1
|
Fareed MM, Shityakov S. Next-Generation Hydrogel Design: Computational Advances in Synthesis, Characterization, and Biomedical Applications. Polymers (Basel) 2025; 17:1373. [PMID: 40430669 PMCID: PMC12115241 DOI: 10.3390/polym17101373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2025] [Revised: 05/12/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
Hydrogels are pivotal in advanced materials, driving innovations in medical fields, such as targeted drug delivery, regenerative medicine, and skin repair. This systematic review explores the transformative impact of in-silico design on hydrogel development, leveraging computational tools such as molecular dynamics, finite element modeling, and artificial intelligence to optimize synthesis, characterization, and performance. We analyze cutting-edge strategies for tailoring the physicochemical properties of hydrogels, including their mechanical strength, biocompatibility, and stimulus responsiveness, to meet the needs of next-generation biomedical applications. By integrating machine learning and computational modeling with experimental validation, this review highlights how in silico approaches accelerate material innovation, addressing challenges and outlining future directions for scalable, personalized hydrogel solutions in regenerative medicine and beyond.
Collapse
Affiliation(s)
- Muhammad Mazhar Fareed
- Department of Computer Science, School of Science and Engineering, Università Degli Studi di Verona, 37134 Verona, Italy;
| | - Sergey Shityakov
- Laboratory of Bioinformatics, Department of Bioinformatics, Biocenter, Würzburg University, 97080 Würzburg, Germany
| |
Collapse
|
2
|
Meng Y, Xu L, Cheng G. Bioelectronics hydrogels for implantable cardiac and brain disease medical treatment application. Int J Biol Macromol 2025; 299:139945. [PMID: 39837454 DOI: 10.1016/j.ijbiomac.2025.139945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/28/2024] [Accepted: 01/14/2025] [Indexed: 01/23/2025]
Abstract
Hydrogel-based bioelectronic systems offer significant benefits for point-of-care diagnosis, treatment of cardiac and cerebral disease, surgical procedures, and other medical applications, ushering in a new era of advancements in medical technology. Progress in hydrogel-based bioelectronics has advanced from basic instrument and sensing capabilities to sophisticated multimodal perceptions and feedback systems. Addressing challenges related to immune responses and inflammation regulation after implantation, physiological dynamic mechanism, biological toxicology as well as device size, power consumption, stability, and signal conversion is crucial for the practical implementation of hydrogel-based bioelectronics in medical implants. Therefore, further exploration of hydrogel-based bioelectronics is imperative, and a comprehensive review is necessary to steer the development of these technologies for use in implantable therapies for cardiac and brain/neural conditions. In this review, a concise overview is provided on the fundamental principles underlying ionic electronic and ionic bioelectronic mechanisms. Additionally, a comprehensive examination is conducted on various bioelectronic materials integrated within hydrogels for applications in implantable medical treatments. The analysis encompasses a detailed discussion on the representative structures and physical attributes of hydrogels. This includes an exploration of their intrinsic properties such as mechanical strength, dynamic capabilities, shape-memory features, stability, stretchability, and water retention characteristics. Moreover, the discussion extends to properties related to interactions with tissues or the environment, such as adhesiveness, responsiveness, and degradability. The intricate relationships between the structure and properties of hydrogels are thoroughly examined, along with an elucidation of how these properties influence their applications in implantable medical treatments. The review also delves into the processing techniques and characterization methods employed for hydrogels. Furthermore, recent breakthroughs in the applications of hydrogels are logically explored, covering aspects such as materials, structure, properties, functions, fabrication procedures, and hybridization with other materials. Finally, the review concludes by outlining the future prospects and challenges associated with hydrogels-based bioelectronics systems.
