1
|
Ikuta S, Nakagawa H, Kai T, Sugano K. Bicarbonate buffer dissolution test with gentle mechanistic stress for bioequivalence prediction of enteric-coated pellet formulations. Eur J Pharm Sci 2024; 192:106622. [PMID: 37884100 DOI: 10.1016/j.ejps.2023.106622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/19/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
This study aimed to develop a dissolution test that can predict the bioequivalence (BE) of enteric-coated pellet formulations. The original duloxetine hydrochloride capsule (reference formulation (RF); Cymbalta® 30 mg capsule) and four generic test formulations (two capsules (CP) and two orally disintegrating tablets (OD)) were used as model formulations. Clinical BE studies were conducted on 24-47 healthy male subjects under fasting conditions. Dissolution tests were performed using a compendial paddle method (PD) (paddle speed: 50 rpm) and a flow-through cell method (FTC) (flow rate: 4 mL/min). For a further test, cotton balls were added to the vessel to apply gentle mechanistic stress to the formulations, and paddle speed was reduced to 10 rpm (paddle with cotton ball method (PDCB)).All the dissolution tests were conducted with 0.01 M HCl (pH 2.0) for 0.5 h followed by 10 mM bicarbonate buffer solutions (pH 6.5) for 4 h. One each of the two CP and two OD showed BE with RF. PDCB was able to discriminate between BE and non-BE formulations, while this was not possible with PD and FTC. In PDCB, the cotton balls intermittently moved the pellets near the vessel bottom. PDCB is useful for predicting BE during formulation development.
Collapse
Affiliation(s)
- Shotaro Ikuta
- Molecular Pharmaceutics Lab., College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1, Noji-higashi, Kusatsu, Shiga 525-8577, Japan; Pharmaceutical Research Laboratories, Pharmaceutical Department, Nipro Corporation, 3023, Noji-Cho, Kusatsu, Shiga 525-0055, Japan.
| | - Hidetoshi Nakagawa
- Pharmaceutical Research Laboratories, Pharmaceutical Department, Nipro Corporation, 3023, Noji-Cho, Kusatsu, Shiga 525-0055, Japan
| | - Toshiya Kai
- Pharmaceutical Research Laboratories, Pharmaceutical Department, Nipro Corporation, 3023, Noji-Cho, Kusatsu, Shiga 525-0055, Japan
| | - Kiyohiko Sugano
- Molecular Pharmaceutics Lab., College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1, Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
2
|
Yoshida H, Morita T, Abe Y, Inagaki A, Tomita N, Izutsu KI, Sato Y. Effects of Apex Size on Dissolution Profiles in the USP II Paddle Apparatus. AAPS PharmSciTech 2023; 25:9. [PMID: 38158516 DOI: 10.1208/s12249-023-02722-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024] Open
Abstract
The use of apex vessels may solve coning problems associated with dissolution testing. However, excessive dissolution acceleration can reduce the discriminatory power. This study aimed to clarify how different apex vessel sizes affect the dissolution behavior of cone-forming formulations. Five apex vessels with different heights, centralities, and compendial vessels were used. The paddle rotation speed at which the coning phenomenon resolved was measured using standard particles of different densities. Three model formulations-USP prednisone tablets, atorvastatin calcium hydrate tablets, and levofloxacin fine granules-were selected, and dissolution tests were conducted at 30-100 revolutions per minute (rpm). Compared to the compendial vessels, the disappearance of standard particles at the apex base at lower paddle speeds in apex vessels was observed. Standard particles tended to remain in the center of the apex vessels and disappear at rotational speeds comparable to those of the compendial vessels. Dissolution increased in an apex height-dependent manner in the model formulations, except for the atorvastatin calcium hydrate tablets at 50 rpm. For levofloxacin fine granules, dissolution was also improved by reducing the paddle agitation speed to 30 rpm in the compendial vessels. Differences in apex centrality by 3 mm did not affect the dissolution rate. Our results indicate that apex vessels with low apex heights have a mount-resolving effect, but the degree of dissolution improvement by avoiding the coning phenomenon depends on the formulation characteristics used in the dissolution tests.
Collapse
Affiliation(s)
- Hiroyuki Yoshida
- Division of Drugs, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan.
| | - Tokio Morita
- Division of Drugs, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
| | - Yasuhiro Abe
- Division of Drugs, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
| | - Aoi Inagaki
- Division of Drugs, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
| | - Naomi Tomita
- Division of Drugs, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
| | - Ken-Ichi Izutsu
- Department of Pharmaceutical Sciences, International University of Health and Welfare, Tochigi, Japan
| | - Yoji Sato
- Division of Drugs, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
| |
Collapse
|
3
|
Ono A, Kurihara R, Terada K, Sugano K. Bioequivalence Dissolution Test Criteria for Formulation Development of High Solubility-Low Permeability Drugs. Chem Pharm Bull (Tokyo) 2023; 71:213-219. [PMID: 36858526 DOI: 10.1248/cpb.c22-00685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
The purpose of the present study was to provide the experimental and theoretical basis of bioequivalence (BE) dissolution test criteria for formulation development of high solubility-low permeability drugs. According to the biowaiver scheme based on the biopharmaceutics classification system (BCS), for BCS class III drugs, a test formulation and a reference formulation are predicted to be BE when 85% of the drug dissolves within 15 min (T85% < 15 min) in the compendial dissolution test. However, previous theoretical simulation studies have suggested that this criterion may possibly be relaxed for use in practical formulation development. In the present study, the dissolution profiles of 14 famotidine formulations for which BE has been clinically confirmed were evaluated by the compendial dissolution test at pH 1.2 and 6.8. The plasma concentration-time profiles of famotidine formulations were simulated using the dissolution data. In addition, virtual simulations were performed to estimate the range of dissolution rates to be bioequivalent. The fastest and slowest dissolution rates among the famotidine formulations were T85% = 10 min and T85% = 60 min at pH 6.8, respectively. The virtual simulation BE study suggested that famotidine formulations can be bioequivalent when T85% < 99 min. In the case of BCS III drugs, the rate-limiting step of oral drug absorption is the membrane permeation process rather than the dissolution process. Therefore, a difference in the dissolution process has less effect on BE. These results contribute to a better understanding of the biowaiver approach and would be of great help in the formulation development of BCS class III drugs.
