significantly higher than that of HeLa tumors at 48 h (1.98 ± 0.04 vs 0.73 ± 0.14, p = 0.005). The SUVmean of 124I-CS1001 in CHO-hPD-L1 tumors at 48 h was higher than that of 68Ga-WL12 in CHO-hPD-L1 tumors at 0.5 h (1.98 ± 0.04 vs 1.09 ± 0.1 SUVmean, p = 0.007). In conclusion, this work provides a new method for monitoring and evaluating the in vivo expression of PD-L1 in tumors.
Collapse
Affiliation(s)
- Dan Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Feng Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Jinquan Jiang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing 100142, China.,Radiology Department, People's Hospital of Deyang City, Deyang, Sichuan 618000, China
| | - Xingguo Hou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Jin Ding
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Zilei Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing 100142, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Yan Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing 100142, China.,Guizhou University School of Medicine, Guiyang, Guizhou 550025, China
| | - Teli Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Zhi Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Hua Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing 100142, China
| |
Collapse
|
11
|
Brown EL, DeWeerd RA, Zidel A, Pereira PMR. Preclinical antibody-PET imaging of PD-L1. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2022; 2:953202. [PMID: 39354977 PMCID: PMC11440863 DOI: 10.3389/fnume.2022.953202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/11/2022] [Indexed: 10/03/2024]
Abstract
Programmed cell death protein-1/ligand-1 (PD-1/PD-L1) blockade, including antibody therapeutics, has transformed cancer treatment. However, a major challenge in the field relates to selecting patients who are likely to respond to immune checkpoint inhibitors. Indeed, biopsy-based diagnostic tests to determine immune checkpoint protein levels do not accurately capture the inherent spatial and temporal heterogeneity of PD-L1 tumor expression. As a result, not all PD-L1-positive tumors respond to immunotherapies, and some patients with PD-L1-negative tumors have shown clinical benefits. In 2018, a first-in-human study of the clinically-approved anti-PD-L1 antibody Atezolizumab labeled with the positron emitter zirconium-89 validated the ability of positron emission tomography (PET) to visualize PD-L1 expression in vivo and predict tumor response to immunotherapy. These studies have triggered the expansion of PD-L1-targeted immunoPET to assess PD-L1 protein levels and PD-L1 expression heterogeneity in real time and across the whole tumor. First, this mini-review introduces new PD-L1 PET imaging studies of the last 4 years, focusing on the expansion of preclinical tumor models and anti-PD-L1 antibodies/antibody fragments in development. Then, the review discusses how these preclinical models and targeting agents can be utilized to study spatial and temporal heterogeneity of PD-L1 expression.
Collapse
Affiliation(s)
- Emma L. Brown
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Rachel A. DeWeerd
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, United States
| | - Abbey Zidel
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Patricia M. R. Pereira
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
12
|
Lu H, Jin Y, Yang H, Tao Z, Chen J, Chen S, Feng Y, Xin H, Lu X. A trimeric immunoglobin G-binding domain outperforms recombinant protein G and protein L as a ligand for fragment antigen-binding purification. J Chromatogr A 2022; 1681:463464. [DOI: 10.1016/j.chroma.2022.463464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/25/2022]
|