Collapse
Affiliation(s)
- Yanfang Meng
- School of Mechanical Engineering, Jiangsu University, No.301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Lin Xu
- School of Mechanical Engineering, Jiangsu University, No.301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China.
| | - Guanggui Cheng
- School of Mechanical Engineering, Jiangsu University, No.301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China.
| |
Collapse
|
3
|
Xu Y, Yu Y, Guo Z. Hydrogels in cardiac tissue engineering: application and challenges. Mol Cell Biochem 2025; 480:2201-2222. [PMID: 39495368 DOI: 10.1007/s11010-024-05145-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024]
Abstract
Cardiovascular disease remains the leading cause of global mortality. Current stem cell therapy and heart transplant therapy have limited long-term stability in cardiac function. Cardiac tissue engineering may be one of the key methods for regenerating damaged myocardial tissue. As an ideal scaffold material, hydrogel has become a viable tissue engineering therapy for the heart. Hydrogel can not only provide mechanical support for infarcted myocardium but also serve as a carrier for various drugs, bioactive factors, and cells to increase myocardial contractility and improve the cell microenvironment in the infarcted area, thereby improving cardiac function. This paper reviews the applications of hydrogels and biomedical mechanisms in cardiac tissue engineering and discusses the challenge of clinical transformation of hydrogel in cardiac tissue engineering, providing new strategies for treating cardiovascular diseases.
Collapse
Affiliation(s)
- Yaping Xu
- Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou Seventh People's Hospital, Henan, 450016, Zhengzhou, People's Republic of China
| | - Yuexin Yu
- Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou Seventh People's Hospital, Henan, 450016, Zhengzhou, People's Republic of China
| | - Zhikun Guo
- Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou Seventh People's Hospital, Henan, 450016, Zhengzhou, People's Republic of China.
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, 453003, Henan, People's Republic of China.
| |
Collapse
|
4
|
Li S, Yin W, Liu Y, Yang C, Zhai Z, Xie M, Ye Z, Song X. Anisotropic conductive scaffolds for post-infarction cardiac repair. Biomater Sci 2025; 13:542-567. [PMID: 39688676 DOI: 10.1039/d4bm01109k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Myocardial infarction (MI) remains one of the most common and lethal cardiovascular diseases (CVDs), leading to the deterioration of cardiac function due to myocardial cell necrosis and fibrous scar tissue formation. Myocardial infarction (MI) remains one of the most common and lethal cardiovascular diseases (CVDs), leading to the deterioration of cardiac function due to myocardial cell necrosis and fibrous scar tissue formation. After MI, the anisotropic structural properties of myocardial tissue are destroyed, and its mechanical and electrical microenvironment also undergoes a series of pathological changes, such as ventricular wall stiffness, abnormal contraction, conduction network disruption, and irregular electrical signal propagation, which may further induce myocardial remodeling and even lead to heart failure. Therefore, bionic reconstruction of the anisotropic structural-mechanical-electrical microenvironment of the infarct area is key to repairing damaged myocardium. This article first summarizes the pathological changes in muscle fibre structure and conductive microenvironment after cardiac injury, and focuses on the classification and preparation methods of anisotropic conductive materials. In addition, the effects of these anisotropic conductive materials on the behavior of cardiac resident cells after myocardial infarction, such as directional growth, maturation, proliferation and migration, and the differentiation fate of stem cells and the possible molecular mechanisms involved are summarized. The design strategies for anisotropic conductive scaffolds for myocardial repair in future clinical research are also discussed, with the aim of providing new insights for researchers in related fields.
Collapse
Affiliation(s)
- Shimin Li
- Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, China.
| | - Wenming Yin
- Department of Neurology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, China
| | - Yali Liu
- Department of Neurology, Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong 528000, China
| | - Chang Yang
- Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, China.
| | - Zitong Zhai
- Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, China.
| | - Mingxiang Xie
- Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, China.
| | - Ziyi Ye
- Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, China.
| | - Xiaoping Song
- Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, China.
- Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong 510515, China
| |
Collapse
|
5
|
Wang W, Tai S, Tao J, Yang L, Cheng X, Zhou J. Innovative hydrogel-based therapies for ischemia-reperfusion injury: bridging the gap between pathophysiology and treatment. Mater Today Bio 2024; 29:101295. [PMID: 39493810 PMCID: PMC11528235 DOI: 10.1016/j.mtbio.2024.101295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/21/2024] [Accepted: 10/08/2024] [Indexed: 11/05/2024] Open
Abstract
Ischemia-reperfusion injury (IRI) commonly occurs in clinical settings, particularly in medical practices such as organ transplantation, cardiopulmonary resuscitation, and recovery from acute trauma, posing substantial challenges in clinical therapies. Current systemic therapies for IRI are limited by poor drug targeting, short efficacy, and significant side effects. Owing to their exceptional biocompatibility, biodegradability, excellent mechanical properties, targeting capabilities, controlled release potential, and properties mimicking the extracellular matrix (ECM), hydrogels not only serve as superior platforms for therapeutic substance delivery and retention, but also facilitate bioenvironment cultivation and cell recruitment, demonstrating significant potential in IRI treatment. This review explores the pathological processes of IRI and discusses the roles and therapeutic outcomes of various hydrogel systems. By categorizing hydrogel systems into depots delivering therapeutic agents, scaffolds encapsulating mesenchymal stem cells (MSCs), and ECM-mimicking hydrogels, this article emphasizes the selection of polymers and therapeutic substances, and details special crosslinking mechanisms and physicochemical properties, as well as summarizes the application of hydrogel systems for IRI treatment. Furthermore, it evaluates the limitations of current hydrogel treatments and suggests directions for future clinical applications.
Collapse
Affiliation(s)
- Weibo Wang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Supeng Tai
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Junyue Tao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Lexing Yang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Xi Cheng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Jun Zhou
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
6
|
Cao Y, Fan R, Zhu K, Gao Y. Advances in Functionalized Hydrogels in the Treatment of Myocardial Infarction and Drug-Delivery Strategies. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48880-48894. [PMID: 39227344 DOI: 10.1021/acsami.4c09623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Myocardial infarction (MI) is a serious cardiovascular disease with high morbidity and mortality rates, posing a significant threat to patient's health and quality of life. Following a MI, the damaged myocardial tissue is typically not fully repaired, leading to permanent impairment of myocardial function. While traditional treatments can alleviate symptoms and reduce pain, their ability to repair damaged heart muscle tissue is limited. Functionalized hydrogels, a broad category of materials with diverse functionalities, can enhance the properties of hydrogels to cater to the needs of tissue engineering, drug delivery, medical dressings, and other applications. Recently, functionalized hydrogels have emerged as a promising new therapeutic approach for the treatment of MI. Functionalized hydrogels possess outstanding biocompatibility, customizable mechanical properties, and drug-release capabilities. These properties enable them to offer scaffold support, drug release, and tissue regeneration promotion, making them a promising approach for treating MI. This paper aims to evaluate the advancements and delivery methods of functionalized hydrogels for treating MI, while also discussing their potential and the challenges they may pose for future clinical use.
Collapse
Affiliation(s)
- Yuchen Cao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Rong Fan
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Kaiyi Zhu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
| | - Yuping Gao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan 030032, China
- Key Laboratory of Cellular Physiology, Shanxi Province, Taiyuan 030032, China
| |
Collapse
|
7
|
Wei X, Jiang X, Li H. Fundamental characteristics of ultrasonic green formulations using Avena sativa L. extract-mediated gold nanoparticles and electroconductive nanofibers for cardiovascular nursing care. Heliyon 2024; 10:e35018. [PMID: 39170527 PMCID: PMC11336310 DOI: 10.1016/j.heliyon.2024.e35018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024] Open
Abstract
In the pursuit of novel approaches to address chronic heart failure and enhance cardiovascular nursing care, environmentally sustainable nanomaterials have taken center stage. Recent progress in regenerative medicine has opened doors for the use of biocompatible biomaterials that provide mechanical support to damaged heart tissue and facilitate electrical signaling. This study was dedicated to developing advanced electroconductive nanofibers by incorporating eco-friendly Avena sativa L. extract-mediated gold nanoparticles (AuNPs) into polyaniline to create an intricate cardiac patch. The AuNPs were synthesized through an environmentally friendly chemical process aided by ultrasonic conditions. Comprehensive physicochemical analyses, such as UV-Vis spectroscopy, SEM, TEM, DPPH assay, and XRD, were carried out to characterize the AuNPs. These AuNPs were then blended with a polycaprolactone/gelatin polymeric solution and electrospun to fabricate cardiac patches, which underwent thorough evaluation using various techniques. The resulting cardiac patch demonstrated excellent hemocompatibility, antioxidant properties, and cytocompatibility, offering a promising therapeutic approach for myocardial infarctions and the advancement of cardiovascular nursing care.