Collapse
Affiliation(s)
- Asami Ono
- Laboratory for Chemistry, Manufacturing, and Control, Pharmaceuticals Production & Technology Center, Asahi Kasei Pharma Corporation
| | - Rena Kurihara
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Toho University
| | - Katsuhide Terada
- Laboratory of Molecular Pharmaceutics and Technology, Faculty of Pharmacy, Takasaki University of Health and Welfare
| | - Kiyohiko Sugano
- Molecular Pharmaceutics Laboratory, College of Pharmaceutical Sciences, Ritsumeikan University
| |
Collapse
|
4
|
Liu Z, Xu Z, Gao Z, Ren Q, Chang T, Xue J, Yang H. Pharmacokinetics and bioequivalence of two pomalidomide capsules in healthy chinese subjects under fasting and fed conditions. Invest New Drugs 2023; 41:60-69. [PMID: 36441437 DOI: 10.1007/s10637-022-01320-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/22/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Imnovid® is an immunomodulatory drug with antineoplastic activity. The aim of this study was to evaluate the bioequivalence and safety of the generic drug pomalidomide (Chia Tai Tianqing Pharmaceutical Group Co., Ltd) and its originator product Imnovid® (Celgene Europe Ltd) in the fasting and fed states, respectively. METHODS The research consisted of two parts: one with a dose of 1 mg and the other with a dose of 4 mg. 48 healthy subjects were included in each study and were divided into two groups (fasting group and fed group) at a 1:1 ratio to administrate study drugs orally. The plasma drug concentrations were determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS). RESULTS The 90% CI of GMR for main pharmacokinetic (PK) parameters (Cmax, AUC0 - t and AUC0-∞) met the requirements of bioequivalence standards. The incidence and severity of AEs associated with pomalidomide and Imnovid® were similar. CONCLUSION The results proved the PK parameters of pomalidomide and Imnovid® were similar and bioequivalent. Both drugs showed safety profile well.
Collapse
Affiliation(s)
- Zhengzhi Liu
- Institute of Phase I Clinical Trial, Changchun University of Chinese Medicine Affiliated Hospital, Changchun, China
| | - Zhongnan Xu
- Chia Tai Tianqing Pharmaceutical Group co, Ltd, Nanjing, China
| | - Zhenyue Gao
- Chia Tai Tianqing Pharmaceutical Group co, Ltd, Nanjing, China
| | - Qing Ren
- Institute of Phase I Clinical Trial, Changchun University of Chinese Medicine Affiliated Hospital, Changchun, China
| | - Tianying Chang
- Institute of Phase I Clinical Trial, Changchun University of Chinese Medicine Affiliated Hospital, Changchun, China
| | - Jinling Xue
- Chia Tai Tianqing Pharmaceutical Group co, Ltd, Nanjing, China
| | - Haimiao Yang
- Institute of Phase I Clinical Trial, Changchun University of Chinese Medicine Affiliated Hospital, Changchun, China.
| |
Collapse
|
5
|
Matsui K, Nakamichi K, Nakatani M, Yoshida H, Yamashita S, Yokota S. Lowly-buffered biorelevant dissolution testing is not necessarily biopredictive of human bioequivalence study outcome: Relationship between dissolution and pharmacokinetics. Int J Pharm 2023; 631:122531. [PMID: 36563795 DOI: 10.1016/j.ijpharm.2022.122531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/28/2022] [Accepted: 12/18/2022] [Indexed: 12/25/2022]
Abstract
It has been revealed that buffer capacity of aspirated human intraluminal fluid is much lower than that of in vitro compendial dissolution media. Since buffer capacity significantly alters the dissolution profile of certain drug products, dissolution testing in highly buffered media dictates poor predictability of in vivo drug performance. To mitigate this inconsistency, low buffer capacity medium was suggested as an in vivo representation (biorelevant dissolution testing). The purpose of this study was to characterize the dissolution profiles of enteric-coated drug products in different buffer capacity media in a flow through cell dissolution apparatus, and to evaluate the in vivo predictability of human bioequivalence study outcomes conducted in the fasted state. It was confirmed that the lower the buffer capacity of dissolution media, the higher the discriminatory power of esomeprazole magnesium hydrate enteric-coated pellets, reflecting human bioequivalence failure. In the meantime, two duloxetine hydrochloride enteric-coated pellets also exhibited distinct dissolution profiles in such a lowly buffered medium despite the fact that these two are bioequivalent in human. Biopharmaceutical and pharmacokinetic characteristics comparison suggested that low intestinal permeability and small systemic elimination rate of duloxetine hinders the clear impact of different dissolution profile on its in vivo performance. These data suggest that dissolution comparison in physiologically-relevant low buffer capacity media is not always indicative of human bioequivalence. Instead, biopharmaceutical and pharmacokinetic aspects must be taken into consideration to make biorelevant dissolution testing biopredictive.
