1
|
Wan X, Ge Y, Zhu W, Zhang J, Pan W, Li N, Tang B. GalNAc-functionalized metal-organic frameworks for targeted siRNA delivery: enhancing survivin silencing in hepatocellular carcinoma. Biomater Sci 2025; 13:2704-2712. [PMID: 40178804 DOI: 10.1039/d5bm00363f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Small interfering RNA (siRNA) is a potent method for silencing survivin mRNA within cells, offering a promising option for treating hepatocellular carcinoma (HCC) since survivin is specifically overexpressed in HCC cells. However, the clinical use of gene therapy with siRNA is limited by factors such as rapid enzyme degradation, low cell uptake, and non-specific distribution in the body. In this study, we investigate the use of a specially selected metal-organic framework (MOF) to encapsulate siRNA, with the aim of silencing survivin mRNA in HCC cells and reducing the survivin protein level. The MOF was functionalized with triantennary N-acetylgalactosamine (GalNAc), which has high affinity for asialoglycoprotein receptors that are overexpressed in HCC cells. Both in vitro and in vivo experiments showed that the GalNAc-decorated MOF specifically accumulated in HCC tumor tissue and was effectively endocytosed by HCC cells. The protective properties of the MOF increased the stability of siRNA and allowed for significant downregulation of survivin expression in HCC tumors, contributing to tumor inhibition through the suppression of cell proliferation and the induction of apoptosis. These findings highlight the potential of MOF-based siRNA delivery systems for targeted cancer therapy.
Collapse
Affiliation(s)
- Xiuyan Wan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Yingli Ge
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Wanqi Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Jie Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
- Laoshan Laboratory, Qingdao, 266237, P. R. China
| |
Collapse
|
2
|
Nadukkandy AS, Blaize B, Kumar CD, Mori G, Cordani M, Kumar LD. Non-coding RNAs as mediators of epithelial to mesenchymal transition in metastatic colorectal cancers. Cell Signal 2025; 127:111605. [PMID: 39842529 DOI: 10.1016/j.cellsig.2025.111605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/06/2025] [Accepted: 01/12/2025] [Indexed: 01/24/2025]
Abstract
Colorectal cancer (CRC) remains a leading cause of cancer-related mortality globally, necessitating the development of innovative treatment strategies. Recent research has underscored the significant role of non-coding RNAs (ncRNAs) in CRC pathogenesis, offering new avenues for diagnosis and therapy. In this review, we delve into the intricate roles of various ncRNAs, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), in CRC progression, epithelial-mesenchymal transition (EMT), metastasis, and drug resistance. We highlight the interaction of these ncRNAs with and regulation of key signaling pathways, such as Wnt/β-catenin, Notch, JAK-STAT, EGFR, and TGF-β, and the functional relevance of these interactions in CRC progression. Additionally, the review highlights the emerging applications of nanotechnology in enhancing the delivery and efficacy of ncRNA-based therapeutics, which could address existing challenges related to specificity and side effects. Future research directions, including advanced diagnostic tools, targeted therapeutics, strategies to overcome drug resistance, and the integration of personalized medicine approaches are discussed. Integrating nanotechnology with a deeper understanding of CRC biology offers the potential for more effective, targeted, and personalized strategies, though further research is essential to validate these approaches.
Collapse
Affiliation(s)
- Aisha Shigna Nadukkandy
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad 500007, India
| | - Britny Blaize
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad 500007, India
| | - Chethana D Kumar
- Department of Surgical ICU, Christian Medical College, IDA Scudder Road, Vellore 632004, Tamil Nadu, India
| | - Giulia Mori
- Department Of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain; Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040 Madrid, Spain.
| | - Lekha Dinesh Kumar
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad 500007, India.
| |
Collapse
|
3
|
Pham KY, Khanal S, Bohara G, Rimal N, Song SH, Nguyen TTK, Hong IS, Cho J, Kang JS, Lee S, Choi DY, Yook S. HDAC6 inhibitor-loaded brain-targeted nanocarrier-mediated neuroprotection in methamphetamine-driven Parkinson's disease. Redox Biol 2025; 79:103457. [PMID: 39700694 PMCID: PMC11722933 DOI: 10.1016/j.redox.2024.103457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/24/2024] [Accepted: 12/03/2024] [Indexed: 12/21/2024] Open
Abstract
The dynamic equilibrium between acetylation and deacetylation is vital for cellular homeostasis. Parkinson's disease (PD), a neurodegenerative disorder marked by α-synuclein (α-syn) accumulation and dopaminergic neuron loss in the substantia nigra, is associated with a disruption of this balance. Therefore, correcting this imbalance with histone deacetylase (HDAC) inhibitors represents a promising treatment strategy for PD. CAY10603 (CAY) is a potent and selective HDAC6 inhibitor. However, because of its poor water solubility and short biological half-life, it faces clinical limitations. Herein, we engineered lactoferrin-decorated CAY-loaded poly(lactic-co-glycolic acid) nanoparticles (denoted as PLGA@CAY@Lf NPs) to effectively counter methamphetamine (Meth)-induced PD. PLGA@CAY@Lf NPs showed enhanced blood-brain barrier crossing and significant brain accumulation. Notably, CAY released from PLGA@CAY@Lf NPs restored the disrupted acetylation balance in PD, resulting in neuroprotection by reversing mitochondrial dysfunction, suppressing reactive oxygen species, and inhibiting α-syn accumulation. Additionally, PLGA@CAY@Lf NPs treatment normalized dopamine and tyrosine hydroxylase levels, reduced neuroinflammation, and improved behavioral impairments. These findings underscore the potential of PLGA@CAY@Lf NPs in treating Meth-induced PD and suggest that an innovative HDAC6-inhibitor-based strategy can be used to treat PD.
