1
|
Aurinsalo L, Lapatto‐Reiniluoto O, Kurkela M, Neuvonen M, Kiiski JI, Niemi M, Tornio A, Backman JT. A Phenotyping Tool for Seven Cytochrome P450 Enzymes and Two Transporters: Application to Examine the Effects of Clopidogrel and Gemfibrozil. Clin Pharmacol Ther 2025; 117:1732-1742. [PMID: 39982209 PMCID: PMC12087695 DOI: 10.1002/cpt.3610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/07/2025] [Indexed: 02/22/2025]
Abstract
Clinical cocktails for cytochrome P450 (CYP) phenotyping lack a marker for CYP2C8. We aimed to combine the CYP2C8 index drug repaglinide with the Geneva cocktail (caffeine/CYP1A2, bupropion/CYP2B6, flurbiprofen/CYP2C9, omeprazole/CYP2C19, dextromethorphan/CYP2D6, and midazolam/CYP3A4). We also included endogenous organic anion transporting polypeptide (OATP) 1B1 and 1B3 biomarkers glycochenodeoxycholate 3-O-glucuronide and glycochenodeoxycholate 3-sulfate, and investigated the CYP2C8 inhibition selectivity of clopidogrel and gemfibrozil with the full cocktail. In a five-phase randomized cross-over study, the following drugs were administered to 16 healthy volunteers: (i) repaglinide, (ii) the Geneva cocktail, (iii) repaglinide with the Geneva cocktail (full cocktail), (iv) clopidogrel followed by the full cocktail, and (v) gemfibrozil followed by the full cocktail. The Geneva cocktail increased repaglinide AUC0-23h 1.22-fold (90% confidence interval 1.04-1.44, P = 0.033). The full cocktail accurately captured known inhibitory effects of clopidogrel on CYP2B6, CYP2C8, and CYP2C19 and that of gemfibrozil on CYP2C8. Gemfibrozil decreased the paraxanthine/caffeine AUC0-12h ratio by 23% (14-31%, P < 0.01) and increased caffeine AUC0-12h 1.20-fold (1.03-1.40, P = 0.036). Gemfibrozil increased the metabolite-to-index drug AUC0-23h ratios of flurbiprofen, omeprazole, dextromethorphan, and midazolam 1.59-fold (1.32-1.92), 1.47-fold (1.34-1.61), 1.79-fold (1.23-2.59), and 2.1-fold (1.9-2.4), respectively, without affecting the index drug AUCs (P < 0.01). Gemfibrozil increased the AUC0-4h of glycochenodeoxycholate 3-O-glucuronide 1.33-fold (1.07-1.65, P = 0.027). In conclusion, the combination of repaglinide, the Geneva cocktail and endogenous biomarkers for OATP1B1 and OATP1B3 yields a nine-in-one phenotyping tool. Apart from strong CYP2C8 inhibition, gemfibrozil weakly inhibits CYP1A2 and OATP1B1 and appears to impair the elimination of the metabolites of several CYP index drugs.
