1
|
Mohanty A, Vekariya V, Yadav S, Agrawal-Rajput R. Natural phytochemicals reverting M2 to M1 macrophages: A novel alternative leishmaniasis therapy. Microb Pathog 2025; 200:107311. [PMID: 39863089 DOI: 10.1016/j.micpath.2025.107311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 12/29/2024] [Accepted: 01/18/2025] [Indexed: 01/27/2025]
Abstract
INTRODUCTION Leishmaniasis is a tropical parasitic disease caused by the protozoan Leishmania which remains a significant global health concern with diverse clinical manifestations. Transmitted through the bite of an infected sandfly, its progression depends on the interplay between the host immune response and the parasite. The disease outcome is linked to macrophage polarisation into M1 and M2 phenotypes. M1 macrophages are pro-inflammatory and promote parasite clearance, while M2 macrophages support tissue repair and parasite survival by facilitating promastigote entry and intracellular amastigote proliferation. PURPOSE The review focuses on discovering novel phytochemicals that exploit the immunomodulatory properties of macrophages, which can serve as an alternative antileishmanial treatments due to their diverse chemical structures and ability to modulate immune responses. It examines the immunomodulatory effects of phytochemicals that directly or indirectly promote antileishmanial activity by influencing macrophage polarisation and cytokine secretion. They can induce M1 macrophage polarisation to directly combat leishmaniasis or suppress M2 macrophages, thereby exerting indirect antileishmanial activity by influencing the release of M1-and M2-related cytokines. RESULTS & DISCUSSION Phytochemicals demonstrate antileishmanial effects through ROS production, M1 activation, and cytokine modulation. They regulate M1/M2-related cytokines and macrophage activity, influencing immune responses. Although their effects may be non-specific, targeted delivery strategies could overcome current therapeutic limitations, positioning phytochemicals as promising candidates for leishmaniasis treatment to counter the limitations of current medications.
Collapse
Affiliation(s)
- Aditya Mohanty
- Immunology Lab, Biotechnology & Bioengineering, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382426, India
| | - Vasu Vekariya
- Immunology Lab, Biotechnology & Bioengineering, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382426, India
| | - Shivani Yadav
- Immunology Lab, Biotechnology & Bioengineering, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382426, India
| | - Reena Agrawal-Rajput
- Immunology Lab, Biotechnology & Bioengineering, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382426, India.
| |
Collapse
|
2
|
Soto-Sánchez J, Garza-Treviño G. Combination Therapy and Phytochemical-Loaded Nanosytems for the Treatment of Neglected Tropical Diseases. Pharmaceutics 2024; 16:1239. [PMID: 39458571 PMCID: PMC11510106 DOI: 10.3390/pharmaceutics16101239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/04/2024] [Accepted: 09/17/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Neglected tropical diseases (NTDs), including leishmaniasis, trypanosomiasis, and schistosomiasis, impose a significant public health burden, especially in developing countries. Despite control efforts, treatment remains challenging due to drug resistance and lack of effective therapies. Objective: This study aimed to synthesize the current research on the combination therapy and phytochemical-loaded nanosystems, which have emerged as promising strategies to enhance treatment efficacy and safety. Methods/Results: In the present review, we conducted a systematic search of the literature and identified several phytochemicals that have been employed in this way, with the notable efficacy of reducing the parasite load in the liver and spleen in cases of visceral leishmaniasis, as well as lesion size in cutaneous leishmaniasis. Furthermore, they have a synergistic effect against Trypanosoma brucei rhodesiense rhodesain; reduce inflammation, parasitic load in the myocardium, cardiac hypertrophy, and IL-15 production in Chagas disease; and affect both mature and immature stages of Schistosoma mansoni, resulting in improved outcomes compared to the administration of phytochemicals alone or with conventional drugs. Moreover, the majority of the combinations studied demonstrated enhanced solubility, efficacy, and selectivity, as well as increased immune response and reduced cytotoxicity. Conclusions: These formulations appear to offer significant therapeutic benefits, although further research is required to validate their clinical efficacy in humans and their potential to improve treatment outcomes in affected populations.