Collapse
Affiliation(s)
- Khang-Yen Pham
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Shristi Khanal
- College of Pharmacy, Yeungnam University, Gyeongbuk, 38541, Republic of Korea
| | - Ganesh Bohara
- College of Pharmacy, Yeungnam University, Gyeongbuk, 38541, Republic of Korea
| | - Nikesh Rimal
- College of Pharmacy, Yeungnam University, Gyeongbuk, 38541, Republic of Korea
| | - Sang-Hoon Song
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea
| | - Thoa Thi Kim Nguyen
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - In-Sun Hong
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, 21565, Republic of Korea
| | - Jinkyung Cho
- College of Sport Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jong-Sun Kang
- Department of Molecular Cell Biology, School of Medicine, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Sooyeun Lee
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea.
| | - Dong-Young Choi
- College of Pharmacy, Yeungnam University, Gyeongbuk, 38541, Republic of Korea.
| | - Simmyung Yook
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea; School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
4
|
Krishnaswami V, Janakiraman K, Sethuraman V, Raja J, Muruganantham S, Chelladurai S. Recent Insights into Nano-mediated siRNA Drug Delivery. Curr Drug Metab 2025; 25:554-563. [PMID: 39716803 DOI: 10.2174/0113892002339055241211050131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/05/2024] [Accepted: 11/22/2024] [Indexed: 12/25/2024]
Abstract
Gene silencing is the characteristic that inhibits gene expression afforded by siRNA interference. The efficacy of the delivery system in terms of precision, efficacy, and stability can be enhanced by genebased drug delivery options. The delivery challenges and their associated side effects create a challenge for the delivery of gene-based drug delivery carriers. Nano-based delivery systems were reported to improve the efficacy of therapy. The absence of an efficient delivery mechanism that shields siRNA from nuclease degradation delivers it to cancer cells, and releases it into the cytoplasm of specific cancer cells without causing side effects is currently the greatest obstacle to the practical implementation of siRNA therapy. This article focuses on general aspects of siRNA and various siRNA nanocarrier-based formulations. In the near future, we will move towards the siRNA-based drug delivery approach.
Collapse
Affiliation(s)
| | - Kumar Janakiraman
- Department of Biotechnology, Rathinam Technical Campus, Eachanari, Coimbatore, 641021, India
| | - Vaidevi Sethuraman
- Department of Biotechnology, Rathinam Technical Campus, Eachanari, Coimbatore, 641021, India
| | - Jacob Raja
- Department of Periodontology, Rajas Dental College and Hospital, Kavalkinaru, 627105, Tirunelveli, Tamil Nadu, India
| | - Selvakumar Muruganantham
- Department of Pharmaceutics, Vivekanandha Pharmacy College for Women, Sankari, Salem, 637303, Tamil Nadu, India
| | - Senthilkumar Chelladurai
- Department of Pharmaceutics, Sir Issac Newton College of Pharmacy, Pappakovil, Nagapatinam, Tamil Nadu, India
| |
Collapse
|
5
|
Sanati M, Figueroa-Espada CG, Han EL, Mitchell MJ, Yavari SA. Bioengineered Nanomaterials for siRNA Therapy of Chemoresistant Cancers. ACS NANO 2024; 18:34425-34463. [PMID: 39666006 DOI: 10.1021/acsnano.4c11259] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Chemoresistance remains a long-standing challenge after cancer treatment. Over the last two decades, RNA interference (RNAi) has emerged as a gene therapy modality to sensitize cancer cells to chemotherapy. However, the use of RNAi, specifically small-interfering RNA (siRNA), is hindered by biological barriers that limit its intracellular delivery. Nanoparticles can overcome these barriers by protecting siRNA in physiological environments and facilitating its delivery to cancer cells. In this review, we discuss the development of nanomaterials for siRNA delivery in cancer therapy, current challenges, and future perspectives for their implementation to overcome cancer chemoresistance.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand 97178, Iran
| | - Christian G Figueroa-Espada
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, Pennsylvania 19104, United States
| | - Emily L Han
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, Pennsylvania 19104, United States
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, Pennsylvania 19104, United States
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Saber Amin Yavari
- Department of Orthopedics, University Medical Center Utrecht, 3584 Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, 3584 Utrecht, The Netherlands
| |
Collapse
|
6
|
Hua Y, Qin M, Lu S, Zhang Y, Tan S, Ding D, Wang L. Hyaluronic acid-functionalized MOFs for combined sunitinib and siRNA therapy in renal cell carcinoma. Int J Biol Macromol 2024; 283:137317. [PMID: 39510472 DOI: 10.1016/j.ijbiomac.2024.137317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/25/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Sunitinib is a first-line treatment for renal cell carcinoma (RCC), but suffers from drug resistance, causing therapy failure. Therefore, nano-scale delivery systems should be introduced for targeted delivery. Metal-organic frameworks (MOFs) are attractive drug carriers that not only enable multidrug combination therapies but also exert photodynamic effects by incorporating photosensitizers as components. Here, a Zr-based porphyrinic nanoscale MOF, PCN-224, was prepared as the carrier for the co-delivery of sunitinib and the siRNA against vascular endothelial growth factor receptor-2 (VEGFR-2). Drug-loaded PCN-224 is coated with hyaluronic acid (HA) to prevent drug molecular leakage and to exert tumor-targeting effects (CD44 in tumor cells). Photodynamic therapy was conducted under 660 nm laser (50 mW·cm-2, 10 min) irradiation. Compared with St/siVEGFR-2@PCN-224@HA without the HA coating, St/siVEGFR-2@PCN-224@HA significantly suppressed cell viability and promoted cell apoptosis. Laser irradiation further increased the anti-cancer effect of St/siVEGFR-2@PCN-224@HA by generating cytotoxic ROS. H&E staining of major organs revealed no signs of damage, indicating the biosafety of St/siVEGFR-2@PCN-224@HA. The prepared St/siVEGFR-2@PCN-224@HA system enables triple inhibition of tumor growth via a combination of targeted therapy and genetic and photodynamic therapy to enhance the therapeutic effects on RCC.
