1
|
Nagaraj K, Karuppiah C, Wadaan MA, Maity P, Kaliyaperumal R, Vaishnavi E, Rajaraman D, Abhijith SM, Ramaraj SK, Mathivanan I. Synthesis, characterization, molecular modeling, binding energies of β-cyclodextrin-inclusion complexes of quercetin: Modification of photo physical behavior upon β-CD complexation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 313:124091. [PMID: 38447439 DOI: 10.1016/j.saa.2024.124091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/08/2024]
Abstract
We prepared a naturally occurring flavanoid namely quercetin from tea leaves and analyzed by Absorption, Emission, FT-IR, 1H, 13C nmr spectra and ESI-MS analysis. The inclusion behavior of quercetin in cyclodextrins like α-, β-, γ-, per-6-ABCD and mono-6-ABCD cavities were supported such as UV-vis., Emission, FT-IR and ICD spectra and energy minimization studies. From the absorption and emission results, the type of complexes formed were found to depend on stoichiometry of Host:Guest. FT-IR data of CD complexes of quercetin supported inclusion complex formation of the substrate with α-, β- and γ-CDs. The inclusion of host-guest complexation of quercetin with α-, β-, γ-CDs, per-6-ABCD and mono-6-ABCDs provides very valuable information about the CD:quercetin complexes, the study also shows that β-CD complexation improves water solubility, chemical stability and bioavailability of quercetin. Besides, phase solubility studies also supported the formation of 1:1 drug-CD soluble complexes. All these spectral results provide insight into the binding behavior of substrate into CD cavity in the order per-6-ABCD > Mono-6-ABCD > γ-CD > β-CD > α-CD. The proposed model also finds strong support from the fact with excess CD this exciton coupling disappears indicates the formation of only 1:1 complex.
Collapse
Affiliation(s)
- Karuppiah Nagaraj
- School of Pharmacy, National Forensic Sciences University, 6M56+XP8, Police Bhavan Rd, Sector 9, Gandhinagar, Gujarat 382007, India.
| | - Chelladurai Karuppiah
- Battery Research Center for Green Energy, Ming Chi University of Technology, New Taipei City 24301, Taiwan; PG & Research Department of Chemistry, Thiagarajar College, Madurai, Tamil Nadu, India
| | - Mohammad Ahmad Wadaan
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Prasenjit Maity
- School of Engineering and Technology, National Forensic Sciences University, 6M56+XP8, Police Bhavan Rd, Sector 9, Gandhinagar, Gujarat 382007, India
| | - Raja Kaliyaperumal
- Department of Chemistry, St. Joseph University, Chumoukedima, Nagaland 797115, India
| | - Ellappan Vaishnavi
- Department of Chemistry, Sri GVG Visalakshi College for Women, Udumalpet 642128, Tamil Nadu, India
| | - D Rajaraman
- Humanities and Sciences, St. Peters Engineering College, St Peters College Rd, Opposite TS Forest Academy Dullapally, Maisammaguda, Medchal, Hyderabad, Telangana 500043, India
| | - S M Abhijith
- School of Pharmacy, National Forensic Sciences University, 6M56+XP8, Police Bhavan Rd, Sector 9, Gandhinagar, Gujarat 382007, India
| | - Sayee Kannan Ramaraj
- PG & Research Department of Chemistry, Thiagarajar College, Madurai, Tamil Nadu, India
| | - Isai Mathivanan
- Research Department of Zoology, Seethalakshmi Ramaswami College (Autonomous), Affiliated to Bharathidasan University, Tiruchirapalli, Tamil Nadu, India
| |
Collapse
|
2
|
Cyclodextrin-Based Polymeric Drug Delivery Systems for Cancer Therapy. Polymers (Basel) 2023; 15:polym15061400. [PMID: 36987181 PMCID: PMC10052104 DOI: 10.3390/polym15061400] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Cyclodextrins (CDs) are one of the most extensively studied cyclic-oligosaccharides due to their low toxicity, good biodegradability and biocompatibility, facile chemical modification, and unique inclusion capacity. However, problems such as poor pharmacokinetics, plasma membrane disruption, hemolytic effects and a lack of target specificity still exist for their applications as drug carriers. Recently, polymers have been introduced into CDs to combine the advantages of both biomaterials for the superior delivery of anticancer agents in cancer treatment. In this review, we summarize four types of CD-based polymeric carriers for the delivery of chemotherapeutics or gene agents for cancer therapy. These CD-based polymers were classified based on their structural properties. Most of the CD-based polymers were amphiphilic with the introduction of hydrophobic/hydrophilic segments and were able to form nanoassemblies. Anticancer drugs could be included in the cavity of CDs, encapsulated in the nanoparticles or conjugated on the CD-based polymers. In addition, the unique structures of CDs enable the functionalization of targeting agents and stimuli-responsive materials to realize the targeting and precise release of anticancer agents. In summary, CD-based polymers are attractive carriers for anticancer agents.