Collapse
Affiliation(s)
- Jacqueline Soto-Sánchez
- Section for Postgraduate Studies and Research, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Guillermo Massieu Helguera #239, Fracc. La Escalera, Ticomán, Ciudad de México 07320, Mexico
| | - Gilberto Garza-Treviño
- Section for Postgraduate Studies and Research, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Guillermo Massieu Helguera #239, Fracc. La Escalera, Ticomán, Ciudad de México 07320, Mexico
| |
Collapse
|
3
|
Freitas CS, Pereira IAG, Lage DP, Vale DL, Pimenta BL, Soares NP, Santiago SS, Martins VT, Câmara RSB, Jesus MM, Tavares GSV, Ramos FF, Ludolf F, Magalhães LND, Oliveira FM, Duarte MC, Chávez-Fumagalli MA, Costa AV, Roatt BM, Teixeira RR, Coelho EAF. New synthetic molecules incorporated into polymeric micelles used for treatment against visceral leishmaniasis. Cytokine 2024; 177:156543. [PMID: 38373365 DOI: 10.1016/j.cyto.2024.156543] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 02/21/2024]
Abstract
Treatment against visceral leishmaniasis (VL) presents problems, mainly related to drug toxicity, high cost and/or by emergence of resistant strains. In the present study, two vanillin synthetic derivatives, 3 s [4-(2-hydroxy-3-(4-octyl-1H-1,2,3-triazol-1-yl)propoxy)-3-methoxybenzaldehyde] and 3 t [4-(3-(4-decyl-1H-1,2,3-triazol-1-yl)-2-hydroxypropoxy)-3-methoxybenzaldehyde], were evaluated as therapeutic candidates in a murine model against Leishmania infantum infection. Molecules were used pure (3 s and 3 t) or incorporated into Poloxamer 407-based micelles (3 s/M and 3 t/M) in the infected animals, which also received amphotericin B (AmpB) or Ambisome® as control. Results showed that 3 s/M and 3 t/M compositions induced a Th1-type immune response in treated animals, with higher levels of IFN-γ, IL-2, TNF-α, IL-12, nitrite, and IgG2a antibodies. Animals presented also low toxicity and significant reductions in the parasite load in their spleens, livers, bone marrows and draining lymph nodes, as compared as control groups mice, with the evaluations performed one and 30 days after the application of the therapeutics. In conclusion, preliminary data suggest that 3 s/M and 3 t/M could be considered for future studies as therapeutic agents against VL.
Collapse
Affiliation(s)
- Camila S Freitas
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Santa Efigênia, 30130-100 Belo Horizonte, Minas Gerais, Brazil
| | - Isabela A G Pereira
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Santa Efigênia, 30130-100 Belo Horizonte, Minas Gerais, Brazil
| | - Daniela P Lage
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Santa Efigênia, 30130-100 Belo Horizonte, Minas Gerais, Brazil
| | - Danniele L Vale
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Santa Efigênia, 30130-100 Belo Horizonte, Minas Gerais, Brazil
| | - Breno L Pimenta
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Santa Efigênia, 30130-100 Belo Horizonte, Minas Gerais, Brazil
| | - Nícia P Soares
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Departamento de Ciências Biológicas, Insituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Samira S Santiago
- Grupo de Síntese e Pesquisa de Compostos Bioativos, Departamento de Química, Universidade Federal de Viçosa, Avenida PH Rolfs, S/N, 36570-900 Viçosa, Minas Gerais, Brazil
| | - Vívian T Martins
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Santa Efigênia, 30130-100 Belo Horizonte, Minas Gerais, Brazil
| | - Raquel S B Câmara
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Santa Efigênia, 30130-100 Belo Horizonte, Minas Gerais, Brazil
| | - Marcelo M Jesus
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Santa Efigênia, 30130-100 Belo Horizonte, Minas Gerais, Brazil
| | - Grasiele S V Tavares
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Santa Efigênia, 30130-100 Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda F Ramos
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Santa Efigênia, 30130-100 Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda Ludolf
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Santa Efigênia, 30130-100 Belo Horizonte, Minas Gerais, Brazil; Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Ciências Médicas de Minas Gerais, Belo Horizonte 30130-110, Minas Gerais, Brazil
| | - Lícia N D Magalhães
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Santa Efigênia, 30130-100 Belo Horizonte, Minas Gerais, Brazil
| | - Fabrício M Oliveira
- Instituto Federal de Educação de Minas Gerais, Rua Afonso Sardinha, 90, Bairro Pioneiros, 36420-000 Ouro Branco, Minas Gerais, Brazil
| | - Mariana C Duarte
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Santa Efigênia, 30130-100 Belo Horizonte, Minas Gerais, Brazil; Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Miguel A Chávez-Fumagalli
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Urb. San José S/N, Umacollo, Arequipa, Peru
| | - Adilson V Costa