Collapse
Affiliation(s)
- Ye Hua
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang 110011, Liaoning, China
| | - Muting Qin
- Shengjing Hospital of China Medical University, Shenyang 110011, Liaoning, China
| | - Shiyang Lu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang 110011, Liaoning, China
| | - Yixiao Zhang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang 110011, Liaoning, China
| | - Shutao Tan
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang 110011, Liaoning, China
| | - Ding Ding
- Department of Clinical Nutrition, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China.
| | - Lu Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang 110011, Liaoning, China.
| |
Collapse
|
7
|
Kubo T, Yanagihara K, Nishimura Y, Iino Y, Komatsu T, Tansou R, Mihara K, Seyama T. Antitumor Effect of Oleoyl-siRNA against Pancreatic Cancer Using a Portal Vein Infusion Liver-Metastatic Mouse Model. Mol Pharm 2024; 21:5115-5125. [PMID: 39279440 DOI: 10.1021/acs.molpharmaceut.4c00502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
In this study, we developed an oleoyl-siRNA conjugate in which oleic acid was conjugated at the 5'-end of the sense strand of the siRNA. Furthermore, we examined the effects of RNAi in a mouse model of pancreatic cancer with liver metastasis. The mouse model of pancreatic cancer with liver metastasis was developed by implanting Sui67Luc human pancreatic cancer cells into the portal veins of mice. Sui67Luc cells have high expression of tumor-related genes such as β-catenin, vascular endothelial growth factor, and programmed cell death ligand-1. All genes were knocked down using siRNA, among which siRNA targeting β-catenin exhibited the most suitable RNAi effect. Therefore, we investigated the in vitro RNAi effect of oleoyl-siRNA (Ole-siRNA) targeting the β-catenin gene in Sui67Luc cells and found that it was stronger than that of unmodified siRNA. For in vivo experiments, we investigated the biodistribution, antitumor effect, and change in life expectancy of mice upon systemic administration of Ole-siRNA complexed with Invivofectamine 3.0 (IVF). In terms of biodistribution, the Ole-siRNA/IVF complex likely accumulates in the liver of mice. The antitumor effect of Ole-siRNA in a portal vein infusion liver-metastatic Sui67Luc tumor mouse model was evaluated using an in vivo imaging system. Ole-siRNA had a significant antitumor effect compared with nonmodified siRNA. In addition, mice with metastatic liver Sui67Luc tumors treated with Ole-siRNA showed increased survival. These results suggest that Ole-siRNAs are useful novel RNAi molecules for treating pancreatic cancer and liver metastasis.
Collapse
Affiliation(s)
- Takanori Kubo
- Laboratory of Molecular Cell Biology, Department of Life Science, Faculty of Pharmacy, Yasuda Women's University, Hiroshima 731-0153, Japan
| | - Kazuyoshi Yanagihara
- Laboratory of Molecular Cell Biology, Department of Life Science, Faculty of Pharmacy, Yasuda Women's University, Hiroshima 731-0153, Japan
- Division of Rare Cancer Research, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Yoshio Nishimura
- School of Pharmaceutical Sciences, Ohu University, Fukushima 963-8611, Japan
| | - Yuki Iino
- Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Chiba 277-8577, Japan
| | - Teruo Komatsu
- Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Chiba 277-8577, Japan
| | - Rina Tansou
- Laboratory of Molecular Cell Biology, Department of Life Science, Faculty of Pharmacy, Yasuda Women's University, Hiroshima 731-0153, Japan
| | - Keichiro Mihara
- Department of International Center for Cell and Gene Therapy, Fujita Health University, Toyoake 470-1192, Japan
| | - Toshio Seyama
- Laboratory of Molecular Cell Biology, Department of Life Science, Faculty of Pharmacy, Yasuda Women's University, Hiroshima 731-0153, Japan
| |
Collapse
|
8
|
Wang X, Huang H, Xu W, Gong Y, Shi S, Wan X, Li P. TGF-β1 and FOXM1 siRNA co-loaded nanoparticles by disulfide crosslinked PEG-PDMAEMA for the treatment of triple-negative breast cancer and its bone metastases in vitro. Drug Dev Ind Pharm 2024:1-12. [PMID: 39286903 DOI: 10.1080/03639045.2024.2404979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/26/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
INTRODUCTION Triple-negative breast cancer (TNBC) is characterized by higher malignancy and mortality and is prone to distant metastasis, among which bone is the most common site. It's urgent to explore new strategies for the treatment of TNBC and its bone metastases. METHODS A tumor environment responsive vector, poly-(dimethylaminoethyl methacrylate)-SS-poly(ethylene glycol)-SS-poly-(dimethylaminoethyl methacrylate) (PDMAEMA-SS-PEG-SS-PDMAEMA), was constructed to co-delivery transforming growth factor-β1 (TGF-β1) siRNA and forkhead box M1 (FOXM1) siRNA in MDA-MB-231 cells. The preparation, characterization, in vitro release, stability, and transfection efficiency of nanoparticles were measured. Cell viability, migration, and invasion of MDA-MB-231 cells were determined. Cell chemotactic migration and cell heterogeneity adhesion of MDA-MB-231 cells to the human osteoblast-like cell line MG-63 were determined. RESULTS PDMAEMA-SS-PEG-SS-PDMAEMA self-assembled with siRNA at N/P of 15:1 into nanoparticles with a particle size of 122 nm. In vitro release exhibited redox and pH sensitivity, and the nanoparticles protected siRNA from degradation by RNase and serum protein, remaining stable at 4 °C with similar transfection efficiency with lipo2000. Nanoparticles co-loaded with TGF-β1 siRNA and FOXM1 siRNA inhibited the cell viability, migration and invasion of MDA-MB-231 cells, as well as chemotactic migration and heterogeneous adhesion of MDA-MB-231 cells to MG-63 cells, showing a synergetic effect. After gene silencing on TGF-β1 and FOXM1, the epithelial to mesenchymal transition (EMT) related molecules vimentin mRNA expression decreased while E-cadherin increased. CONCLUSIONS PDMAEMA-SS-PEG-SS-PDMAEMA was suitable for TGF-β1 siRNA and FOXM1 siRNA delivery, exhibiting a synergetic inhibition effect on TNBC and its bone metastases, which might be related to its synergetic inhibition on EMT.