Collapse
Affiliation(s)
- Laura Aurinsalo
- Department of Clinical PharmacologyUniversity of HelsinkiHelsinkiFinland
- Individualized Drug Therapy Research Program, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Department of Clinical Pharmacology, HUS Diagnostic CenterHelsinki University HospitalHelsinkiFinland
| | - Outi Lapatto‐Reiniluoto
- Department of Clinical PharmacologyUniversity of HelsinkiHelsinkiFinland
- Individualized Drug Therapy Research Program, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Department of Clinical Pharmacology, HUS Diagnostic CenterHelsinki University HospitalHelsinkiFinland
- HUS PharmacyHelsinki University HospitalHelsinkiFinland
| | - Mika Kurkela
- Department of Clinical PharmacologyUniversity of HelsinkiHelsinkiFinland
- Individualized Drug Therapy Research Program, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | - Mikko Neuvonen
- Department of Clinical PharmacologyUniversity of HelsinkiHelsinkiFinland
- Individualized Drug Therapy Research Program, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | - Johanna I. Kiiski
- Department of Clinical PharmacologyUniversity of HelsinkiHelsinkiFinland
- Individualized Drug Therapy Research Program, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | - Mikko Niemi
- Department of Clinical PharmacologyUniversity of HelsinkiHelsinkiFinland
- Individualized Drug Therapy Research Program, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Department of Clinical Pharmacology, HUS Diagnostic CenterHelsinki University HospitalHelsinkiFinland
| | - Aleksi Tornio
- Integrative Physiology and Pharmacology, Institute of BiomedicineUniversity of TurkuTurkuFinland
- Unit of Clinical PharmacologyTurku University HospitalTurkuFinland
| | - Janne T. Backman
- Department of Clinical PharmacologyUniversity of HelsinkiHelsinkiFinland
- Individualized Drug Therapy Research Program, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Department of Clinical Pharmacology, HUS Diagnostic CenterHelsinki University HospitalHelsinkiFinland
| |
Collapse
|
2
|
Ghallab A, Kunz S, Drossel C, Billo V, Friebel A, Georg M, Göttlich R, Hobloss Z, Hassan R, Myllys M, Seddek AL, Abdelmageed N, Dawson PA, Lindström E, Hoehme S, Hengstler JG, Geyer J. Validation of NBD-coupled taurocholic acid for intravital analysis of bile acid transport in liver and kidney of mice. EXCLI JOURNAL 2024; 23:1330-1352. [PMID: 39574965 PMCID: PMC11579514 DOI: 10.17179/excli2024-7707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/28/2024] [Indexed: 11/24/2024]
Abstract
Fluorophore-coupled bile acids (BA) represent an important tool for intravital analysis of BA flux in animal models of cholestatic diseases. However, addition of a fluorophore to a BA may alter transport properties. We developed and validated a 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole-coupled taurocholic acid (3β-NBD-TCA) as a probe for intravital analysis of BA homeostasis. We compared transport of 3β-NBD-TCA to [3H]-TCA in HEK293 cells stably expressing the mouse hepatic or renal BA carriers mNtcp or mAsbt, respectively. We also studied distribution kinetics intravitally in livers and kidneys of anesthetized wildtype and mOatp1a/1b cluster knockout mice (OatpKO) with and without administration of the Ntcp inhibitor Myrcludex B and the ASBT inhibitor AS0369. In vitro, 3β-NBD-TCA and [3H]-TCA showed comparable concentration- and time-dependent transport via mNtcp and mAsbt as well as similar inhibition kinetics for Myrcludex B and AS0369. Intravital analysis in the livers of wildtype and OatpKO mice revealed contribution of both mNtcp and mOatp1a/1b in the 3β-NBD-TCA uptake from the sinusoidal blood into hepatocytes. Combined deletion of mOatp1a/1b and inhibition of mNtcp by Myrcludex B blocked the uptake of 3β-NBD-TCA from sinusoidal blood into hepatocytes. This led to an increase of 3β-NBD-TCA signal in the systemic circulation including renal capillaries, followed by strong enrichment in a subpopulation of proximal renal tubular epithelial cells (TEC). The enrichment of 3β-NBD-TCA in TEC was strongly reduced by the systemic ASBT inhibitor AS0369. NBD-coupled TCA has similar transport kinetics as [3H]-TCA and can be used as a tool to study hepatorenal BA transport. See also the graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Ahmed Ghallab
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, 83523 Qena, Egypt
| | - Sebastian Kunz
- Institute of Pharmacology and Toxicology, Justus Liebig University Giessen, Biomedical Research Center Seltersberg, Schubertstr. 81, 35392 Giessen, Germany
| | - Celine Drossel
- Institute of Organic Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Veronica Billo
- Institute of Pharmacology and Toxicology, Justus Liebig University Giessen, Biomedical Research Center Seltersberg, Schubertstr. 81, 35392 Giessen, Germany
| | - Adrian Friebel
- Institute of Computer Science & Saxonian Incubator for Clinical Research (SIKT), University of Leipzig, Haertelstraße 16-18, 04107 Leipzig, Germany
| | - Mats Georg
- Institute of Organic Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Richard Göttlich
- Institute of Organic Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Zaynab Hobloss
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany
| | - Reham Hassan
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, 83523 Qena, Egypt
| | - Maiju Myllys
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany
| | - Abdel-latief Seddek
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, 83523 Qena, Egypt
| | - Noha Abdelmageed
- Department of Pharmacology, Faculty of Veterinary Medicine, Sohag University, 82524 Sohag, Egypt