- Departamento de Química e Física, Universidade Federal do Espírito Santo, Alto Universitário, s/n, Guararema, 29500-000, Alegre, Espírito Santo, Brazil
| | - Bruno M Roatt
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Departamento de Ciências Biológicas, Insituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Róbson R Teixeira
- Grupo de Síntese e Pesquisa de Compostos Bioativos, Departamento de Química, Universidade Federal de Viçosa, Avenida PH Rolfs, S/N, 36570-900 Viçosa, Minas Gerais, Brazil
| | - Eduardo A F Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Santa Efigênia, 30130-100 Belo Horizonte, Minas Gerais, Brazil; Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
4
|
Yan Z, Chen C, Zhai S, Tang H, Zhu M, Yu Y, Zheng H. Mechanism of Qingchang compound against coccidiosis based on network pharmacology-molecular docking. Front Vet Sci 2024; 11:1361552. [PMID: 38496310 PMCID: PMC10940363 DOI: 10.3389/fvets.2024.1361552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/22/2024] [Indexed: 03/19/2024] Open
Abstract
The aim of this study was to investigate the anti-Eimeria tenella mechanism of Qingchang Compound (QCC) and provide a basis for its clinical application. The active ingredients, active ingredient-disease intersection targets, and possible pathways of QCC for the treatment of chicken coccidiosis were analyzed, the binding ability of pharmacodynamic components and target proteins was determined by network pharmacology and the molecular docking, and a model of infection with coccidiosis was constructed to verify and analyze the mechanism of action of QCC against coccidiosis. Among the 57 components that met the screening conditions, the main bioactive components were quercetin, dichroine, and artemisinin, with IL-1β, IL-6, IL-10, IFN-γ, and IL-8 as the core targets. Simultaneously, the KEGG signaling pathway of QCC anti-coccidiosis in chickens was enriched, including cytokine-cytokine receptor interactions. The results showed that the main pharmacodynamic components of QCC and the core targets could bind well; artemisinin and alpine possessed the largest negative binding energies and presented the most stable binding states. In addition, in vivo studies showed that QCC reduced blood stool in chickens with coccidiosis, restored cecal injury, and significantly reduced the mRNA and protein expression levels of IL-1β, IL-10, and IFN-γ in ceca (p < 0.01). Our results suggest that the main active ingredients of QCC are artemisinin and alpine and its mechanism of action against coccidiosis may be related to the reduction of the inflammatory response by acting on specific cytokines.
Collapse
Affiliation(s)
- Zhiqiang Yan
- Chongqing Academy of Animal Sciences, Rongchang, China
| | - Chunlin Chen
- Chongqing Academy of Animal Sciences, Rongchang, China
- Chongqing Research Center of Veterinary Biological Products Engineering Technology, Chongqing, China
| | - Shaoqin Zhai
- Chongqing Academy of Animal Sciences, Rongchang, China
| | - Hongmei Tang
- Chongqing Academy of Animal Sciences, Rongchang, China
| | - Maixun Zhu
- Chongqing Academy of Animal Sciences, Rongchang, China
| | - Yuandi Yu
- Chongqing Academy of Animal Sciences, Rongchang, China
| | - Hua Zheng
- Chongqing Research Center of Veterinary Biological Products Engineering Technology, Chongqing, China
| |
Collapse
|
5
|
Chauhan S, Naik S, Kumar R, Ruokolainen J, Kesari KK, Mishra M, Gupta PK. In Vivo Toxicological Analysis of the ZnFe 2O 4@poly( tBGE- alt-PA) Nanocomposite: A Study on Fruit Fly. ACS OMEGA 2024; 9:6549-6555. [PMID: 38371810 PMCID: PMC10870305 DOI: 10.1021/acsomega.3c07111] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/16/2023] [Accepted: 12/21/2023] [Indexed: 02/20/2024]
Abstract
Recently, the use of hybrid nanomaterials (NMs)/nanocomposites has widely increased for the health, energy, and environment sectors due to their improved physicochemical properties and reduced aggregation behavior. However, prior to their use in such sectors, it is mandatory to study their toxicological behavior in detail. In the present study, a ZnFe2O4@poly(tBGE-alt-PA) nanocomposite is tested to study its toxicological effects on a fruit fly model. This nanocomposite was synthesized earlier by our group and physicochemically characterized using different techniques. In this study, various neurological, developmental, genotoxic, and morphological tests were carried out to investigate the toxic effects of nanocomposite on Drosophila melanogaster. As a result, an abnormal crawling speed of third instar larvae and a change in the climbing behavior of treated flies were observed, suggesting a neurological disorder in the fruit flies. DAPI and DCFH-DA dyes analyzed the abnormalities in the larva's gut of fruit flies. Furthermore, the deformities were also seen in the wings and eyes of the treated flies. These obtained results suggested that the ZnFe2O4@poly(tBGE-alt-PA) nanocomposite is toxic to fruit flies. Moreover, this is essential to analyze the toxicity of this hybrid NM again in a rodent model in the future.