Collapse
Affiliation(s)
- Xingbo Wang
- Department of Orthopedics, Gansu Provincial Hospital, Lanzhou, China
| | - Hong Huang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Wenxiu Xu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Yanling Gong
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Songbo Shi
- Department of Orthopedics, Gansu Provincial Hospital, Lanzhou, China
| | - Xu Wan
- Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, China Shanghai
| | - Pengbiao Li
- Department of Orthopedics, Gansu Provincial Hospital, Lanzhou, China
| |
Collapse
|
9
|
Buddhiraju HS, Yadav DN, Dey S, Eswar K, Padmakumar A, Rengan AK. Advances in Peptide-Decorated Targeted Drug Delivery: Exploring Therapeutic Potential and Nanocarrier Strategies. ACS APPLIED BIO MATERIALS 2024; 7:4879-4893. [PMID: 37996391 DOI: 10.1021/acsabm.3c00711] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Peptides are ideal biologicals for targeted drug delivery and have also been increasingly employed as theranostic tools in treating various diseases, including cancer, with minimal or no side effects. Owing to their receptor-specificity, peptide-mediated drug delivery aids in targeted drug delivery with better pharmacological biodistribution. Nanostructured self-assembled peptides and peptide-drug conjugates demonstrate enhanced stability and performance and captivating biological effects in comparison with conventional peptides. Moreover, they serve as valuable tools for establishing interfaces between drug carriers and biological systems, enabling the traversal of multiple biological barriers encountered by peptide-drug conjugates on their journeys to their intended targets. Peptide-based drugs play a pivotal role in the field of medicine and hold great promise for addressing a wide range of complex diseases such as cancer and autoimmune disorders. Nanotechnology has revolutionized the fields of medicine, biomedical engineering, biotechnology, and engineering sciences over the past two decades. With the help of nanotechnology, better delivery of peptides to the target site could be achieved by exploiting the small size, increased surface area, and passive targeting ability of the nanocarrier. Furthermore, nanocarriers also ensure safe delivery of the peptide moieties to the target site, protecting them from degradation. Nanobased peptide delivery systems would be of significant importance in the near future for the successful targeted and efficient delivery of peptides. This review focuses on peptide-drug conjugates and nanoparticle-mediated self-assembled peptide delivery systems in cancer therapeutics.
Collapse
Affiliation(s)
- Hima Sree Buddhiraju
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Kandi 502 284, India
| | - Dokkari Nagalaxmi Yadav
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Kandi 502 284, India
| | - Sreenath Dey
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Kandi 502 284, India
| | - Kalyani Eswar
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Kandi 502 284, India
| | - Ananya Padmakumar
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Kandi 502 284, India
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Kandi 502 284, India
| |
Collapse
|
10
|
Jiang Y, Jiang B, Wang Z, Li Y, Cheung JCW, Yin B, Wong SHD. Nucleic Acid Armor: Fortifying RNA Therapeutics through Delivery and Targeting Innovations for Immunotherapy. Int J Mol Sci 2024; 25:8888. [PMID: 39201574 PMCID: PMC11354913 DOI: 10.3390/ijms25168888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/09/2024] [Accepted: 08/11/2024] [Indexed: 09/02/2024] Open
Abstract
RNA is a promising nucleic acid-based biomolecule for various treatments because of its high efficacy, low toxicity, and the tremendous availability of targeting sequences. Nevertheless, RNA shows instability and has a short half-life in physiological environments such as the bloodstream in the presence of RNAase. Therefore, developing reliable delivery strategies is important for targeting disease sites and maximizing the therapeutic effect of RNA drugs, particularly in the field of immunotherapy. In this mini-review, we highlight two major approaches: (1) delivery vehicles and (2) chemical modifications. Recent advances in delivery vehicles employ nanotechnologies such as lipid-based nanoparticles, viral vectors, and inorganic nanocarriers to precisely target specific cell types to facilitate RNA cellular entry. On the other hand, chemical modification utilizes the alteration of RNA structures via the addition of covalent bonds such as N-acetylgalactosamine or antibodies (antibody-oligonucleotide conjugates) to target specific receptors of cells. The pros and cons of these technologies are enlisted in this review. We aim to review nucleic acid drugs, their delivery systems, targeting strategies, and related chemical modifications. Finally, we express our perspective on the potential combination of RNA-based click chemistry with adoptive cell therapy (e.g., B cells or T cells) to address the issues of short duration and short half-life associated with antibody-oligonucleotide conjugate drugs.