Collapse
Affiliation(s)
- Kazuki Matsui
- Research & Development Division, Sawai Pharmaceutical Co., Ltd., Osaka 532-0003, Japan.
| | - Katsuki Nakamichi
- Research & Development Division, Sawai Pharmaceutical Co., Ltd., Osaka 532-0003, Japan
| | - Masatoshi Nakatani
- Research & Development Division, Sawai Pharmaceutical Co., Ltd., Osaka 532-0003, Japan
| | - Hiroyuki Yoshida
- Division of Drugs, National Institute of Health Sciences, Kawasaki 210-9501, Japan
| | - Shinji Yamashita
- Faculty of Pharmaceutical Sciences, Setsunan University, Osaka 573-0101, Japan
| | - Shoji Yokota
- Research & Development Division, Sawai Pharmaceutical Co., Ltd., Osaka 532-0003, Japan
| |
Collapse
|
6
|
Abend AM, Zhang L, Fredro-Kumbaradzi E, Hoffelder T, Cohen MJ, Anand O, Delvadia P, Mandula H, Zhang Z, Kotzagiorgis E, Lum S, Pereira VG, Barker A, Lavrich D, Kraemer J, Sharp-Suarez S. Current Approaches for Dissolution Similarity Assessment, Requirements, and Global Expectations. AAPS J 2022; 24:50. [DOI: 10.1208/s12248-022-00691-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 02/10/2022] [Indexed: 11/30/2022] Open
|
7
|
Zhang G, Zhang L, Tan Y, Wang L, Cheng Z. Quantitative Assessment of the in vivo Dissolution Rate to Establish a Modified IVIVC for Isosorbide Mononitrate Tablets. J Pharm Sci 2021; 112:1705-1714. [PMID: 34728173 DOI: 10.1016/j.xphs.2021.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 10/19/2022]
Abstract
A modified in vitro-in vivo correlation (IVIVC) of the oral solid dosage forms has been proposed as a linear correlation between in vitro and in vivo dissolution. Nevertheless, the analysis of in vivo dissolution is limited by the lack of available methods. In this proof-of-concept study, a novel pharmacokinetic (PK) model containing the in vivo dissolution process and its quantification was presented to directly estimate the in vivo dissolution rate constant (kd). The new model was validated with a hypothetical oral solution (kd → +∞). The accuracy of the new method was clarified by comparing with the relatively true value of kd from the literature. Isosorbide mononitrate (ISMN) was used as a model drug to explore the practicability of the novel method. The dissolution capacities of ISMN reference and test tablets were discriminated by an improved in vitro dissolution method. Following the human PK studies, the kd values and corresponding in vivo dissolution profiles of two formulations were obtained using the novel method. Finally, a modified level A IVIVC between in vitro and in vivo dissolution of ISMN tablets was established, which is expected to guide the optimization of the tablet formulation containing ISMN.
Collapse
Affiliation(s)
- Guoqing Zhang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Li Zhang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Yuexiang Tan
- Hunan Huize Bio-pharmaceutical Co., Ltd, Changsha, Hunan 410000, China
| | - Lei Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China.
| | - Zeneng Cheng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China.
| |
Collapse
|
8
|
Pepin X, Goetschy M, Abrahmsén-Alami S. Mechanistic Models for USP2 Dissolution Apparatus, Including Fluid Hydrodynamics and Sedimentation. J Pharm Sci 2021; 111:185-196. [PMID: 34666045 DOI: 10.1016/j.xphs.2021.10.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/11/2021] [Accepted: 10/11/2021] [Indexed: 12/30/2022]
Abstract
Drug product dissolution is a key input to Physiologically Based Biopharmaceutics Models (PBBM) to be able to predict in vivo dissolution. The integration of product dissolution in PBBMs for immediate release drug products should be mechanistic, i.e. allow to capture the main determinants of the in vitro dissolution experiment, and extract product batch specific parameter(s). This work focussed on the Product Particle Size Distribution (P-PSD), which was previously shown to integrate the effect of dose, volume, solubility (pH), size and concentration of micelles in the calculation of a batch specific input to PBBMs, and proposed new hydrodynamic (HD) models, which integrate the effect of USP2 apparatus paddle rotation speed and medium viscosity on dissolution. In addition, new models are also proposed to estimate the quantitative impact of formulation and drug sedimentation or "coning" on dissolution. Model "HDC-1" predicts coning in the presence of formulation insoluble excipients and "HDC-2" predicts the sedimentation of the drug substance only. These models were parameterized and validated on 166 dissolution experiments and 18 different drugs. The validation showed that the HD model average fold errors (AFE) for dissolution rate prediction of immediate release formulations, is comprised between 0.85 and 1.15, and the absolute average fold errors (AAFE) are comprised between 1.08 and 1.28, which shows satisfactory predictive power. For experiments where coning was suspected, the HDC-1 model improved the precision of the prediction (defined as ratio of "AAFE-1"values) by 2.46 fold compared to HD model. The calculation of a P-PSD integrating the impact of USP2 paddle rotation, medium viscosity and coning, will improve the PBBM predictions, since these parameters could have an influence on in vitro dissolution, and could open the way to better prediction of the effect of prandial state on human exposure, by developing new in silico tools which could integrate variation of velocity profiles due to the chyme viscosity.