| | - Paul A. Dawson
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Emory University, Atlanta, GA 30322, USA
| | | | - Stefan Hoehme
- Institute of Computer Science & Saxonian Incubator for Clinical Research (SIKT), University of Leipzig, Haertelstraße 16-18, 04107 Leipzig, Germany
| | - Jan G. Hengstler
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany
| | - Joachim Geyer
- Institute of Pharmacology and Toxicology, Justus Liebig University Giessen, Biomedical Research Center Seltersberg, Schubertstr. 81, 35392 Giessen, Germany
| |
Collapse
|
3
|
Schulz Pauly JA, Sande E, Feng M, Wang YT, Stresser DM, Kalvass JC. Proof of Concept of an All-in-One System for Measuring Hepatic Influx, Egress, and Metabolic Clearance Based on the Extended Clearance Concept. Drug Metab Dispos 2024; 52:1048-1059. [PMID: 39095207 DOI: 10.1124/dmd.124.001768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024] Open
Abstract
Hepatic clearance (CLH ) prediction is a critical parameter to estimate human dose. However, CLH underpredictions are common, especially for slowly metabolized drugs, and may be attributable to drug properties that pose challenges for conventional in vitro absorption, distribution, metabolism, and elimination (ADME) assays, resulting in nonvalid data, which prevents in vitro to in vivo extrapolation and CLH predictions. Other processes, including hepatocyte and biliary distribution via transporters, can also play significant roles in CLH Recent advances in understanding the interplay of metabolism and drug transport for clearance processes have aided in developing the extended clearance model. In this study, we demonstrate proof of concept of a novel two-step assay enabling the measurement of multiple kinetic parameters from a single experiment in plated human primary hepatocytes with and without transporter and cytochrome P450 inhibitors-the hepatocyte uptake and loss assay (HUpLA). HUpLA accurately predicted the CLH of eight of the nine drugs (within twofold of the observed CLH ). Distribution clearances were within threefold of observed literature values in standard uptake and efflux assays. In comparison, the conventional suspension hepatocyte stability assay poorly predicted the CLH The CLH of only two drugs was predicted within twofold of the observed CLH Therefore, HUpLA is advantageous by enabling the measurement of enzymatic and transport processes concurrently within the same system, alleviating the need for applying scaling factors independently. The use of primary human hepatocytes enables physiologically relevant exploration of transporter-enzyme interplay. Most importantly, HUpLA shows promise as a sensitive measure for low-turnover drugs. Further evaluation across different drug characteristics is needed to demonstrate method robustness. SIGNIFICANCE STATEMENT: The hepatocyte uptake and loss assay involves measuring four commonly derived in vitro hepatic clearance endpoints. Since endpoints are generated within a single test system, it blunts experimental error originating from assays otherwise conducted independently. A key advantage is the concept of removing drug-containing media following intracellular drug loading, enabling the measurement of drug reappearance rate in media as well as the measurement of loss of total drug in the test system unencumbered by background quantities of drug in media otherwise present in a conventional assay.
Collapse
Affiliation(s)
- Julia A Schulz Pauly
- Quantitative, Translational, and ADME Sciences, Abbvie Inc., North Chicago, Illinois
| | - Elizabeth Sande
- Quantitative, Translational, and ADME Sciences, Abbvie Inc., North Chicago, Illinois
| | - Mei Feng
- Quantitative, Translational, and ADME Sciences, Abbvie Inc., North Chicago, Illinois
| | - Yue-Ting Wang
- Quantitative, Translational, and ADME Sciences, Abbvie Inc., North Chicago, Illinois
| | - David M Stresser
- Quantitative, Translational, and ADME Sciences, Abbvie Inc., North Chicago, Illinois
| | - John Cory Kalvass
- Quantitative, Translational, and ADME Sciences, Abbvie Inc., North Chicago, Illinois
| |
Collapse
|
4
|
Arya V, Ma JD, Kvitne KE. Expanding Role of Endogenous Biomarkers for Assessment of Transporter Activity in Drug Development: Current Applications and Future Horizon. Pharmaceutics 2024; 16:855. [PMID: 39065552 PMCID: PMC11280074 DOI: 10.3390/pharmaceutics16070855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/12/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
The evaluation of transporter-mediated drug-drug interactions (DDIs) during drug development and post-approval contributes to benefit-risk assessment and helps formulate clinical management strategies. The use of endogenous biomarkers, which are substrates of clinically relevant uptake and efflux transporters, to assess the transporter inhibitory potential of a drug has received widespread attention. Endogenous biomarkers, such as coproporphyrin (CP) I and III, have increased mechanistic understanding of complex DDIs. Other endogenous biomarkers are under evaluation, including, but not limited to, sulfated bile acids and 4-pyridoxic acid (PDA). The role of endogenous biomarkers has expanded beyond facilitating assessment of transporter-mediated DDIs and they have also been used to understand alterations in transporter activity in the setting of organ dysfunction and various disease states. We envision that endogenous biomarker-informed approaches will not only help to formulate a prudent and informed DDI assessment strategy but also facilitate quantitative predictions of changes in drug exposures in specific populations.