Collapse
Affiliation(s)
- Shaily Chauhan
- Department
of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida 201310, Uttar Pradesh , India
- Centre
for Development of Biomaterials, Sharda
University, Greater
Noida 201310, Uttar Pradesh , India
| | - Seekha Naik
- Department
of Life Science, National Institute of Technology, Rourkela 769008, Odisha , India
| | - Rohit Kumar
- Department
of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida 201310, Uttar Pradesh , India
- Centre
for Development of Biomaterials, Sharda
University, Greater
Noida 201310, Uttar Pradesh , India
| | - Janne Ruokolainen
- Department
of Applied Physics, School of Science, Aalto
University, Espoo 02150, Finland
| | - Kavindra Kumar Kesari
- Department
of Applied Physics, School of Science, Aalto
University, Espoo 02150, Finland
- Research
and Development Cell, Lovely Professional
University, Phagwara 144411, Punjab , India
| | - Monalisa Mishra
- Department
of Life Science, National Institute of Technology, Rourkela 769008, Odisha , India
| | - Piyush Kumar Gupta
- Department
of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida 201310, Uttar Pradesh , India
- Centre
for Development of Biomaterials, Sharda
University, Greater
Noida 201310, Uttar Pradesh , India
- Department
of Biotechnology, Graphic Era (Deemed to
Be University), Dehradun 248002, Uttarakhand, India
| |
Collapse
|
6
|
de Araújo SA, Silva CMP, Costa CS, Ferreira CSC, Ribeiro HS, da Silva Lima A, Quintino da Rocha C, Calabrese KDS, Abreu-Silva AL, Almeida-Souza F. Leishmanicidal and immunomodulatory activity of Terminalia catappa in Leishmania amazonensisin vitro infection. Heliyon 2024; 10:e24622. [PMID: 38312642 PMCID: PMC10835263 DOI: 10.1016/j.heliyon.2024.e24622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/24/2023] [Accepted: 01/11/2024] [Indexed: 02/06/2024] Open
Abstract
Leishmaniases are infectious-parasitic diseases that impact public health around the world. Antileishmanial drugs presented toxicity and increase in parasitic resistance. Studies with natural products show an alternative to this effect, and several metabolites have demonstrated potential in the treatment of various diseases. Terminalia catappa is a plant species with promising pharmaceutical properties. The objective of this work was to evaluate the therapeutic potential of extracts and fractions of T. catappa on Leishmania amazonensis and investigate the immunomodulatory mechanisms associated with its action. In anti-Leishmania assays, the ethyl acetate fraction exhibited activity against promastigotes (IC50 86.07 ± 1.09 μg/mL) and low cytotoxicity (CC50 517.70 ± 1.68 μg/mL). The ethyl acetate fraction also inhibited the intracellular parasite (IC50 25.74 ± 1.08 μg/mL) with a selectivity index of 20.11. Treatment with T. catappa ethyl acetate fraction did not alter nitrite production by peritoneal macrophages stimulated with L. amazonensis, although there was a decrease in unstimulated macrophages treated at 50 μg/mL (p = 0.0048). The T. catappa ethyl acetate fraction at 100 μg/mL increased TNF-α levels (p = 0.0238) and downregulated HO-1 (p = 0.0030) and ferritin (p = 0.0002) gene expression in L. amazonensis-stimulated macrophages. Additionally, the total flavonoid and ellagic acid content for ethyl acetate fraction was 13.41 ± 1.86 mg QE/g and 79.25 mg/g, respectively. In conclusion, the T. catappa ethyl acetate fraction showed leishmanicidal activity against different forms of L. amazonensis and displayed immunomodulatory mechanisms, including TNF-α production and expression of pro and antioxidant genes.