Collapse
Affiliation(s)
- Xavier Pepin
- New Modalities and Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK.
| | - Matéo Goetschy
- During manuscript preparation: European School of Chemistry, Polymers and Materials. University of Strasbourg (ECPM-Strasbourg), Strasbourg, France
| | - Susanna Abrahmsén-Alami
- Innovation Sciences & External Liaisons, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
9
|
An Assessment of Occasional Bio-Inequivalence for BCS1 and BCS3 Drugs: What are the Underlying Reasons? J Pharm Sci 2021; 111:124-134. [PMID: 34363838 DOI: 10.1016/j.xphs.2021.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/02/2021] [Accepted: 08/02/2021] [Indexed: 11/20/2022]
Abstract
Despite having adequate solubility properties, bioequivalence (BE) studies performed on immediate release formulations containing BCS1/3 drugs occasionally fail. By systematically evaluating a set of 17 soluble drugs where unexpected BE failures have been reported and comparing to a set of 29 drugs where no such reports have been documented, a broad assessment of the risk factors leading to BE failure was performed. BE failures for BCS1/3 drugs were predominantly related to changes in Cmax rather than AUC. Cmax changes were typically modest, with minimal clinical significance for most drugs. Overall, drugs with a sharp plasma peak were identified as a key factor in BE failure risk. A new pharmacokinetic term (t½Cmax) is proposed to identify drugs at higher risk due to their peak plasma profile shape. In addition, the analysis revealed that weak acids, and drugs with particularly high gastric solubility are potentially more vulnerable to BE failure, particularly when these features are combined with a sharp Cmax peak. BCS3 drugs, which are often characterised as being more vulnerable to BE failure due to their potential for permeation and transit to be altered, particularly by excipient change, were not in general at greater risk of BE failures. These findings will help to inform how biowaivers may be optimally applied in the future.
Collapse
|
10
|
In Silico Modeling and Simulation to Guide Bioequivalence Testing for Oral Drugs in a Virtual Population. Clin Pharmacokinet 2021; 60:1373-1385. [PMID: 34191255 DOI: 10.1007/s40262-021-01045-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2021] [Indexed: 12/18/2022]
Abstract
Model-informed drug discovery and development (MID3) shows great advantages in facilitating drug development. A physiologically based pharmacokinetic model is one of the powerful computational approaches of MID3, and the emerging field of virtual bioequivalence is well recognized to be the future of the physiologically based pharmacokinetic model. Based on the translational link between in vitro, in silico, and in vivo, virtual bioequivalence study can evaluate the similarity and potential difference of pharmacokinetic and clinical performance between test and reference formulations. With the aid of virtual bioequivalence study, the pivotal information of clinical trials can be provided to streamline the development for both new and generic drugs. However, a regulatory framework of virtual bioequivalence study has not reached its full maturity. Therefore, this article aims to present an overview of the current status of bioequivalence study, identify the framework of virtual bioequivalence studies for oral drugs, and also discuss the future opportunities of virtual bioequivalence in supporting the waiver and optimization of in vivo clinical trials.
Collapse
|
11
|
Loisios-Konstantinidis I, Dressman J. Physiologically Based Pharmacokinetic/Pharmacodynamic Modeling to Support Waivers of In Vivo Clinical Studies: Current Status, Challenges, and Opportunities. Mol Pharm 2020; 18:1-17. [PMID: 33320002 DOI: 10.1021/acs.molpharmaceut.0c00903] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) modeling has been extensively applied to quantitatively translate in vitro data, predict the in vivo performance, and ultimately support waivers of in vivo clinical studies. In the area of biopharmaceutics and within the context of model-informed drug discovery and development (MID3), there is a rapidly growing interest in applying verified and validated mechanistic PBPK models to waive in vivo clinical studies. However, the regulatory acceptance of PBPK analyses for biopharmaceutics and oral drug absorption applications, which is also referred to variously as "PBPK absorption modeling" [Zhang et al. CPT: Pharmacometrics Syst. Pharmacol. 2017, 6, 492], "physiologically based absorption modeling", or "physiologically based biopharmaceutics modeling" (PBBM), remains rather low [Kesisoglou et al. J. Pharm. Sci. 2016, 105, 2723] [Heimbach et al. AAPS J. 2019, 21, 29]. Despite considerable progress in the understanding of gastrointestinal (GI) physiology, in vitro biopharmaceutic and in silico tools, PBPK models for oral absorption often suffer from an incomplete understanding of the physiology, overparameterization, and insufficient model validation and/or platform verification, all of which can represent limitations to their translatability and predictive performance. The complex interactions of drug substances and (bioenabling) formulations with the highly dynamic and heterogeneous environment of the GI tract in different age, ethnic, and genetic groups as well as disease states have not been yet fully elucidated, and they deserve further research. Along with advancements in the understanding of GI physiology and refinement of current or development of fully mechanistic in silico tools, we strongly believe that harmonization, interdisciplinary interaction, and enhancement of the translational link between in vitro, in silico, and in vivo will determine the future of PBBM. This Perspective provides an overview of the current status of PBBM, reflects on challenges and knowledge gaps, and discusses future opportunities around PBPK/PD models for oral absorption of small and large molecules to waive in vivo clinical studies.