Collapse
Affiliation(s)
- Vikram Arya
- Division of Infectious Disease Pharmacology, Office of Clinical Pharmacology, Center for Drug Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Joseph D. Ma
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, CA 92093, USA
| | | |
Collapse
|
5
|
Hämäläinen K, Hirvensalo P, Neuvonen M, Tornio A, Backman JT, Lehtonen M, Niemi M. Non-targeted metabolomics for the identification of plasma metabolites associated with organic anion transporting polypeptide 1B1 function. Clin Transl Sci 2024; 17:e13773. [PMID: 38515340 PMCID: PMC10958181 DOI: 10.1111/cts.13773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/09/2024] [Accepted: 02/28/2024] [Indexed: 03/23/2024] Open
Abstract
Our aim was to evaluate biomarkers for organic anion transporting polypeptide 1B1 (OATP1B1) function using a hypothesis-free metabolomics approach. We analyzed fasting plasma samples from 356 healthy volunteers using non-targeted metabolite profiling by liquid chromatography high-resolution mass spectrometry. Based on SLCO1B1 genotypes, we stratified the volunteers to poor, decreased, normal, increased, and highly increased OATP1B1 function groups. Linear regression analysis, and random forest (RF) and gradient boosted decision tree (GBDT) regressors were used to investigate associations of plasma metabolite features with OATP1B1 function. Of the 9152 molecular features found, 39 associated with OATP1B1 function either in the linear regression analysis (p < 10-5) or the RF or GBDT regressors (Gini impurity decrease > 0.01). Linear regression analysis showed the strongest associations with two features identified as glycodeoxycholate 3-O-glucuronide (GDCA-3G; p = 1.2 × 10-20 for negative and p = 1.7 × 10-19 for positive electrospray ionization) and one identified as glycochenodeoxycholate 3-O-glucuronide (GCDCA-3G; p = 2.7 × 10-16). In both the RF and GBDT models, the GCDCA-3G feature showed the strongest association with OATP1B1 function, with Gini impurity decreases of 0.40 and 0.17. In RF, this was followed by one GDCA-3G feature, an unidentified feature with a molecular weight of 809.3521, and the second GDCA-3G feature. In GBDT, the second and third strongest associations were observed with the GDCA-3G features. Of the other associated features, we identified with confidence two representing lysophosphatidylethanolamine 22:5. In addition, one feature was putatively identified as pregnanolone sulfate and one as pregnenolone sulfate. These results confirm GCDCA-3G and GDCA-3G as robust OATP1B1 biomarkers in human plasma.