Collapse
|
3
|
Chopra H, Verma R, Kaushik S, Parashar J, Madan K, Bano A, Bhardwaj R, Pandey P, Kumari B, Purohit D, Kumar M, Bhatia S, Rahman MH, Mittal V, Singh I, Kaushik D. Cyclodextrin-Based Arsenal for Anti-Cancer Treatments. Crit Rev Ther Drug Carrier Syst 2023; 40:1-41. [PMID: 36734912 DOI: 10.1615/critrevtherdrugcarriersyst.2022038398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Anti-cancer drugs are mostly limited in their use due to poor physicochemical and biopharmaceutical properties. Their lower solubility is the most common hurdle limiting their use upto their potential. In the recent years, the cyclodextrin (CD) complexation have emerged as existing approach to overcome the problem of poor solubility. CD-based nano-technological approaches are safe, stable and showed well in vivo tolerance and greater payload for encapsulation of hydrophobic drugs for the targeted delivery. They are generally chosen due to their ability to get self-assembled to form liposomes, nanoparticles, micelles and nano-sponges etc. This review paper describes a birds-eye view of the various CD-based nano-technological approaches applied for the delivery of anti-cancer moieties to the desired target such as CD based liposomes, niosomes, niosoponges, micelles, nanoparticles, monoclonal antibody, magnetic nanoparticles, small interfering RNA, nanorods, miscellaneous formulation of anti-cancer drugs containing CD. Moreover, the author also summarizes the various shortcomings of such a system and their way ahead.
Collapse
Affiliation(s)
- Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Ravinder Verma
- Department of Pharmacy, G.D. Goenka University, Sohna Road, Gurugram 122103, India
| | - Sakshi Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Jatin Parashar
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Kumud Madan
- Lloyd Institute of Management and Technology (Pharm), Knowledge Park, Greater Noida, U.P., India
| | - Afsareen Bano
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak 124001, India
| | - Rashmi Bhardwaj
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak 124001, India
| | - Parijat Pandey
- Department of Pharmaceutical Sciences, Gurugram University, Gurugram 122413, India
| | - Beena Kumari
- Department of Pharmaceutical Sciences, Indira Gandhi University, Meerpur, Rewari, India
| | - Deepika Purohit
- Department of Pharmaceutical Sciences, Indira Gandhi University, Meerpur, Rewari, India
| | - Manish Kumar
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, Haryana, India
| | - Saurabh Bhatia
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman; School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Md Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh
| | - Vineet Mittal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Inderbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| |
Collapse
|
4
|
Establishment and optimization of voriconazole/HS15/SBE-β-CD complex system: Based on micellization thermodynamics. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114453] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
5
|
Vrijsen JH, Van de Reydt E, Junkers T. Tunable thermoresponsive β‐cyclodextrin‐based star polymers. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
| | - Emma Van de Reydt
- Polymer Reaction Design Group, School of Chemistry Monash University Clayton Victoria Australia
| | - Tanja Junkers
- Universiteit Hasselt, Institute for Materials Research Hasselt Belgium
- Polymer Reaction Design Group, School of Chemistry Monash University Clayton Victoria Australia
| |
Collapse
|
6
|
Wang H, Luo J, Zhang Y, He D, Jiang R, Xie X, Yang Q, Li K, Xie J, Zhang J. Phospholipid/hydroxypropyl-β-cyclodextrin supramolecular complexes are promising candidates for efficient oral delivery of curcuminoids. Int J Pharm 2020; 582:119301. [DOI: 10.1016/j.ijpharm.2020.119301] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/26/2020] [Accepted: 04/02/2020] [Indexed: 12/18/2022]
|
7
|