Collapse
Affiliation(s)
- Sandra Alves de Araújo
- Rede Nordeste de Biotecnologia, Universidade Federal do Maranhão, São Luís, 65080-805, Brazil
| | | | | | | | | | - Aldilene da Silva Lima
- Laboratório de Química dos Produtos Naturais, Universidade Federal do Maranhão, 65080-805, São Luís, MA, Brazil
| | - Cláudia Quintino da Rocha
- Laboratório de Química dos Produtos Naturais, Universidade Federal do Maranhão, 65080-805, São Luís, MA, Brazil
| | - Kátia da Silva Calabrese
- Laboratório de Protozoologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, 21041-250, Brazil
| | - Ana Lucia Abreu-Silva
- Rede Nordeste de Biotecnologia, Universidade Federal do Maranhão, São Luís, 65080-805, Brazil
- Universidade Estadual do Maranhão, São Luís, 65055-310, Brazil
- Pós-graduação em Ciência Animal, Universidade Estadual do Maranhão, São Luís, 65055-310, Brazil
| | - Fernando Almeida-Souza
- Universidade Estadual do Maranhão, São Luís, 65055-310, Brazil
- Laboratório de Protozoologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, 21041-250, Brazil
- Pós-graduação em Ciência Animal, Universidade Estadual do Maranhão, São Luís, 65055-310, Brazil
| |
Collapse
|
7
|
Swami R, Aggarwal K. The Prospects of Phytomedicines and Nanomedicines to Treat Leishmaniasis: A Comprehensive Review. Curr Drug Res Rev 2024; 16:308-318. [PMID: 37489778 DOI: 10.2174/2589977515666230725105141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 07/26/2023]
Abstract
The global shift in lifestyle has prompted health agencies to redirect their focus from poverty-related diseases to the emergence of lifestyle diseases prevalent in privileged regions. As a result, these diseases have been labeled as "neglected diseases," receiving limited research attention, funding, and resources. Neglected Tropical Diseases (NTDs) encompass a diverse group of vector-borne protozoal diseases that are prevalent in tropical areas worldwide. Among these NTDs is leishmaniasis, a disease that affects populations globally and manifests as skin abnormalities, internal organ involvement, and mucous-related abnormalities. Due to the lack of effective and safe medicines and vaccines, it is crucial to explore alternative resources. Phytomedicine, which comprises therapeutic herbal constituents with anti-leishmanial properties, holds promise but is limited by its poor physicochemical properties. The emerging field of nanomedicine has shown remarkable potential in revitalizing the anti-leishmanial efficacy of these phytoconstituents. In this investigation, we aim to highlight and discuss key plant constituents in combination with nanotechnology that have been explored in the fight against leishmaniasis.
Collapse
Affiliation(s)
- Rajan Swami
- Department of Pharmaceutics, Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Keshav Aggarwal
- Department of Pharmaceutics, Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
8
|
Joshi H, Gupta DS, Kaur G, Singh T, Ramniwas S, Sak K, Aggarwal D, Chhabra RS, Gupta M, Saini AK, Tuli HS. Nanoformulations of quercetin for controlled delivery: a review of preclinical anticancer studies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3443-3458. [PMID: 37490121 DOI: 10.1007/s00210-023-02625-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 07/11/2023] [Indexed: 07/26/2023]
Abstract
One of the well-studied older molecules, quercetin, is found in large quantities in many fruits and vegetables. Natural anti-oxidant quercetin has demonstrated numerous pharmacological properties in preclinical and clinical research, including anti-inflammatory and anti-cancer effects. Due to its ability to control cell signaling pathways, including NF-κB, p53, activated protein-1 (AP-1), STAT3, and epidermal growth response-1 (Egr-1), which is essential in the initiation and proliferation of cancer, it has gained a lot of fame as an anticancer molecule. Recent research suggests that using nanoformulations can help quercetin to overcome its hydrophobicity while also enhancing its stability and cellular bioavailability both in vitro and in vivo. The main aim of this review is to focus on the comprehensive insights of several nanoformulations, including liposomes, nano gels, micelles, solid lipid nanoparticles (SLN), polymer nanoparticles, gold nanoparticles, and cyclodextrin complexes, to transport quercetin for application in cancer.