Collapse
Affiliation(s)
| | - Jennifer Dressman
- Institute of Pharmaceutical Technology, Goethe University, Frankfurt am Main 60438, Germany.,Fraunhofer Institute of Translational Pharmacology and Medicine (ITMP), Carl-von-Noorden Platz 9, Frankfurt am Main 60438, Germany
| |
Collapse
|
12
|
The use of PBPK/PD to establish clinically relevant dissolution specifications for zolpidem immediate release tablets. Eur J Pharm Sci 2020; 155:105534. [DOI: 10.1016/j.ejps.2020.105534] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/28/2020] [Accepted: 08/24/2020] [Indexed: 11/21/2022]
|
13
|
Ruiz-Picazo A, Lozoya-Agullo I, González-Álvarez I, Bermejo M, González-Álvarez M. Effect of excipients on oral absorption process according to the different gastrointestinal segments. Expert Opin Drug Deliv 2020; 18:1005-1024. [PMID: 32842776 DOI: 10.1080/17425247.2020.1813108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Excipients are necessary to develop oral dosage forms of any Active Pharmaceutical Ingredient (API). Traditionally, excipients have been considered inactive and inert substances, but, over the years, numerous studies have contradicted this belief. This review focuses on the effect of excipients on the physiological variables affecting oral absorption along the different segments of the gastrointestinal tract. The effect of excipients on the segmental absorption variables are illustrated with examples to help understand the complexity of predicting their in vivo effects. AREAS COVERED The effects of excipients on disintegration, solubility and dissolution, transit time, and absorption are analyzed in the context of the different gastrointestinal segments and the physiological factors affecting release and membrane permeation. The experimental techniques used to study excipient effects and their human predictive ability are reviewed. EXPERT OPINION The observed effects of excipient in oral absorption process have been characterized in the past, mainly in vitro (i.e. in dissolution studies, in vitro cell culture methods or in situ animal studies). Unfortunately, a clear link with their effects in vivo, i.e. their impact on Cmax or AUC, which need a mechanistic approach is still missing. The information compiled in this review leads to the conclusion that the effect of excipients in API oral absorption and bioavailability is undeniable and shows the need of implementing standardized and reproducible preclinical tools coupled with mechanistic and predictive physiological-based models to improve the current empirical retrospective approach.
Collapse
Affiliation(s)
- Alejandro Ruiz-Picazo
- Engineering: Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, Elche, Spain
| | - Isabel Lozoya-Agullo
- Engineering: Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, Elche, Spain
| | - Isabel González-Álvarez
- Engineering: Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, Elche, Spain
| | - Marival Bermejo
- Engineering: Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, Elche, Spain
| | - Marta González-Álvarez
- Engineering: Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, Elche, Spain
| |
Collapse
|
14
|
Innovative highlights of clinical drug trial design. Transl Res 2020; 224:71-77. [PMID: 32504825 PMCID: PMC7267803 DOI: 10.1016/j.trsl.2020.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/16/2020] [Accepted: 05/15/2020] [Indexed: 12/15/2022]
Abstract
Clinical trials serve as the gold standard to evaluate the efficacy and safety of tested drugs prior to marketing authorization. Nevertheless, there have been a few challenging issues well noted in traditional clinical trials such as tedious processing duration and escalating high costs among others. To improve the efficiency of clinical studies, a spectrum of expedited clinical trial modes has been designed, and selectively implemented in contemporary drug developing landscape. Herein this article presents an update on the innovated human trial designs that are corroborated through coming up with approval of notable therapeutic compounds for clinical utilization including delivery of several blockbuster products. It is intended to inspire clinical investigators and pharmaceutical development not only timely communicating with the regulatory agencies, but also insightful translating from cutting-edge scientific discoveries.
Collapse
|
15
|
Pepin XJH, Dressman J, Parrott N, Delvadia P, Mitra A, Zhang X, Babiskin A, Kolhatkar V, Seo P, Taylor LS, Sjögren E, Butler JM, Kostewicz E, Tannergren C, Koziolek M, Kesisoglou F, Dallmann A, Zhao Y, Suarez-Sharp S. In Vitro Biopredictive Methods: A Workshop Summary Report. J Pharm Sci 2020; 110:567-583. [PMID: 32956678 DOI: 10.1016/j.xphs.2020.09.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 12/23/2022]
Abstract
This workshop report summarizes the proceedings of Day 1 of a three-day workshop on "Current State and Future Expectations of Translational Modeling Strategies to Support Drug Product Development, Manufacturing Changes and Controls". Physiologically based biopharmaceutics models (PBBM) are tools which enable the drug product quality attributes to be linked to the in vivo performance. These tools rely on key quality inputs in order to provide reliable predictions. After introducing the objectives of the workshop and the expectations from the breakout sessions, Day 1 of the workshop focused on the best practices and challenges in measuring in vitro inputs needed for modeling, such as the drug solubility, the dissolution rate of the drug product, potential precipitation of the drug and drug permeability. This paper reports the podium presentations and summarizes breakout session discussions related to A) the best strategies for determining solubility, supersaturation and critical supersaturation; B) the best strategies for the development of biopredictive (clinically relevant) dissolution methods; C) the challenges associated with describing gastro-intestinal systems parameters such as mucus, liquid volume and motility; and D) the challenges with translating biopharmaceutical measures of drug permeability along the gastrointestinal tract to a meaningful model parameter.