Collapse
Affiliation(s)
- Yi Jiang
- School of Medicine and Pharmacy, The Ocean University of China, Qingdao 266100, China; (Y.J.); (B.J.); (Y.L.)
| | - Bolong Jiang
- School of Medicine and Pharmacy, The Ocean University of China, Qingdao 266100, China; (Y.J.); (B.J.); (Y.L.)
| | - Zhenru Wang
- Medical College, Jining Medical University, Jining 272000, China;
| | - Yuxi Li
- School of Medicine and Pharmacy, The Ocean University of China, Qingdao 266100, China; (Y.J.); (B.J.); (Y.L.)
| | - James Chung Wai Cheung
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China;
| | - Bohan Yin
- School of Medicine and Pharmacy, The Ocean University of China, Qingdao 266100, China; (Y.J.); (B.J.); (Y.L.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Siu Hong Dexter Wong
- School of Medicine and Pharmacy, The Ocean University of China, Qingdao 266100, China; (Y.J.); (B.J.); (Y.L.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
11
|
Deng J, Yuan S, Pan W, Li Q, Chen Z. Nanotherapy to Reshape the Tumor Microenvironment: A New Strategy for Prostate Cancer Treatment. ACS OMEGA 2024; 9:26878-26899. [PMID: 38947792 PMCID: PMC11209918 DOI: 10.1021/acsomega.4c03055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 07/02/2024]
Abstract
Prostate cancer (PCa) is the second most common cancer in males worldwide. Androgen deprivation therapy (ADT) is the primary treatment method used for PCa. Although more effective androgen synthesis and antiandrogen inhibitors have been developed for clinical practice, hormone resistance increases the incidence of ADT-insensitive prostate cancer and poor prognoses. The tumor microenvironment (TME) has become a research hotspot with efforts to identify treatment targets based on the characteristics of the TME to improve prognosis. Herein, we introduce the basic characteristics of the PCa TME and the side effects of traditional prostate cancer treatments. We further highlight the emergence of novel nanotherapy strategies, their therapeutic mechanisms, and their effects on the PCa microenvironment. With further research, clinical applications of nanotherapy for PCa are expected in the near future. Collectively, this Review provides a valuable resource regarding the various nanotherapy types, demonstrating their broad clinical prospects to improve the quality of life in patients with PCa.
Collapse
Affiliation(s)
- Juan Deng
- The
Third Affiliated Hospital of Wenzhou Medical university, Wenzhou, 325200, China
- The
First Clinical College of Guangdong Medical University, Zhanjiang, 524023, China
| | - Shaofei Yuan
- The
Third Affiliated Hospital of Wenzhou Medical university, Wenzhou, 325200, China
| | - Wenjie Pan
- The
Third Affiliated Hospital of Wenzhou Medical university, Wenzhou, 325200, China
| | - Qimeng Li
- The
Third Affiliated Hospital of Wenzhou Medical university, Wenzhou, 325200, China
| | - Zhonglin Chen
- The
Third Affiliated Hospital of Wenzhou Medical university, Wenzhou, 325200, China
| |
Collapse
|
12
|
Singh D, Singh L, Kaur S, Arora A. Nucleic acids based integrated macromolecular complexes for SiRNA delivery: Recent advancements. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024; 44:409-432. [PMID: 38693628 DOI: 10.1080/15257770.2024.2347499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/27/2024] [Accepted: 04/18/2024] [Indexed: 05/03/2024]
Abstract
The therapeutic potential of small interfering RNA (siRNA) is monumental, offering a pathway to silence disease-causing genes with precision. However, the delivery of siRNA to target cells in-vivo remains a formidable challenge, owing to degradation by nucleases, poor cellular uptake and immunogenicity. This overview examines recent advancements in the design and application of nucleic acid-based integrated macromolecular complexes for the efficient delivery of siRNA. We dissect the innovative delivery vectors developed in recent years, including lipid-based nanoparticles, polymeric carriers, dendrimer complexes and hybrid systems that incorporate stimuli-responsive elements for targeted and controlled release. Advancements in bioconjugation techniques, active targeting strategies and nanotechnology-enabled delivery platforms are evaluated for their contribution to enhancing siRNA delivery. It also addresses the complex interplay between delivery system design and biological barriers, highlighting the dynamic progress and remaining hurdles in translating siRNA therapies from bench to bedside. By offering a comprehensive overview of current strategies and emerging technologies, we underscore the future directions and potential impact of siRNA delivery systems in personalized medicine.
Collapse
Affiliation(s)
- Dilpreet Singh
- University Institute of Pharma Sciences, Chandigarh University, Mohali, India
- University Centre for Research and Development, Chandigarh University, Mohali, India
| | - Lovedeep Singh
- University Institute of Pharma Sciences, Chandigarh University, Mohali, India
| | - Simranjeet Kaur
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - Akshita Arora
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
13
|
Yang C, Lin ZI, Zhang X, Xu Z, Xu G, Wang YM, Tsai TH, Cheng PW, Law WC, Yong KT, Chen CK. Recent Advances in Engineering Carriers for siRNA Delivery. Macromol Biosci 2024; 24:e2300362. [PMID: 38150293 DOI: 10.1002/mabi.202300362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/29/2023] [Indexed: 12/28/2023]
Abstract
RNA interference (RNAi) technology has been a promising treatment strategy for combating intractable diseases. However, the applications of RNAi in clinical are hampered by extracellular and intracellular barriers. To overcome these barriers, various siRNA delivery systems have been developed in the past two decades. The first approved RNAi therapeutic, Patisiran (ONPATTRO) using lipids as the carrier, for the treatment of amyloidosis is one of the most important milestones. This has greatly encouraged researchers to work on creating new functional siRNA carriers. In this review, the recent advances in siRNA carriers consisting of lipids, polymers, and polymer-modified inorganic particles for cancer therapy are summarized. Representative examples are presented to show the structural design of the carriers in order to overcome the delivery hurdles associated with RNAi therapies. Finally, the existing challenges and future perspective for developing RNAi as a clinical modality will be discussed and proposed. It is believed that the addressed contributions in this review will promote the development of siRNA delivery systems for future clinical applications.