Collapse
Affiliation(s)
- Kreetta Hämäläinen
- Department of Clinical PharmacologyUniversity of HelsinkiHelsinkiFinland
- Individualized Drug Therapy Research Program, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | - Päivi Hirvensalo
- Department of Clinical PharmacologyUniversity of HelsinkiHelsinkiFinland
- Individualized Drug Therapy Research Program, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Integrative Physiology and Pharmacology, Institute of BiomedicineUniversity of TurkuTurkuFinland
| | - Mikko Neuvonen
- Department of Clinical PharmacologyUniversity of HelsinkiHelsinkiFinland
- Individualized Drug Therapy Research Program, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | - Aleksi Tornio
- Department of Clinical PharmacologyUniversity of HelsinkiHelsinkiFinland
- Individualized Drug Therapy Research Program, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Integrative Physiology and Pharmacology, Institute of BiomedicineUniversity of TurkuTurkuFinland
- Unit of Clinical PharmacologyTurku University HospitalTurkuFinland
| | - Janne T. Backman
- Department of Clinical PharmacologyUniversity of HelsinkiHelsinkiFinland
- Individualized Drug Therapy Research Program, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Department of Clinical Pharmacology, HUS Diagnostic CenterHelsinki University HospitalHelsinkiFinland
| | - Marko Lehtonen
- School of Pharmacy, Faculty of Health ScienceUniversity of Eastern FinlandKuopioFinland
- LC‐MS Metabolomics Center, Biocenter KuopioKuopioFinland
| | - Mikko Niemi
- Department of Clinical PharmacologyUniversity of HelsinkiHelsinkiFinland
- Individualized Drug Therapy Research Program, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Department of Clinical Pharmacology, HUS Diagnostic CenterHelsinki University HospitalHelsinkiFinland
| |
Collapse
|
6
|
Lehtisalo M, Tarkiainen EK, Neuvonen M, Holmberg M, Kiiski JI, Lapatto-Reiniluoto O, Filppula AM, Kurkela M, Backman JT, Niemi M. Ticagrelor Increases Exposure to the Breast Cancer Resistance Protein Substrate Rosuvastatin. Clin Pharmacol Ther 2024; 115:71-79. [PMID: 37786998 DOI: 10.1002/cpt.3067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023]
Abstract
Ticagrelor and rosuvastatin are often used concomitantly after atherothrombotic events. Several cases of rhabdomyolysis during concomitant ticagrelor and rosuvastatin have been reported, suggesting a drug-drug interaction. We showed recently that ticagrelor inhibits breast cancer resistance protein (BCRP) and organic anion transporting polypeptide (OATP) 1B1, 1B3, and 2B1-mediated rosuvastatin transport in vitro. The aim of this study was to investigate the effects of ticagrelor on rosuvastatin pharmacokinetics in humans. In a randomized, crossover study, 9 healthy volunteers ingested a single dose of 90 mg ticagrelor or placebo, followed by a single 10 mg dose of rosuvastatin 1 hour later. Ticagrelor 90 mg or placebo were additionally administered 12, 24, and 36 hours after their first dose. Ticagrelor increased rosuvastatin area under the plasma concentration-time curve (AUC) and peak plasma concentration 2.6-fold (90% confidence intervals: 1.8-3.8 and 1.7-4.0, P = 0.001 and P = 0.003), and prolonged its half-life from 3.1 to 6.6 hours (P = 0.009). Ticagrelor also decreased the renal clearance of rosuvastatin by 11% (3%-19%, P = 0.032). The N-desmethylrosuvastatin:rosuvastatin AUC0-10h ratio remained unaffected by ticagrelor. Ticagrelor had no effect on the plasma concentrations of the endogenous OATP1B substrates glycodeoxycholate 3-O-glucuronide, glycochenodeoxycholate 3-O-glucuronide, glycodeoxycholate 3-O-sulfate, and glycochenodeoxycholate 3-O-sulfate, or the sodium-taurocholate cotransporting polypeptide substrate taurocholic acid. These data indicate that ticagrelor increases rosuvastatin concentrations more than twofold in humans, probably mainly by inhibiting intestinal BCRP. Because the risk for rosuvastatin-induced myotoxicity increases along with rosuvastatin plasma concentrations, using ticagrelor concomitantly with high doses of rosuvastatin should be avoided.
Collapse
Affiliation(s)
- Minna Lehtisalo
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
- Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
- Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - E Katriina Tarkiainen
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
- Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
- Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Mikko Neuvonen
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
- Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
| | - Mikko Holmberg
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
- Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
- Department of Emergency Medicine and Services, Helsinki University Hospital, Helsinki, Finland
| | - Johanna I Kiiski
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
- Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
| | - Outi Lapatto-Reiniluoto
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
- Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
- Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Anne M Filppula
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
- Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Mika Kurkela
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
- Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
| | - Janne T Backman
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
- Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
- Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Mikko Niemi
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
- Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
- Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|