Collapse
Affiliation(s)
- Hemant Joshi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Dhruv Sanjay Gupta
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle-West, Mumbai, 400056, India
| | - Ginpreet Kaur
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle-West, Mumbai, 400056, India
| | - Tejveer Singh
- Translational Oncology Laboratory, Department of Zoology, Hansraj College, Delhi University, New Delhi, 110007, India
| | - Seema Ramniwas
- University Centre for Research and Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, Mohali, 140413, India
| | | | - Diwakar Aggarwal
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India
| | | | - Madhu Gupta
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Adesh K Saini
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India
- Faculty of Agriculture, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India.
| |
Collapse
|
9
|
Mishra VS, Tiwari P, Gupta M, Gupta PK. An update on lipid-based nanodrug delivery systems for leishmaniasis treatment. Nanomedicine (Lond) 2023; 18:1417-1419. [PMID: 37655595 DOI: 10.2217/nnm-2023-0190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Abstract
Lipid-based nanodrug delivery systems hold considerable promise in therapeutic intervention for leishmaniasis by enhancing drug solubility and targeted delivery.
Collapse
Affiliation(s)
- Vaishali Sunil Mishra
- Department of Life Sciences, Sharda School of Basic Sciences & Research, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Preeti Tiwari
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Madhu Gupta
- School of Pharmaceutical Sciences, Department of Pharmaceutics, Delhi Pharmaceutical Sciences & Research University, Pushp Vihar, Sector 3, MB Road, New Delhi, 110017, India
| | - Piyush Kumar Gupta
- Department of Life Sciences, Sharda School of Basic Sciences & Research, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
- Department of Biotechnology, Graphic Era Deemed to Be University, Dehradun, Uttarakhand, 248002, India
| |
Collapse
|
10
|
González-Morales LD, Moreno-Rodríguez A, Vázquez-Jiménez LK, Delgado-Maldonado T, Juárez-Saldivar A, Ortiz-Pérez E, Paz-Gonzalez AD, Lara-Ramírez EE, Yépez-Mulia L, Meza P, Rivera G. Triose Phosphate Isomerase Structure-Based Virtual Screening and In Vitro Biological Activity of Natural Products as Leishmania mexicana Inhibitors. Pharmaceutics 2023; 15:2046. [PMID: 37631260 PMCID: PMC10458937 DOI: 10.3390/pharmaceutics15082046] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Cutaneous leishmaniasis (CL) is a public health problem affecting more than 98 countries worldwide. No vaccine is available to prevent the disease, and available medical treatments cause serious side effects. Additionally, treatment failure and parasite resistance have made the development of new drugs against CL necessary. In this work, a virtual screening of natural products from the BIOFACQUIM and Selleckchem databases was performed using the method of molecular docking at the triosephosphate isomerase (TIM) enzyme interface of Leishmania mexicana (L. mexicana). Finally, the in vitro leishmanicidal activity of selected compounds against two strains of L. mexicana, their cytotoxicity, and selectivity index were determined. The top ten compounds were obtained based on the docking results. Four were selected for further in silico analysis. The ADME-Tox analysis of the selected compounds predicted favorable physicochemical and toxicological properties. Among these four compounds, S-8 (IC50 = 55 µM) demonstrated a two-fold higher activity against the promastigote of both L. mexicana strains than the reference drug glucantime (IC50 = 133 µM). This finding encourages the screening of natural products as new anti-leishmania agents.
Collapse
Affiliation(s)
- Luis D. González-Morales
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico; (L.D.G.-M.); (A.J.-S.); (E.O.-P.); (E.E.L.-R.)
| | - Adriana Moreno-Rodríguez
- Laboratorio de Estudios Epidemiológicos, Clínicos, Diseños Experimentales e Investigación, Facultad de Ciencias Químicas, Universidad Autónoma “Benito Juárez” de Oaxaca, Avenida Universidad S/N, Ex Hacienda Cinco Señores, Oaxaca 68120, Mexico;
| | - Lenci K. Vázquez-Jiménez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico; (L.D.G.-M.); (A.J.-S.); (E.O.-P.); (E.E.L.-R.)
| | - Timoteo Delgado-Maldonado
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico; (L.D.G.-M.); (A.J.-S.); (E.O.-P.); (E.E.L.-R.)
| | - Alfredo Juárez-Saldivar
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico; (L.D.G.-M.); (A.J.-S.); (E.O.-P.); (E.E.L.-R.)