Jiao JB, Wang GZ, Hu XL, Zang Y, Maisonneuve S, Sedgwick AC, Sessler JL, Xie J, Li J, He XP, Tian H. Cyclodextrin-Based Peptide Self-Assemblies (Spds) That Enhance Peptide-Based Fluorescence Imaging and Antimicrobial Efficacy. J Am Chem Soc 2020; 142:1925-1932. [PMID: 31884796 DOI: 10.1021/jacs.9b11207] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
As a result of their high specificity for their corresponding biological targets, peptides have shown significant potential in a range of diagnostic and therapeutic applications. However, their widespread use has been limited by their minimal cell permeability and stability in biological milieus. We describe here a hepta-dicyanomethylene-4H-pyran appended β-cyclodextrin (DCM7-β-CD) that acts as a delivery enhancing "host" for 1-bromonaphthalene-modified peptides, as demonstrated with peptide probes P1-P4. Interaction between the fluorescent peptides P1-P3 and DCM7-β-CD results in the hierarchical formation of unique supramolecular architectures, which we term supramolecular-peptide-dots (Spds). Each Spd (Spd-1, Spd-2, and Spd-3) was found to facilitate the intracellular delivery of the constituent fluorescent probes (P1-P3), thus allowing spatiotemporal imaging of an apoptosis biomarker (caspase-3) and mitosis. Spd-4, incorporating the antimicrobial peptide P4, was found to provide an enhanced therapeutic benefit against both Gram-positive and Gram-negative bacteria relative to P4 alone. In addition, a fluorescent Spd-4 was prepared, which revealed greater bacterial cellular uptake compared to the peptide alone (P4-FITC) in E. coli. (ATCC 25922) and S. aureus (ATCC 25923). This latter observation supports the suggestion that the Spd platform reported here has the ability to facilitate the delivery of a therapeutic peptide and provides an easy-to-implement strategy for enhancing the antimicrobial efficacy of known therapeutic peptides. The present findings thus serve to highlight a new and effective supramolecular delivery approach that is potentially generalizable to overcome limitations associated with functional peptides.
Collapse
Affiliation(s)
- Jin-Biao Jiao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering , East China University of Science and Technology , 130 Meilong Rd. , Shanghai 200237 , P. R. China.,Université Paris-Saclay, ENS Paris-Saclay, CNRS, PPSM , 61 av President Wilson , F-94235 Cachan , France
| | - Guan-Zhen Wang
- National Center for Drug Screening, State Key Laboratory of Drug Research Shanghai Institute of Materia Medica , Chinese Academy of Sciences , 189 Guo Shoujing Rd. , Shanghai 201203 , P. R. China.,University of Chinese Academy of Sciences , No. 19A Yuquan Rd. , Beijing 100049 , P. R. China
| | - Xi-Le Hu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering , East China University of Science and Technology , 130 Meilong Rd. , Shanghai 200237 , P. R. China
| | - Yi Zang
- National Center for Drug Screening, State Key Laboratory of Drug Research Shanghai Institute of Materia Medica , Chinese Academy of Sciences , 189 Guo Shoujing Rd. , Shanghai 201203 , P. R. China
| | - Stéphane Maisonneuve
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, PPSM , 61 av President Wilson , F-94235 Cachan , France
| | - Adam C Sedgwick
- Department of Chemistry , The University of Texas at Austin , 105 East 24th Street-A5300 , Austin , Texas 78712-1224 , United States
| | - Jonathan L Sessler
- Department of Chemistry , The University of Texas at Austin , 105 East 24th Street-A5300 , Austin , Texas 78712-1224 , United States
| | - Juan Xie
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, PPSM , 61 av President Wilson , F-94235 Cachan , France
| | - Jia Li
- National Center for Drug Screening, State Key Laboratory of Drug Research Shanghai Institute of Materia Medica , Chinese Academy of Sciences , 189 Guo Shoujing Rd. , Shanghai 201203 , P. R. China.,University of Chinese Academy of Sciences , No. 19A Yuquan Rd. , Beijing 100049 , P. R. China.,Open Studio for Druggability Research of Marine Natural Products Pilot National Laboratory for Marine Science and Technology (Qingdao) , 1 Wenhai Rd. , Aoshanwei , Jimo, Qingdao 266237 , P. R. China