Collapse
Affiliation(s)
- Xavier J H Pepin
- New Modalities and Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK.
| | - Jennifer Dressman
- Fraunhofer Institute for Molecular Biology and Applied Ecology and Goethe University, Frankfurt, Germany
| | - Neil Parrott
- Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, CH-4070, Basel, Switzerland
| | - Poonam Delvadia
- Division of Biopharmaceutics, Office of New Drug Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Amitava Mitra
- Clinical Pharmacology and Pharmacometrics, Janssen Research & Development, Spring House, PA, USA
| | - Xinyuan Zhang
- Division of Pharmacometrics, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Andrew Babiskin
- Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Vidula Kolhatkar
- Division of Biopharmaceutics, Office of New Drug Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Paul Seo
- Division of Biopharmaceutics, Office of New Drug Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Lynne S Taylor
- Purdue University, College of Pharmacy, West Lafayette, IN, USA
| | | | - James M Butler
- Biopharmaceutics, Drug Product Design & Dev, GlaxoSmithKline R&D, Ware, UK
| | - Edmund Kostewicz
- Institute of Pharmaceutical Technology, Goethe University, Frankfurt, Germany
| | - Christer Tannergren
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden
| | - Mirko Koziolek
- University of Greifswald, Institute of Pharmacy, Greifswald, Germany; Current: NCE Formulation Sciences, AbbVie Deutschland GmbH & Co. KG, Ludwigshafen, Germany
| | | | - André Dallmann
- Clinical Pharmacometrics, Research & Development, Pharmaceuticals, Bayer AG, Leverkusen, Germany
| | - Yang Zhao
- Division of Biopharmaceutics, Office of New Drug Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Sandra Suarez-Sharp
- Regulatory Affairs, Simulations Plus Inc., 42505 10th Street West, Lancaster, CA 93534, USA
| |
Collapse
|
16
|
Ruiz-Picazo A, Gonzalez-Alvarez M, Gonzalez-Alvarez I, Bermejo M. Effect of Common Excipients on Intestinal Drug Absorption in Wistar Rats. Mol Pharm 2020; 17:2310-2318. [DOI: 10.1021/acs.molpharmaceut.0c00023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Alejandro Ruiz-Picazo
- Engineering: Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, Elche, Spain
| | - Marta Gonzalez-Alvarez
- Engineering: Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, Elche, Spain
| | - Isabel Gonzalez-Alvarez
- Engineering: Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, Elche, Spain
| | - Marival Bermejo
- Engineering: Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, Elche, Spain
| |
Collapse
|
17
|
Paraiso RLM, Watanabe A, Andreas CJ, Turner D, Zane P, Dressman J. In-vitro–in-silico investigation of the negative food effect of zolpidem when administered as immediate-release tablets. J Pharm Pharmacol 2019; 71:1663-1676. [DOI: 10.1111/jphp.13161] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/10/2019] [Indexed: 12/14/2022]
Abstract
Abstract
Objectives
The main objective of the present work was to combine in-vitro and in-silico tools to better understand the in-vivo behavior of the immediate release (IR) formulation of zolpidem in the fasted and fed states.
Methods
The dissolution of zolpidem was evaluated using biorelevant media simulating the gastric and intestinal environment in the fasted and fed states. Additionally, the influence of high viscosity and high fat content on the release of zolpidem under fed state conditions was investigated. The in-vitro results were combined with a physiologically based pharmacokinetic (PBPK) model constructed with Simcyp® to simulate the zolpidem pharmacokinetic profile in both prandial states.
Key findings
In vitro biorelevant dissolution experiments representing the fasted and fed states, combinedwith PBPKmodelling, were able to simulate the plasma profiles from the clinical food effect studies well. Experiments reflecting the pH and fat content of themeal led to a good prediction of the zolpidem plasma profile in the fed state, whereas increasing the viscosity of the gastricmedia led to an under-prediction.
Conclusions
This work demonstrates that the combination of biorelevant dissolution testing and PBPK modelling is very useful for understanding the in-vivo behavior of zolpidem in the fasted and fed states. This approach could be implemented in the development of other drugs exhibiting negative food effects, saving resources and bringing new drug products to the market faster.