| | - Eyra Ortiz-Pérez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico; (L.D.G.-M.); (A.J.-S.); (E.O.-P.); (E.E.L.-R.)
| | - Alma D. Paz-Gonzalez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico; (L.D.G.-M.); (A.J.-S.); (E.O.-P.); (E.E.L.-R.)
| | - Edgar E. Lara-Ramírez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico; (L.D.G.-M.); (A.J.-S.); (E.O.-P.); (E.E.L.-R.)
| | - Lilian Yépez-Mulia
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias-Pediatría, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Patricia Meza
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias-Pediatría, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Gildardo Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico; (L.D.G.-M.); (A.J.-S.); (E.O.-P.); (E.E.L.-R.)
| |
Collapse
|
11
|
Singh A, Das SS, Ruokolainen J, Kesari KK, Singh SK. Biopolymer-Capped Pyrazinamide-Loaded Colloidosomes: In Vitro Characterization and Bioavailability Studies. ACS OMEGA 2023; 8:25515-25524. [PMID: 37483176 PMCID: PMC10357575 DOI: 10.1021/acsomega.3c03135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/26/2023] [Indexed: 07/25/2023]
Abstract
This study aimed to prepare colloidosome particles loaded with pyrazinamide (PZA). These drug-loaded colloidosomes were prepared using an in situ gelation technique using a central composite design with a shell made of calcium carbonate (CaCO3) particles. Optimal amounts of 150 mg of CaCO3, sodium alginate (2%), and 400 mg of poly(3-hydroxybutyrate-co-3-hydroxy valerate) (PHBV) concentration resulted in the maximum drug loading and efficient release profile. Field emission scanning electron microscopy results showed spherical porous particles with a good coating of the PHBV polymer. Additionally, Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), thermogravimetric and differential thermal analysis (TGA-DTA), and X-ray diffraction (XRD) analysis showed good compatibility between the drug and excipients. The pharmacokinetic studies demonstrated that the drug-loaded colloidosomes resulted in 4.26 times higher plasma drug concentrations with Cmax values of 32.386 ± 2.744 mcg/mL (PZA solution) and 115.868 ± 53.581 mcg/mL (PZA-loaded colloidosomes) and AUC0-t values of 61.24 mcg-h/mL (PZA solution) and 260.9 mcg-h/mL (PZA-loaded colloidosomes), indicating that colloidosomes have the potential to be effective drug carriers for delivering PZA to the target site.
Collapse
Affiliation(s)
- Avi Singh
- Department
of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Sabya Sachi Das
- School
of Pharmaceutical and Population Health Informatics, DIT University, Dehradun 248009, Uttarakhand, India
| | - Janne Ruokolainen
- Department
of Applied Physics, School of Science, Aalto
University, Espoo 00076, Finland
| | - Kavindra Kumar Kesari
- Department
of Applied Physics, School of Science, Aalto
University, Espoo 00076, Finland
- Faculty
of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1, 00790 Helsinki, Finland
| | - Sandeep Kumar Singh
- Department
of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| |
Collapse
|
12
|
Das S, Verma PRP, Sekarbabu V, Mohanty S, Pattnaik AK, Ruokolainen J, Kesari KK, Singh SK. Liquid Chromatography-Electrospray Ionization Tandem Mass Spectrometry Estimation of Quercetin-Loaded Nanoemulsion in Rabbit Plasma: In Vivo- In Silico Pharmacokinetic Analysis Using GastroPlus. ACS OMEGA 2023; 8:12456-12466. [PMID: 37033804 PMCID: PMC10077531 DOI: 10.1021/acsomega.3c00429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
In the present study, we developed and validated a rapid, specific, sensitive, and reproducible liquid chromatography-electrospray ionization tandem mass spectrometry method for quantifying quercetin (QT) in rabbit plasma using hydrochlorothiazide as the internal standard. Animals were orally administered with optimized QT-loaded nanoemulsion (QTNE) and QT suspension (QTS), equivalent to 30 mg/kg, to the test and control group, respectively. The blood samples were collected at pre-determined time points up to 48 h. The linearity range was from 5 to 5000 ng mL-1 with R 2 = 0.995. Further, we analyzed the various pharmacokinetic parameters and established the in vitro-in vivo correlation (IVIVC) of QTNE using GastroPlus software. The method was successfully developed and validated, and when applied for the determination of QT in rabbit plasma, it exhibited an increase in C max from 122.56 ng mL-1 (QTS) to 286.51 ng mL-1 (QTNE) (2.34-fold) and AUC0-48 from 976 ng h mL-1 (QTS) to 4249 ng h mL-1 (QTNE) (4.35-fold), indicating improved oral bioavailability QT when administered as QTNE. Statistical analysis revealed that the Loo-Riegelman method (two-compartmental method) best fitted the deconvolution approach (R 2 = 0.998, SEP = 4.537, MAE = 2.759, and AIC = 42.38) for establishing the IVIVC. In conclusion, the established bioanalytical method and IVIVC studies revealed that QTNE is a potential carrier for the effective delivery of QT with enhanced oral bioavailability.