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering , East China University of Science and Technology , 130 Meilong Rd. , Shanghai 200237 , P. R. China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering , East China University of Science and Technology , 130 Meilong Rd. , Shanghai 200237 , P. R. China
| |
Collapse
|
8
|
Facile construction of shape-regulated β-cyclodextrin-based supramolecular self-assemblies for drug delivery. Carbohydr Polym 2019; 231:115714. [PMID: 31888845 DOI: 10.1016/j.carbpol.2019.115714] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/03/2019] [Accepted: 12/05/2019] [Indexed: 12/20/2022]
Abstract
Although supramolecular prodrug self-assemblies have been proven as efficient nanocarriers for cancer therapy, tedious synthesis procedures have made their practical applications more difficult. In this paper, β-cyclodextrin-based supramolecular self-assemblies (SSAs) were directly constructed by utilizing β-cyclodextrin trimer (β-CD3) as the host unit and unmodified curcumin as the guest unit. Due to the adjustment of host-guest inclusion and hydrophilic-hydrophobic interactions occurring in the SSAs, their morphology could be readily tuned by changing the ratio of the two components. Different self-assembly morphologies, such as spherical complex micelles, spindle-like complex micelles and multi-compartment vesicles, were obtained. Furthermore, basic cell experiments were performed to study the corresponding effects of the SSA shape on their biological properties. Compared to the other micelles, the spindle-like complex micelles exhibited enhanced cellular toxicity, uptake behaviors and apoptosis rates, and the spherical complex micelles exhibited poor performance. The performance of the multi-compartment vesicles was similar to that of the spindle-like complex micelles. The facile construction of these shape-regulated SSAs and their different cellular biological properties might be valuable in the controlled drug release field.
Collapse
|
9
|
Mohammed-Saeid W, Karoyo AH, Verrall RE, Wilson LD, Badea I. Inclusion Complexes of Melphalan with Gemini-Conjugated β-Cyclodextrin: Physicochemical Properties and Chemotherapeutic Efficacy in In-Vitro Tumor Models. Pharmaceutics 2019; 11:pharmaceutics11090427. [PMID: 31443452 PMCID: PMC6781286 DOI: 10.3390/pharmaceutics11090427] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/06/2019] [Accepted: 08/10/2019] [Indexed: 11/16/2022] Open
Abstract
β-cyclodextrin (βCD) has been widely explored as an excipient for pharmaceuticals and nutraceuticals as it forms stable host–guest inclusion complexes and enhances the solubility of poorly soluble active agents. To enhance intracellular drug delivery, βCD was chemically conjugated to an 18-carbon chain cationic gemini surfactant which undergoes self-assembly to form nanoscale complexes. The novel gemini surfactant-modified βCD carrier host (hereafter referred to as 18:1βCDg) was designed to combine the solubilization and encapsulation capacity of the βCD macrocycle and the cell-penetrating ability of the gemini surfactant conjugate. Melphalan (Mel), a chemotherapeutic agent for melanoma, was selected as a model for a poorly soluble drug. Characterization of the 18:1βCDg-Mel host–guest complex was carried out using 1D/2D 1H NMR spectroscopy and dynamic light scattering (DLS). The 1D/2D NMR spectral results indicated the formation of stable and well-defined 18:1βCDg-Mel inclusion complexes at the 2:1 host–guest mole ratio; whereas, host–drug interaction was attenuated at greater 18:1βCDg mole ratio due to hydrophobic aggregation that accounts for the reduced Mel solubility. The in vitro evaluations were performed using monolayer, 3D spheroid, and Mel-resistant melanoma cell lines. The 18:1βCDg-Mel complex showed significant enhancement in the chemotherapeutic efficacy of Mel with 2–3-fold decrease in Mel half maximal inhibitory concentration (IC50) values. The findings demonstrate the potential applicability of the 18:1βCDg delivery system as a safe and efficient carrier for a poorly soluble chemotherapeutic in melanoma therapy.