Collapse
Affiliation(s)
- Chengbin Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Zheng-Ian Lin
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Xinmeng Zhang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Zhourui Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Gaixia Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yu-Min Wang
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Tzu-Hsien Tsai
- Division of Cardiology and Department of Internal Medicine, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi, 60002, Taiwan
| | - Pei-Wen Cheng
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan
- Department of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Wing-Cheung Law
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, 999077, P. R. China
| | - Ken-Tye Yong
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Chih-Kuang Chen
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| |
Collapse
|
14
|
Theobald N, Templeton D. A drug delivery strategy emerges that has the potential to transform cancer therapy. Drug Discov Today 2024; 29:103923. [PMID: 38401877 DOI: 10.1016/j.drudis.2024.103923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/15/2024] [Accepted: 02/18/2024] [Indexed: 02/26/2024]
Abstract
The shortcomings of current approaches to treating cancer are driving the need for novel, innovative strategies that reduce the toxicity associated with chemotherapy and improve on the limited efficacy of immunotherapy. We believe that dual delivery of small interfering RNA (siRNA) via a suitable delivery system, with or without a relevant, additional, small-molecule therapeutic agent, will herald new era of treatment efficiency in cancer.
Collapse
Affiliation(s)
- Nigel Theobald
- N4 Pharma, Weston House, Bradgate Park View, Chellaston DE73 5UJ, UK.
| | - David Templeton
- N4 Pharma, Weston House, Bradgate Park View, Chellaston DE73 5UJ, UK
| |
Collapse
|
15
|
Li M, Zhu J, Lv Z, Qin H, Wang X, Shi H. Recent Advances in RNA-Targeted Cancer Therapy. Chembiochem 2024; 25:e202300633. [PMID: 37961028 DOI: 10.1002/cbic.202300633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/15/2023]
Abstract
Ribonucleic acid (RNA) plays a pivotal role in gene regulation and protein biosynthesis. Interfering the physiological function of key RNAs to induce cell apoptosis holds great promise for cancer treatment. Many RNA-targeted anti-cancer strategies have emerged continuously. Among them, RNA interference (RNAi) has been recognized as a promising therapeutic modality for various disease treatments. Nevertheless, the primary obstacle in siRNA delivery-escaping the endosome and crossing the plasma membrane severely impedes its therapeutic potential. Thus far, a variety of nanosystems as well as carrier-free bioconjugation for siRNA delivery have been developed and employed to enhance the drug delivery and anti-tumor efficiency. Besides, the use of small molecules to target specific RNA structures and disrupt their function, along with the covalent modification of RNA, has also drawn tremendous attention recently owing to high therapeutic efficacy. In this review, we will provide an overview of recent progress in RNA-targeted cancer therapy including various siRNA delivery strategies, RNA-targeting small molecules, and newly emerged covalent RNA modification. Finally, challenges and future perspectives faced in this research field will be discussed.
Collapse
Affiliation(s)
- Miao Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Jinfeng Zhu
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Roma, 00133, Italy
| | - Zhengzhong Lv
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Hongni Qin
- Suzhou Industrial Park Institute of Services Outsourcing, Suzhou, 215123, China
| | - Xiaoyan Wang
- Department of Ultrasound, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, 046000, China
| | - Haibin Shi
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| |
Collapse
|
16
|
Huang J, Wang K, Wu S, Zhang J, Chen X, Lei S, Wu J, Men K, Duan X. Tumor Cell Lysate-Based Multifunctional Nanoparticles Facilitate Enhanced mRNA Delivery and Immune Stimulation for Melanoma Gene Therapy. Mol Pharm 2024; 21:267-282. [PMID: 38079527 DOI: 10.1021/acs.molpharmaceut.3c00826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2024]
Abstract
Messenger ribonucleic acid (mRNA)-based gene therapy has great potential for cancer gene therapy. However, the effectiveness of mRNA in cancer therapy needs to be further improved, and the delivery efficiency and instability of mRNA limit the application of mRNA-based products. Both the delivery efficiency can be elevated by cell-penetrating peptide modification, and the immune response can be enhanced by tumor cell lysate stimulation, representing an advantageous strategy to expand the effectiveness of mRNA gene therapy. Therefore, it is vital to exploit a vector that can deliver high-efficiency mRNA with codelivery of tumor cell lysate to induce specific immune responses. We previously reported that DMP cationic nanoparticles, formed by the self-assembly of DOTAP and mPEG-PCL, can deliver different types of nucleic acids. DMP has been successfully applied in gene therapy research for various tumor types. Here, we encapsulated tumor cell lysates with DMP nanoparticles and then modified them with a fused cell-penetrating peptide (TAT-iRGD) to form an MLSV system. The MLSV system was loaded with encoded Bim mRNA, forming the MLSV/Bim complex. The average size of the synthesized MLSV was 191.4 nm, with a potential of 47.8 mV. The MLSV/mRNA complex promotes mRNA absorption through caveolin-mediated endocytosis, with a transfection rate of up to 68.6% in B16 cells. The MLSV system could also induce the maturation and activation of dendritic cells, obviously promoting the expression of CD80, CD86, and MHC-II both in vitro and in vivo. By loading the encoding Bim mRNA, the MLSV/Bim complex can inhibit cell proliferation and tumor growth, with inhibition rates of up to 87.3% in vitro. Similarly, the MLSV/Bim complex can inhibit tumor growth in vivo, with inhibition rates of up to 78.7% in the B16 subcutaneous tumor model and 63.3% in the B16 pulmonary metastatic tumor model. Our results suggest that the MLSV system is an advanced candidate for mRNA-based immunogene therapy.