Collapse
Affiliation(s)
| | - Ayahisa Watanabe
- Research Laboratory for Development, Shionogi & Co., Ltd., Osaka, Japan
| | - Cord J Andreas
- Institute of Pharmaceutical Technology, Goethe University, Frankfurt am Main, Germany
| | - David Turner
- Simcyp Division, Certara UK Limited, Sheffield, UK
| | - Patricia Zane
- Drug Disposition, Safety, and Animal Research (DSAR), Sanofi U.S., Bridgewater, NJ, USA
| | - Jennifer Dressman
- Institute of Pharmaceutical Technology, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
18
|
Hofsäss MA, Dressman JB. The Discriminatory Power of the BCS-Based Biowaiver: A Retrospective With Focus on Essential Medicines. J Pharm Sci 2019; 108:2824-2837. [DOI: 10.1016/j.xphs.2019.04.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/01/2019] [Accepted: 04/25/2019] [Indexed: 11/25/2022]
|
19
|
Hens B, Corsetti M, Bermejo M, Löbenberg R, González PM, Mitra A, Desai D, Chilukuri DM, Aceituno A. "Development of Fixed Dose Combination Products" Workshop Report: Considerations of Gastrointestinal Physiology and Overall Development Strategy. AAPS JOURNAL 2019; 21:75. [PMID: 31172358 DOI: 10.1208/s12248-019-0346-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/27/2019] [Indexed: 12/14/2022]
Abstract
The gastrointestinal (GI) tract is one of the most popular and used routes of drug product administration due to the convenience for better patient compliance and reduced costs to the patient compared to other routes. However, its complex nature poses a great challenge for formulation scientists when developing more complex dosage forms such as those combining two or more drugs. Fixed dose combination (FDC) products are two or more single active ingredients combined in a single dosage form. This formulation strategy represents a novel formulation which is as safe and effective compared to every mono-product separately. A complex drug product, to be dosed through a complex route, requires judicious considerations for formulation development. Additionally, it represents a challenge from a regulatory perspective at the time of demonstrating bioequivalence (BE) for generic versions of such drug products. This report gives the reader a summary of a 2-day short course that took place on the third and fourth of November at the Annual Association of Pharmaceutical Scientists (AAPS) meeting in 2018 at Washington, D.C. This manuscript will offer a comprehensive view of the most influential aspects of the GI physiology on the absorption of drugs and current techniques to help understand the fate of orally ingested drug products in the complex environment represented by the GI tract. Through case studies on FDC product development and regulatory issues, this manuscript will provide a great opportunity for readers to explore avenues for successfully developing FDC products and their generic versions.
Collapse
Affiliation(s)
- Bart Hens
- Department of Pharmaceutical & Pharmacological Sciences, KU Leuven, Herestraat 49, Gasthuisberg, Box 921, 3000, Leuven, Belgium.
| | - Maura Corsetti
- NIHR Nottingham Biomedical Research Centre (BRC), Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK.,Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Marival Bermejo
- Department Engineering Pharmacy Section, Miguel Hernandez University, San Juan de Alicante, 03550, Alicante, Spain
| | - Raimar Löbenberg
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | - Pablo M González
- Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Av Vicuña Mackenna, 4860, Santiago, Chile
| | - Amitava Mitra
- Clinical Development, Sandoz, Inc. (A Novartis Division), Princeton, New Jersey, 08540, USA
| | - Divyakant Desai
- Drug Product Science and Technology, Bristol-Myers Squibb Company, New Brunswick, New Jersey, 08903-0191, USA
| | - Dakshina Murthy Chilukuri
- Office of Clinical Pharmacology, Office of Translational Sciences, CDER, FDASilver Spring, US Food & Drug Administration (US FDA), Prince Georges Counties, Maryland, USA
| | - Alexis Aceituno
- Subdepto. Biofarmacia y Equivalencia Terapéutica, Agencia Nacional de Medicamentos (ANAMED), Instituto de Salud Pública de Chile, Santiago, Chile y Facultad de Farmacia, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
20
|
Stillhart C, Pepin X, Tistaert C, Good D, Van Den Bergh A, Parrott N, Kesisoglou F. PBPK Absorption Modeling: Establishing the In Vitro–In Vivo Link—Industry Perspective. AAPS JOURNAL 2019; 21:19. [DOI: 10.1208/s12248-019-0292-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 12/28/2018] [Indexed: 11/30/2022]
|
21
|
Andreas CJ, Pepin X, Markopoulos C, Vertzoni M, Reppas C, Dressman JB. Mechanistic investigation of the negative food effect of modified release zolpidem. Eur J Pharm Sci 2017; 102:284-298. [DOI: 10.1016/j.ejps.2017.03.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/08/2017] [Accepted: 03/08/2017] [Indexed: 11/30/2022]
|
22
|
Wang YL, Hsu LF. Evaluating the Feasibility of Use of a Foreign Reference Product for Generic Drug Applications: A Retrospective Pilot Study. Eur J Drug Metab Pharmacokinet 2017; 42:935-942. [PMID: 28283987 DOI: 10.1007/s13318-017-0409-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND OBJECTIVES The adoption of a domestic reference product in bioequivalence (BE) studies for generic drug applications is required by some countries. The objective of this study is to assess the feasibility of this by investigating whether innovative products from different countries are bioequivalent. METHODS Data were collected from all generic drug applications received by the Taiwan regulatory authority 2012-2016. If a submission package contained BE studies, that generic product was compared separately with different reference products, and the resulting data included in this analysis. A method of adjusted indirect comparison was used to evaluate the BE of reference products from different sources. The relationship between in vitro dissolution and in vivo BE was also explored. RESULTS The present study included 10 drugs and a total of 11 comparisons. Seven comparisons for maximum concentration (C max) (63.6%) and all comparisons (100.0%) for area under the curve up to last measurable time point (AUC) complied with the BE criterion. Similar in vitro dissolution profiles were observed in all comparisons. Among the comparisons that failed to demonstrate BE, only one was considered to be possibly related to product difference, with point estimates of indirect comparison for C max significantly greater than unity (22%). Discordance between in vitro and in vivo observations was probably due to either drugs with highly variable properties or a lack of discriminatory dissolution testing method. CONCLUSIONS Although this retrospective analysis only included a few drugs and product formulation types, i.e., immediate release, delayed release, and orally disintegrating tablet, these preliminary results suggest that using a foreign reference product in BE studies for generic drug applications could be a feasible approach, but with some restrictions: comparable dissolution profiles, same innovator company, same size, weight, and type of coating as the domestic reference product, etc. Further investigations for other complex formulations are required.