Collapse
Affiliation(s)
- Waleed Mohammed-Saeid
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, SK S7N 5E5, Canada
- College of Pharmacy, Taibah University, Medina 42353, Saudi Arabia
| | - Abdalla H Karoyo
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| | - Ronald E Verrall
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| | - Lee D Wilson
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| | - Ildiko Badea
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, SK S7N 5E5, Canada.
| |
Collapse
|
10
|
Surface-Modified Chitosan: An Adsorption Study of a “Tweezer-Like” Biopolymer with Fluorescein. SURFACES 2019. [DOI: 10.3390/surfaces2030035] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tweezer-like adsorbents with enhanced surface area were synthesized by grafting aniline onto the amine sites of a chitosan biopolymer scaffold. The chemical structure and textural properties of the adsorbents were characterized by thermogravimetric analysis (TGA) and spectral methods, including Fourier transform infrared (FT-IR), nuclear magnetic resonance (1H- and, 13C-NMR) and scanning electron microscopy (SEM). Equilibrium solvent swelling results for the adsorbent materials provided evidence of a more apolar biopolymer surface upon grafting. Equilibrium uptake studies with fluorescein at ambient pH in aqueous media reveal a high monolayer adsorption capacity (Qm) of 61.8 mg·g−1, according to the Langmuir isotherm model. The kinetic adsorption profiles are described by the pseudo-first order kinetic model. 1D NMR and 2D-NOESY NMR spectra were used to confirm the role of π-π interactions between the adsorbent and adsorbate. Surface modification of the adsorbent using monomeric and dimeric cationic surfactants with long hydrocarbon chains altered the hydrophile-lipophile balance (HLB) of the adsorbent surface, which resulted in attenuated uptake of fluorescein by the chitosan molecular tweezers. This research contributes to a first example of the uptake properties for a tweezer-like chitosan adsorbent and the key role of weak cooperative interactions in controlled adsorption of a model anionic dye.
Collapse
|
11
|
Li Q, Zhao Q, Jing Q, Ma X, Chen N, Ren G, Ouyang D, Ren F. Investigating molecular interactions of high-loaded glipizide-HPMCAS microparticles by integrated experimental and modeling techniques. Eur J Pharm Sci 2019; 131:127-135. [PMID: 30735823 DOI: 10.1016/j.ejps.2019.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/15/2018] [Accepted: 02/03/2019] [Indexed: 01/15/2023]
Abstract
Molecular interactions between drug and polymeric carriers are believed to be the key for high drug loading and better physical stability of micro-particles. However, molecular interactions between drug and polymer are still difficult to investigate using only experimental tools. In this study, high-loaded glipizide (GLP)/hydroxypropyl methylcellulose acetate succinate (HPMCAS) (1/1 w/w) micro-particles were prepared using an in situ pH-dependent solubility method. Molecular interactions within the micro-particles were investigated by integrated experimental and modeling techniques. The dissolution rate of GLP/HPMCAS micro-particles was significantly better than those of solid dispersions and physical mixtures. Scanning electron microscopy images showed that the polymer inhibited GLP recrystallization. Experimental (FTIR spectroscopy, differential scanning calorimetry, powder X-ray diffraction and nuclear magnetic resonance spectroscopy) and molecular dynamics simulation revealed that hydrogen-bonding was the key to the properties of the micro-particles. Our research developed high drug-loading GLP/HPMCAS micro-particles and investigated the interactions between drug and polymer at the molecular level. This integrated approach could be practical methodology for future formulation design.