Collapse
Affiliation(s)
- Jing Huang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Kaiyu Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Shan Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Jin Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Xiayu Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Sibei Lei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Jieping Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Ke Men
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Xingmei Duan
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| |
Collapse
|
17
|
Nicolescu C, Schilb A, Kim J, Sun D, Hall R, Gao S, Gilmore H, Schiemann WP, Lu ZR. Evaluating Dual-Targeted ECO/siRNA Nanoparticles against an Oncogenic lncRNA for Triple Negative Breast Cancer Therapy with Magnetic Resonance Molecular Imaging. CHEMICAL & BIOMEDICAL IMAGING 2023; 1:461-470. [PMID: 37655165 PMCID: PMC10466452 DOI: 10.1021/cbmi.3c00011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/19/2023] [Accepted: 03/08/2023] [Indexed: 09/02/2023]
Abstract
Differentiation antagonizing noncoding RNA (DANCR) is recognized as an oncogenic long noncoding RNA (lncRNA) overexpressed in triple negative breast cancer (TNBC). We showed in a previous study that RNAi with targeted multifunctional ionizable lipid ECO/siRNA nanoparticles was effective to regulate this undruggable target for effective treatment of TNBC. In this study, we developed dual-targeted ECO/siDANCR nanoparticles by targeting a tumor extracellular matrix oncoprotein, extradomain B fibronectin (EDB-FN), and integrins overexpressed on cancer cells for enhanced delivery of siDANCR. The treatment of Hs578T TNBC cells and MCF-7 estrogen receptor-positive cells in vitro resulted in significant down-regulation of DANCR and EDB-FN and suppressed invasion and 3D spheroid formation of the cells. Magnetic resonance molecular imaging (MRMI) with an EDB-FN-targeted contrast agent, MT218, was used to noninvasively evaluate tumor response to treatment with the targeted ECO/siDANCR nanoparticles in female nude mice bearing orthotopic Hs578T and MCF-7 xenografts. MRMI with MT218 was effective to differentiate between aggressive TNBC with high DANCR and EDB-FN expression and ER+ MCF-7 tumors with low expression of the targets. MRMI showed that the dual-targeted ECO/siDANCR nanoparticles resulted in more significant inhibition of tumor growth in both models than the controls and significantly reduced EDB-FN expression in the TNBC tumors. The combination of MRMI and dual-targeted ECO/siDANCR nanoparticles is a promising approach for image-guided treatment of TNBC by regulating the onco-lncRNA.
Collapse
Affiliation(s)
- Calin Nicolescu
- Department
of Biomedical Engineering, Case Western
Reserve University, Cleveland, Ohio 44106, United States
| | - Andrew Schilb
- Department
of Biomedical Engineering, Case Western
Reserve University, Cleveland, Ohio 44106, United States
| | - Jiyoon Kim
- Department
of Biomedical Engineering, Case Western
Reserve University, Cleveland, Ohio 44106, United States
| | - Da Sun
- Department
of Biomedical Engineering, Case Western
Reserve University, Cleveland, Ohio 44106, United States
| | - Ryan Hall
- Department
of Biomedical Engineering, Case Western
Reserve University, Cleveland, Ohio 44106, United States
| | - Songqi Gao
- Department
of Biomedical Engineering, Case Western
Reserve University, Cleveland, Ohio 44106, United States
| | - Hannah Gilmore
- Department
of Pathology, University Hospitals of Cleveland, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - William P. Schiemann
- Case
Comprehensive Cancer Center, Case Western
Reserve University, Cleveland, Ohio 44106, United States
- Department
of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Zheng-Rong Lu
- Department
of Biomedical Engineering, Case Western
Reserve University, Cleveland, Ohio 44106, United States
- Case
Comprehensive Cancer Center, Case Western
Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
18
|
Beraza-Millor M, Rodríguez-Castejón J, Miranda J, Del Pozo-Rodríguez A, Rodríguez-Gascón A, Solinís MÁ. Novel Golden Lipid Nanoparticles with Small Interference Ribonucleic Acid for Substrate Reduction Therapy in Fabry Disease. Pharmaceutics 2023; 15:1936. [PMID: 37514122 PMCID: PMC10385692 DOI: 10.3390/pharmaceutics15071936] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/28/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Substrate reduction therapy (SRT) has been proposed as a new gene therapy for Fabry disease (FD) to prevent the formation of globotriaosylceramide (Gb3). Nanomedicines containing different siRNA targeted to Gb3 synthase (Gb3S) were designed. Formulation factors, such as the composition, solid lipid nanoparticles (SLNs) preparation method and the incorporation of different ligands, such as gold nanoparticles (GNs), protamine (P) and polysaccharides, were evaluated. The new siRNA-golden LNPs were efficiently internalized in an FD cell model (IMFE-1), with GNs detected in the cytoplasm and in the nucleus. Silencing efficacy (measured by RT-qPCR) depended on the final composition and method of preparation, with silencing rates up to 90% (expressed as the reduction in Gb3S-mRNA). GNs conferred a higher system efficacy and stability without compromising cell viability and hemocompatibility. Immunocytochemistry assays confirmed Gb3S silencing for at least 15 days with the most effective formulations. Overall, these results highlight the potential of the new siRNA-golden LNP system as a promising nanomedicine to address FD by specific SRT.