Collapse
Affiliation(s)
- Xinfang Wei
- Department of Cardiovascular Medicine CCU, Zhongshan People's Hospital, No. 2 Sunwendong Road, Zhongshan City, Guangdong, 528403, China
| | - Xiaoshan Jiang
- Department of Geriatrics, Qingdao Chengyang District People's Hospital, No. 600, Changcheng Road, Chengyang District, Qingdao, 266109, Shandong Province, China
| | - Hongzan Li
- School of Nursing, Guangdong Medical University, No. 1 Xincheng Road, Songshan Lake Science and Technology Park, Dongguan, Guangdong, 523808, China
| |
Collapse
|
8
|
Li M, Jin M, Yang H. Remodelers of the vascular microenvironment: The effect of biopolymeric hydrogels on vascular diseases. Int J Biol Macromol 2024; 264:130764. [PMID: 38462100 DOI: 10.1016/j.ijbiomac.2024.130764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/31/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
Vascular disease is the leading health problem worldwide. Vascular microenvironment encompasses diverse cell types, including those within the vascular wall, blood cells, stromal cells, and immune cells. Initiation of the inflammatory state of the vascular microenvironment and changes in its mechanics can profoundly affect vascular homeostasis. Biomedical materials play a crucial role in modern medicine, hydrogels, characterized by their high-water content, have been increasingly utilized as a three-dimensional interaction network. In recent times, the remarkable progress in utilizing hydrogels and understanding vascular microenvironment have enabled the treatment of vascular diseases. In this review, we give an emphasis on the utilization of hydrogels and their advantages in the various vascular diseases including atherosclerosis, aneurysm, vascular ulcers of the lower limbs and myocardial infarction. Further, we highlight the importance and advantages of hydrogels as artificial microenvironments.
Collapse
Affiliation(s)
- Minhao Li
- School of Intelligent Medicine, China Medical University, No.77, Puhe Road, Shenyang 110122, Liaoning Province, China
| | - Meiqi Jin
- School of Intelligent Medicine, China Medical University, No.77, Puhe Road, Shenyang 110122, Liaoning Province, China
| | - Huazhe Yang
- School of Intelligent Medicine, China Medical University, No.77, Puhe Road, Shenyang 110122, Liaoning Province, China.
| |
Collapse
|
9
|
Zhang L, Bei Z, Li T, Qian Z. An injectable conductive hydrogel with dual responsive release of rosmarinic acid improves cardiac function and promotes repair after myocardial infarction. Bioact Mater 2023; 29:132-150. [PMID: 37621769 PMCID: PMC10444974 DOI: 10.1016/j.bioactmat.2023.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/05/2023] [Accepted: 07/05/2023] [Indexed: 08/26/2023] Open
Abstract
Myocardial infarction (MI) causes irreversible damage to the heart muscle, seriously threatening the lives of patients. Injectable hydrogels have attracted extensive attention in the treatment of MI. By promoting the coupling of mechanical and electrical signals between cardiomyocytes, combined with synergistic therapeutic strategies targeting the pathological processes of inflammation, proliferation, and fibrotic remodeling after MI, it is expected to improve the therapeutic effect. In this study, a pH/ROS dual-responsive injectable hydrogel was developed by modifying xanthan gum and gelatin with reversible imine bond and boronic ester bond double crosslinking. By encapsulating polydopamine-rosmarinic acid nanoparticles to achieve on-demand drug release in response to the microenvironment of MI, thereby exerting anti-inflammatory, anti-apoptotic, and anti-fibrosis effects. By adding conductive composites to improve the conductivity and mechanical strength of the hydrogel, restore electrical signal transmission in the infarct area, promote synchronous contraction of cardiomyocytes, avoid induced arrhythmias, and induce angiogenesis. Furthermore, the multifunctional hydrogel promoted the expression of cardiac-specific markers to restore cardiac function after MI. The in vivo and in vitro results demonstrate the effectiveness of this synergistic comprehensive treatment strategy in MI treatment, showing great application potential to promote the repair of infarcted hearts.