Collapse
Affiliation(s)
- Qiang Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Qianqian Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau
| | - Qiufang Jing
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaosi Ma
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Ning Chen
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Guobin Ren
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Defang Ouyang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau.
| | - Fuzheng Ren
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
12
|
Determination of the structure of quinolone-γ-cyclodextrin complexes and their binding constants by means of UV–Vis and 1H NMR. J INCL PHENOM MACRO 2018. [DOI: 10.1007/s10847-018-0817-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
13
|
Mohammed-Saeid W, Michel D, Badea I, El-Aneed A. Rapid and simple flow injection analysis tandem mass spectrometric method for the quantification of melphalan in a lipid-based drug delivery system. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2017; 31:1481-1490. [PMID: 28667829 DOI: 10.1002/rcm.7926] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/14/2017] [Accepted: 06/18/2017] [Indexed: 06/07/2023]
Abstract
RATIONALE The use of the anticancer drug melphalan is limited due to its poor water solubility. To address this limitation, it is incorporated within a novel delivery system using β-cyclodextrin-gemini surfactants (18:1βCDg). METHODS Herein, two fast and simple flow injection analysis/tandem mass spectrometric (FIA-MS/MS) methods are developed for the quantification of melphalan (Mel) within the drug delivery system so that the solubilization efficiency of the system can be assessed. FIA-MS/MS methods are developed using a triple quadrupole linear ion trap mass spectrometer, equipped with electrospray ionization (ESI) in the positive ion mode. A deuterated form of melphalan (melphalan-d8) was used as an internal standard (IS). The methods were validated according to the FDA guidance. RESULTS A linearity in the range of 2-100 ng/mL and accuracy and precision below 15% were observed for all standard points and quality control samples. The intra- and inter-day variations and freeze-thaw stability were within the acceptable range according to the criteria set by regulatory guidelines. On the other hand, other stability measures, such as room temperature stability and long-term stability, did not meet the required guidelines in some cases, indicating the need for quick sample analysis upon preparation. Such a fact could have been overlooked if full method validation had not been performed. CONCLUSIONS The developed methods were applied to determine the encapsulation/solubilization of the [18:1βCDg/Mel] delivery system. 18:1βCDg enhances the aqueous solubility of melphalan without the need for co-solvent. The highest melphalan solubility was observed at a melphalan18:1βCDg/Mel complex molar ratio of 2:1. This study demonstrated that a fast analysis for the purpose of quantifying a chemically unstable drug, such as melphalan, is feasible and important for the development of commercial dosage forms.