Collapse
Affiliation(s)
- Yi-Lin Wang
- Division of Pharmaceutical Science, Center for Drug Evaluation (CDE), 3F, No.465, Sec.6, Zhongxiao E. Rd., Taipei, 11557, Taiwan
| | - Li-Feng Hsu
- Division of Pharmaceutical Science, Center for Drug Evaluation (CDE), 3F, No.465, Sec.6, Zhongxiao E. Rd., Taipei, 11557, Taiwan.
| |
Collapse
|
23
|
Matsui K, Tsume Y, Takeuchi S, Searls A, Amidon GL. Utilization of Gastrointestinal Simulator, an in Vivo Predictive Dissolution Methodology, Coupled with Computational Approach To Forecast Oral Absorption of Dipyridamole. Mol Pharm 2017; 14:1181-1189. [DOI: 10.1021/acs.molpharmaceut.6b01063] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Kazuki Matsui
- College
of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, Michigan 48109-1065, United States
- Drug
Metabolism and Pharmacokinetics, Research Center, Mochida Pharmaceutical Company Limited, 722 Uenohara, Jimba, Gotemba, Shizuoka 412-8524, Japan
| | - Yasuhiro Tsume
- College
of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, Michigan 48109-1065, United States
| | - Susumu Takeuchi
- Pharmacokinetics
Group, Sawai Pharmaceutical Company Limited, 5-2-30, Miyahara, Yodogawa-ku, Osaka 532-0003, Japan
| | - Amanda Searls
- College
of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, Michigan 48109-1065, United States
| | - Gordon L. Amidon
- College
of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, Michigan 48109-1065, United States
| |
Collapse
|
24
|
Sugano K. Theoretical Investigation of Dissolution Test Criteria for Waiver of Clinical Bioequivalence Study. J Pharm Sci 2016; 105:1947-1951. [PMID: 27238491 DOI: 10.1016/j.xphs.2016.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/30/2016] [Accepted: 04/01/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Kiyohiko Sugano
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Toho University, Funabashi, Chiba 274-8510, Japan.
| |
Collapse
|
25
|
Cardot JM, Garcia Arieta A, Paixao P, Tasevska I, Davit B. Implementing the Biopharmaceutics Classification System in Drug Development: Reconciling Similarities, Differences, and Shared Challenges in the EMA and US-FDA-Recommended Approaches. AAPS JOURNAL 2016; 18:1039-46. [PMID: 27116020 DOI: 10.1208/s12248-016-9915-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/12/2016] [Indexed: 11/30/2022]
Abstract
The US-FDA recently posted a draft guideline for industry recommending procedures necessary to obtain a biowaiver for immediate-release oral dosage forms based on the Biopharmaceutics Classification System (BCS). This review compares the present FDA BCS biowaiver approach, with the existing European Medicines Agency (EMA) approach, with an emphasis on similarities, difficulties, and shared challenges. Some specifics of the current EMA BCS guideline are compared with those in the recently published draft US-FDA BCS guideline. In particular, similarities and differences in the EMA versus US-FDA approaches to establishing drug solubility, permeability, dissolution, and formulation suitability for BCS biowaiver are critically reviewed. Several case studies are presented to illustrate the (i) challenges of applying for BCS biowaivers for global registration in the face of differences in the EMA and US-FDA BCS biowaiver criteria, as well as (ii) challenges inherent in applying for BCS class I or III designation and common to both jurisdictions.
Collapse
Affiliation(s)
- J-M Cardot
- Faculté de Pharmacie, Université d'Auvergne Laboratoire de Biopharmacie EA 4678, 28 Place H. Dunant, 63001, Clermont-Ferrand, France.
| | - A Garcia Arieta
- Pharmacokinetics and Generic Medicines, Division of Pharmacology and Clinical Evaluation, Department of Human Use Medicines, Agencia Española de Medicamentos y Productos Sanitarios (AEMPS), Calle Campezo 1-Edificio 8, 28022, Madrid, Spain
| | - P Paixao
- INFARMED-National Authority of Medicines and Health Products, Av. do Brasil 53, 1749-004, Lisbon, Portugal
| | - I Tasevska
- State Institute for Drug Control (SÚKL), Šrobárova 48, 100 41, Praha 10, Czech Republic
| | - B Davit
- Translational Medicine, Merck & Co., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| |
Collapse
|