Collapse
Affiliation(s)
- Linghong Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhongwu Bei
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Tao Li
- Department of Pediatric Cardiac Surgery, West China the Second Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhiyong Qian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
10
|
Xiong Z, An Q, Chen L, Xiang Y, Li L, Zheng Y. Cell or cell derivative-laden hydrogels for myocardial infarction therapy: from the perspective of cell types. J Mater Chem B 2023; 11:9867-9888. [PMID: 37751281 DOI: 10.1039/d3tb01411h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Myocardial infarction (MI) is a global cardiovascular disease with high mortality and morbidity. To treat acute MI, various therapeutic approaches have been developed, including cells, extracellular vesicles, and biomimetic nanoparticles. However, the clinical application of these therapies is limited due to low cell viability, inadequate targetability, and rapid elimination from cardiac sites. Injectable hydrogels, with their three-dimensional porous structure, can maintain the biomechanical stabilization of hearts and the transplantation activity of cells. However, they cannot regenerate cardiomyocytes or repair broken hearts. A better understanding of the collaborative relationship between hydrogel delivery systems and cell or cell-inspired therapy will facilitate advancing innovative therapeutic strategies against MI. Following that, from the perspective of cell types, MI progression and recent studies on using hydrogel to deliver cell or cell-derived preparations for MI treatment are discussed. Finally, current challenges and future prospects of cell or cell derivative-laden hydrogels for MI therapy are proposed.
Collapse
Affiliation(s)
- Ziqing Xiong
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qi An
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Liqiang Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China.
| | - Yucheng Xiang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China.
| | - Lian Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China.
| | - Yaxian Zheng
- Department of Pharmacy, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan, China.
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| |
Collapse
|
11
|
Mohanty A, Chaw Pattnayak B, Behera L, Singh A, Bhutia SK, Mohapatra S. Near-Infrared-Induced NO-Releasing Photothermal Adhesive Hydrogel with Enhanced Antibacterial Properties. ACS APPLIED BIO MATERIALS 2023; 6:4314-4325. [PMID: 37782070 DOI: 10.1021/acsabm.3c00517] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Bacterial infection and the development of antibiotic-resistant bacteria have decreased the effectiveness of traditional antibiotic treatments for wound healing. The design of a multifunctional adhesive hydrogel with antibacterial activity, self-healing properties, and on-demand removability to promote wound healing is highly desirable. In this work, a photothermal cyclodextrin with a NO-releasing moiety has been incorporated within an oxidized sodium alginate conjugated polyacrylamide (OS@PA) hydrogel to get a photothermal NO-releasing GSNOCD-OS@PA hydrogel. Such a multifunctional hydrogel has the unique feature of combined antibacterial activity as a result of a controlled photothermal effect and NO gas release under an 808 near-infrared laser. Because of oxidized sodium alginate (OSA), the hydrogel matrix easily adheres to the skin under twisted and bent states. In vitro cytotoxicity analysis against 3T3 cells showed that the hydrogels OS@PA and GSNOCD-OS@PA are noncytotoxic under laser exposure. The temperature-induced NO release by GSNOCD-OS@PA reached 31.7 mg/L when irradiated with an 808 nm laser for 10 min. The combined photothermal therapy and NO release from GSNOCD-OS@PA effectively reduced viability of both Staphylococcus aureus (Gram-positive) and Escherichia coli (Gram-negative) to 3 and 5%, respectively. Importantly, the phototherapeutic NO-releasing platform displayed effective fibroblast proliferation in a cell scratch assay.