Collapse
Affiliation(s)
- Sabya
Sachi Das
- Department
of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
- School
of Pharmaceutical and Population Health Informatics, DIT University, Dehradun 248009, Uttarakhand, India
| | - Priya Ranjan Prasad Verma
- Department
of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Viswanathan Sekarbabu
- Innospecs
Bioresearch Private Limited, Rajakilpakkam, Chennai 600073, Tamil Nadu, India
| | - Satyajit Mohanty
- Department
of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Ashok Kumar Pattnaik
- Department
of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Janne Ruokolainen
- Department
of Applied Physics, School of Science, Aalto
University, 00076 Espoo, Finland
| | - Kavindra Kumar Kesari
- Department
of Applied Physics, School of Science, Aalto
University, 00076 Espoo, Finland
- Faculty
of Biological and Environmental Sciences, University of Helsinki, Biocentre 3, Helsinki 00014, Finland
| | - Sandeep Kumar Singh
- Department
of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| |
Collapse
|
13
|
Mansur-Alves I, Lima BLF, Santos TT, Araújo NF, Frézard F, Islam A, de Barros AL, Dos Santos DC, Fernandes C, Ferreira LA, Aguiar MM. Cholesterol improves stability of amphotericin B nanoemulsion: promising use in the treatment of cutaneous leishmaniasis. Nanomedicine (Lond) 2022; 17:1237-1251. [PMID: 36189757 DOI: 10.2217/nnm-2021-0489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aim: Amphotericin B (AmB) is an antileishmanial drug with high toxicity; however, this drawback might overcome by decreasing the AmB self-aggregation state. This work aimed at evaluating the influence of cholesterol on the aggregation state of AmB loaded in a nanoemulsion (NE-AmB) for the treatment of cutaneous leishmaniasis. NE-AmB (1, 4 and 8 mg/kg/day) was administered intravenously to animals infected by Leishmania major every 2 days for a total of five injections. Results: Ultraviolet-visible spectroscopy and circular dichroism studies demonstrated that cholesterol reduced AmB aggregation state in NE. NE-AmB was stable after 180 days, and its hemolytic toxicity was lower than that observed for the conventional AmB. NE-AmB administered intravenously into animals infected by Leishmania major at 8 mg/kg was capable of stabilizing the lesion size and reducing the parasitic load. Conclusion: These findings support the NE potential as a stable nanocarrier for AmB in the treatment of cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Izabela Mansur-Alves
- Department of Pharmaceutics, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-010, Brazil
| | - Brenda Lorrayne Furtado Lima
- Department of Pharmaceutics, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-010, Brazil
| | - Thais Tunes Santos
- Department of Pharmaceutics, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-010, Brazil
| | - Naialy F Araújo
- Department of Pharmaceutics, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-010, Brazil
| | - Frédéric Frézard
- Department of Physiology & Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-010, Brazil
| | - Arshad Islam
- Department of Pathology, Government Lady Reading Hospital, Medical Teaching Institution, Peshawar, 25100, Pakistan
| | - André Lb de Barros
- Department of Clinical & Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-010, Brazil
| | - Délia Cm Dos Santos
- Department of Pharmacy & Nutrition, Center for Exact, Natural & Health Sciences, Federal University of Espírito Santo, Alto Universitario, Alegre, Espírito Santo, 29500-000, Brazil
| | - Christian Fernandes
- Department of Pharmaceutics, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-010, Brazil
| | - Lucas Am Ferreira
- Department of Pharmaceutics, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-010, Brazil
| | - Marta Mg Aguiar
- Department of Pharmaceutics, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-010, Brazil
| |
Collapse
|