Collapse
Affiliation(s)
- Waleed Mohammed-Saeid
- College of Pharmacy & Nutrition, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5E5
- College of Pharmacy, Taibah University, Madina, Saudi Arabia
| | - Deborah Michel
- College of Pharmacy & Nutrition, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5E5
| | - Ildiko Badea
- College of Pharmacy & Nutrition, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5E5
| | - Anas El-Aneed
- College of Pharmacy & Nutrition, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5E5
| |
Collapse
|
14
|
Mohamed MH, Wang C, Peru KM, Headley JV, Wilson LD. Characterization of the Physicochemical Properties of β-Cyclodextrin–Divinyl Sulfone Polymer Carrier–Bile Acid Systems. Mol Pharm 2017; 14:2616-2623. [DOI: 10.1021/acs.molpharmaceut.7b00088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mohamed H. Mohamed
- Department
of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Chen Wang
- Department
of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Kerry M. Peru
- Water
Science and Technology Directorate, Environment and Climate Change Canada, 11 Innovation Boulevard, Saskatoon, Saskatchewan S7N 3H5, Canada
| | - John V. Headley
- Water
Science and Technology Directorate, Environment and Climate Change Canada, 11 Innovation Boulevard, Saskatoon, Saskatchewan S7N 3H5, Canada
| | - Lee D. Wilson
- Department
of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| |
Collapse
|
15
|
Michel D, Mohammed-Saeid W, Getson H, Roy C, Poorghorban M, Chitanda JM, Verrall R, Badea I. Evaluation of β-cyclodextrin-modified gemini surfactant-based delivery systems in melanoma models. Int J Nanomedicine 2016; 11:6703-6712. [PMID: 28003746 PMCID: PMC5161338 DOI: 10.2147/ijn.s121156] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Novel drug delivery systems are developed to improve the biological behavior of poorly soluble drugs and to improve therapeutic outcomes. In melanoma therapy, the goal is efficient drug delivery and mitigation of drug resistance. Melphalan (Mel), a currently used therapeutic agent for melanoma, requires solvent system for solubilization, leading to poor chemical stability. Moreover, drug resistance often renders the drug inefficient in clinical setting. A novel β-cyclodextrin-modified gemini surfactant (CDgemini) delivery system was developed to incorporate Mel in order to improve its physicochemical and biological behavior. Melphalan nanoparticles (Mel-NP) showed optimal particle size in the 200-250 nm range for endocytosis and induced significantly higher cell death compared with Mel (50% of inhibitory concentration [IC50] of 36 µM for the complexes vs 82 µM for Mel). The CDgemini delivery system did not alter the pathway of the cellular death triggered by Mel and caused no intrinsic toxicity to the cells. The Mel-NP complexes induced significant cell death in melanoma cells that were rendered resistant to Mel. These findings demonstrate in principle the applicability of the CDgemini delivery system as safe and efficient alternative to the current melanoma therapy, especially in chemoresistant cases.
Collapse
Affiliation(s)
- Deborah Michel
- Drug Design and Discovery Research Group, College of Pharmacy and Nutrition
| | | | - Heather Getson
- Drug Design and Discovery Research Group, College of Pharmacy and Nutrition
| | - Caitlin Roy
- Drug Design and Discovery Research Group, College of Pharmacy and Nutrition
| | | | - Jackson M Chitanda
- Department of Chemistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ronald Verrall
- Department of Chemistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ildiko Badea
- Drug Design and Discovery Research Group, College of Pharmacy and Nutrition
| |
Collapse
|
16
|
Guo Y, Li J, Liu Y, Ma Y, Cheng H, Yang B, Liu D, Yang R. Inclusion complexes of anhydrolycorine with cyclodextrins: preparation, characterization, and anticancer activity. CAN J CHEM 2016. [DOI: 10.1139/cjc-2015-0462] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This article describes the preparation of a series of inclusion complexes of anhydrolycorine with three cyclodextrins (CDs), namely β-CD, γ-CD, and 2-hydroxypropyl-β-cyclodextrin (HP-β-CD), and their successful characterization through UV, TG, DSC, XRD, SEM, 1H NMR, and 2D NMR spectroscopies. The results demonstrated that the water solubility of anhydrolycorine increased notably by about 23–42 times after the inclusion complexation with these CDs. Furthermore, preliminary in vitro cytotoxicity experiments on human colon cancer cell lines HT-29, SW480, HCT116, and DLD-1 were also performed, and the complexes showed remarkable anticancer activity against HT-29, SW480, and HCT116. These results suggested that the inclusion complexes would be potentially useful for applications for human colon cancer chemotherapy.