Collapse
Affiliation(s)
- Marina Beraza-Millor
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (Pharma Nano Gene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents and Gene Therapy, 01006 Vitoria-Gasteiz, Spain
| | - Julen Rodríguez-Castejón
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (Pharma Nano Gene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents and Gene Therapy, 01006 Vitoria-Gasteiz, Spain
| | - Jonatan Miranda
- GLUTEN3S Research Group, Faculty of Pharmacy, University of Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, Nutrition and Food Safety, 01006 Vitoria-Gasteiz, Spain
| | - Ana Del Pozo-Rodríguez
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (Pharma Nano Gene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents and Gene Therapy, 01006 Vitoria-Gasteiz, Spain
| | - Alicia Rodríguez-Gascón
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (Pharma Nano Gene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents and Gene Therapy, 01006 Vitoria-Gasteiz, Spain
| | - María Ángeles Solinís
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (Pharma Nano Gene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents and Gene Therapy, 01006 Vitoria-Gasteiz, Spain
| |
Collapse
|
19
|
Shadmani N, Makvandi P, Parsa M, Azadi A, Nedaei K, Mozafari N, Poursina N, Mattoli V, Tay FR, Maleki A, Hamidi M. Enhancing Methotrexate Delivery in the Brain by Mesoporous Silica Nanoparticles Functionalized with Cell-Penetrating Peptide using in Vivo and ex Vivo Monitoring. Mol Pharm 2023; 20:1531-1548. [PMID: 36763486 DOI: 10.1021/acs.molpharmaceut.2c00755] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The blood-brain barrier (BBB) acts as a physical/biochemical barrier that protects brain parenchyma from potential hazards exerted by different xenobiotics found in the systemic circulation. This barrier is created by "a lipophilic gate" as well as a series of highly organized influx/efflux mechanisms. The BBB bottleneck adversely affects the efficacy of chemotherapeutic agents in treating different CNS malignancies such as glioblastoma, an aggressive type of cancer affecting the brain. In the present study, mesoporous silica nanoparticles (MSNs) were conjugated with the transactivator of transcription (TAT) peptide, a cell-penetrating peptide, to produce MSN-NH-TAT with the aim of improving methotrexate (MTX) penetration into the brain. The TAT-modified nanosystem was characterized by Fourier transform infrared spectrometry (FTIR), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), dynamic light scattering (DLS), and N2 adsorption-desorption analysis. In vitro hemolysis and cell viability studies confirmed the biocompatibility of the MSN-based nanocarriers. In addition, in vivo studies showed that the MTX-loaded MSN-NH-TAT improved brain-to-plasma concentration ratio, brain uptake clearance, and the drug's blood terminal half-life, compared with the use of free MTX. Taken together, the results of the present study indicate that MSN functionalization with TAT is crucial for delivery of MTX into the brain. The present nanosystem represents a promising alternative drug carrier to deliver MTX into the brain via overcoming the BBB.
Collapse
Affiliation(s)
- Nasim Shadmani
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, 45139-56184Zanjan, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, 45139-56184Zanjan, Iran.,Trita Nanomedicine Research & Technology Development Center (TNRTC), Zanjan Health Technology Park, 45156-13191Zanjan, Iran
| | - Pooyan Makvandi
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, EdinburghEH9 3JL, U.K
| | - Maliheh Parsa
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Zanjan University of Medical Sciences, 45139-56184Zanjan, Iran.,Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, 45139-56184Zanjan, Iran
| | - Amir Azadi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, 71468 64685Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, 71468 64685Shiraz, Iran
| | - Keivan Nedaei
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, 45139-56184Zanjan, Iran
| | - Negin Mozafari
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, 71468 64685Shiraz, Iran
| | - Narges Poursina
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, 45139-56184Zanjan, Iran
| | - Virgilio Mattoli
- Centre for Materials Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025Pontedera, Pisa, Italy
| | - Franklin R Tay
- The Graduate School, Augusta University, Augusta, Georgia30912, United States
| | - Aziz Maleki
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, 45139-56184Zanjan, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, 45139-56184Zanjan, Iran
| | - Mehrdad Hamidi
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, 45139-56184Zanjan, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, 45139-56184Zanjan, Iran.,Trita Nanomedicine Research & Technology Development Center (TNRTC), Zanjan Health Technology Park, 45156-13191Zanjan, Iran.,Department of Pharmaceutics, School of Pharmacy, Zanjan University of Medical Sciences, 45139-56184Zanjan, Iran
| |
Collapse
|
20
|
Abdur Rahman M, Haque S, Athikesavan MM, Kamaludeen MB. A review of environmental friendly green composites: production methods, current progresses, and challenges. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:16905-16929. [PMID: 36607568 DOI: 10.1007/s11356-022-24879-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
The growing concern about environmental damage and the inability to meet the demand for more versatile, environmentally friendly materials has sparked increasing interest in polymer composites derived from renewable and biodegradable plant-based materials, mainly from forests. These composites are mostly referred to as "green" and they can be widely employed in many industrial applications. Green composites are less harmful to the environment and could be potential substitutes for petroleum-based polymeric materials. It is helpful to limit usage of fossil oil assets by developing biopolymer matrices such as cellulose-reinforced biocomposites using renewable assets such as plant oils, carbohydrates, and proteins. This paper focuses on green composites processing utilizing a variety of naturally available resources, sustainable materials which are not detrimental to the environment, new scientific signs of progress in achieving green sustainable development, as well as nanotechnology and its environmental consequences. Additionally, the environmental impacts of different composite materials are examined in this paper, along with their production from eco-friendly materials. Moreover, the manufacturing aspects of green composites and some concerns related to their production are also discussed. The merits of green composite materials and valid reasons why they are a valuable substitute for the traditionally used composite materials are also covered.
Collapse
Affiliation(s)
- M Abdur Rahman
- Department of Mechanical Engineering, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai-600048, Tamil Nadu, India.
| | - Serajul Haque
- Department of Mechanical Engineering, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai-600048, Tamil Nadu, India
| | - Muthu Manokar Athikesavan
- Department of Mechanical Engineering, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai-600048, Tamil Nadu, India
| | - Mohamed Bak Kamaludeen
- Department of Mechanical Engineering, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai-600048, Tamil Nadu, India
| |
Collapse
|