Collapse
Affiliation(s)
- Ananya Mohanty
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Bibek Chaw Pattnayak
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Lingaraj Behera
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Amruta Singh
- Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Sujit K Bhutia
- Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Sasmita Mohapatra
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha 769008, India
- Centre for Nanomaterials, National Institute of Technology, Rourkela, Odisha 769008, India
| |
Collapse
|
12
|
Castillo-Casas JM, Caño-Carrillo S, Sánchez-Fernández C, Franco D, Lozano-Velasco E. Comparative Analysis of Heart Regeneration: Searching for the Key to Heal the Heart-Part II: Molecular Mechanisms of Cardiac Regeneration. J Cardiovasc Dev Dis 2023; 10:357. [PMID: 37754786 PMCID: PMC10531542 DOI: 10.3390/jcdd10090357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023] Open
Abstract
Cardiovascular diseases are the leading cause of death worldwide, among which ischemic heart disease is the most representative. Myocardial infarction results from occlusion of a coronary artery, which leads to an insufficient blood supply to the myocardium. As it is well known, the massive loss of cardiomyocytes cannot be solved due the limited regenerative ability of the adult mammalian hearts. In contrast, some lower vertebrate species can regenerate the heart after an injury; their study has disclosed some of the involved cell types, molecular mechanisms and signaling pathways during the regenerative process. In this 'two parts' review, we discuss the current state-of-the-art of the main response to achieve heart regeneration, where several processes are involved and essential for cardiac regeneration.
Collapse
Affiliation(s)
- Juan Manuel Castillo-Casas
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain; (J.M.C.-C.); (S.C.-C.); (C.S.-F.); (D.F.)
| | - Sheila Caño-Carrillo
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain; (J.M.C.-C.); (S.C.-C.); (C.S.-F.); (D.F.)
| | - Cristina Sánchez-Fernández
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain; (J.M.C.-C.); (S.C.-C.); (C.S.-F.); (D.F.)
- Medina Foundation, 18007 Granada, Spain
| | - Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain; (J.M.C.-C.); (S.C.-C.); (C.S.-F.); (D.F.)
- Medina Foundation, 18007 Granada, Spain
| | - Estefanía Lozano-Velasco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain; (J.M.C.-C.); (S.C.-C.); (C.S.-F.); (D.F.)
- Medina Foundation, 18007 Granada, Spain
| |
Collapse
|
13
|
Wang W, Huang WC, Zheng J, Xue C, Mao X. Preparation and comparison of dialdehyde derivatives of polysaccharides as cross-linking agents. Int J Biol Macromol 2023; 236:123913. [PMID: 36868335 DOI: 10.1016/j.ijbiomac.2023.123913] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/17/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023]
Abstract
Dialdehyde-based cross-linking agents are widely used in the cross-linking of amino group-containing macromolecules. However, the most commonly used cross-linking agents, glutaraldehyde (GA) and genipin (GP), have safety issues. In this study, a series of dialdehyde derivatives of polysaccharides (DADPs) were prepared by oxidation of polysaccharides, and their biocompatibility and cross-linking properties were tested using chitosan as a model macromolecule. The DADPs showed outstanding cross-linking and gelation properties comparable to GA and GP. The DADPs and hydrogels cross-linked with the DADPs exhibited excellent cytocompatibility and hemocompatibility with different concentrations while significant cytotoxicity was observed in GA and GP. The experimental results showed that the cross-linking effect of DADPs increased along with their oxidation degree. The outstanding cross-linking effect of the DADPs show a potential for use in the cross-linking of biomacromolecules with amino groups and could be an adequate alternative to existing cross-linkers.
Collapse
Affiliation(s)
- Wenjie Wang
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao, China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, China
| | - Wen-Can Huang
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao, China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, China.
| | - Jie Zheng
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao, China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, China
| | - Changhu Xue
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiangzhao Mao
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, China.
| |
Collapse
|