Collapse
Affiliation(s)
- Yafei Guo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P.R. China
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, P.R. China
| | - Jiuling Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P.R. China
| | - Yuqi Liu
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, P.R. China
| | - Yongping Ma
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, P.R. China
| | - Huilin Cheng
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Yunnan 650500, P.R. China
| | - Bo Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P.R. China
| | - Dandan Liu
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Yunnan 650500, P.R. China
| | - Rui Yang
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, P.R. China
| |
Collapse
|
17
|
Karoyo AH, Wilson LD. Preparation and Characterization of a Polymer-Based "Molecular Accordion". LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:3066-3078. [PMID: 26931298 DOI: 10.1021/acs.langmuir.6b00099] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A urethane-based polymer material, denoted HDI-1, was obtained from the addition reaction of β-cyclodextrin (β-CD) with 1,6-hexamethylene diisocyanate (HDI) at the 1:1 mole ratio. In aqueous solution and ambient temperature conditions, HDI-1 adopts a compact (coiled) morphology where the cross-linker units become coiled and are partially self-included in the annular hydroxyl (interstitial) region of β-CD. As the temperature is raised or as p-nitrophenol (PNP) was included within the β-CD cavity and the noninclusion sites of the polymer, an extended (uncoiled) morphology was adopted. The equilibrium distribution between the extended and the compact forms of HDI-1 is thermally and chemically switchable, in accordance with the hydration properties and host-guest chemistry of this responsive polymer system. The molecular structure of this water-soluble urethane polymer and its host-guest complexes with PNP were investigated using spectroscopic (Raman, (1)H NMR, induced circular dichroism), dynamic light scattering (DLS), and calorimetric (DSC) methods in aqueous solution at ambient pH, and compared with native β-CD. This study reports on the unique supramolecular properties of a polymer that resembles a thermally and chemically responsive "molecular accordion".
Collapse
Affiliation(s)
- Abdalla H Karoyo
- Department of Chemistry, University of Saskatchewan , 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| | - Lee D Wilson
- Department of Chemistry, University of Saskatchewan , 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| |
Collapse
|
18
|
Zhang Y, Li J, Wang F, Wu G, Qv X, Hong H, Liu C. Recovery and separation of erythromycin from industrial wastewater by imprinted magnetic nanoparticles that exploit β-cyclodextrin as the functional monomer. J Sep Sci 2015; 39:450-9. [PMID: 26805958 DOI: 10.1002/jssc.201500927] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 10/16/2015] [Accepted: 10/17/2015] [Indexed: 12/22/2022]
Abstract
A type of surface imprinting over magnetic Fe3 O4 nanoparticles utilizing erythromycin-A as a template for use in the separation and recovery of erythromycin was developed and investigated. As the intermolecular forces play a key role in the performance of imprinted materials, differential scanning calorimetry, and (1) H NMR spectroscopy was employed to evaluate the interactions between erythromycin and the functional monomer β-cyclodextrin. To synthesize the surface imprinted polymers, magnetic Fe3 O4 nanoparticles, the core materials, were modified with a free radical initiator to initialize polymerization in a "grafting from" manner. Then using acryloyl-modified β-cyclodextrin as the functional monomer and ethyleneglycol dimethacrylate as the cross-linker, thin erythromycin-imprinted films were fabricated by the radical-induced graft copolymerization of monomers on the surface of the Fe3 O4 nanoparticles. Selectivity experiments showed that the erythromycin-A-imprinted materials had recognition ability toward erythromycin derivatives. Finally, these magnetic molecularly imprinted particles were successfully used for the separation and enrichment of erythromycin from the mother liquor. The recovery, detected by high-performance liquid chromatography and differential pulse voltammetry, approached 97%. The combination of the specific selectivity of the imprinted material and the magnetic separation provided a powerful tool that is simple, flexible, and selective for the separation and recovery of erythromycin.
Collapse
Affiliation(s)
- Yuxin Zhang
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, P.R. China.,Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, P.R. China.,Engineering Research Centre for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, P.R. China
| | - Jinyang Li
- Fischell Department of Bioengineering, Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, USA
| | - FeiFei Wang
- Engineering Research Centre for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, P.R. China
| | - Gang Wu
- Engineering Research Centre for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, P.R. China
| | - Xue Qv
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, P.R. China.,Engineering Research Centre for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, P.R. China
| | - Hua Hong
- Engineering Research Centre for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, P.R. China
| | - Changsheng Liu
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, P.R. China.,Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, P.R. China.,Engineering Research Centre for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, P.R. China
| |
Collapse
|