1
|
Morihiro K, Tomida Y, Fukui D, Hasegawa M, Okamoto A. Nucleic Acid-to-Small Molecule Converter through Amplified Hairpin DNA Circuits. Angew Chem Int Ed Engl 2023; 62:e202306587. [PMID: 37704581 DOI: 10.1002/anie.202306587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/15/2023]
Abstract
Many microRNAs (miRNAs) are characteristically found in cancer cells, making miRNAs promising marker biomolecules for cancer diagnosis and therapeutics. However, it is challenging to use miRNA as a cancer signature because it is difficult to convert the nucleic acid sequence information into molecular functionality. To address this challenge, we realize nucleic acid-to-small molecule converters using hairpin DNA circuits. Harnessing a Staudinger reduction as a trigger for the conversion, we constructed hybridization chain reaction (HCR) and catalytic hairpin assembly (CHA) circuits that respond to oncogenic miR-21. Fluorophore and dye molecules were released in response to miR-21 through the HCR, providing fluorogenic and chromogenic readouts. Selective cytotoxicity in miR-21-abundant cells was realized by the CHA to release the anticancer drug SN-38. This would be the first example of selective activation of a small-molecule prodrug triggered by oncogenic miRNA in human living cells.
Collapse
Affiliation(s)
- Kunihiko Morihiro
- Department of Chemistry and Biotechnology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yasuhiro Tomida
- Department of Chemistry and Biotechnology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Daisuke Fukui
- Department of Chemistry and Biotechnology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Manami Hasegawa
- Department of Chemistry and Biotechnology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Akimitsu Okamoto
- Department of Chemistry and Biotechnology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
2
|
Anti-Colorectal Cancer Effects of a Novel Camptothecin Derivative PCC0208037 In Vitro and In Vivo. Pharmaceuticals (Basel) 2022; 16:ph16010053. [PMID: 36678550 PMCID: PMC9862597 DOI: 10.3390/ph16010053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/26/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
Colorectal cancer is one of the most common malignancies, and the topoisomerase inhibitor irinotecan (CPT-11)-based chemotherapeutic regimen is currently the first-line treatment with impressive therapeutic efficacy. However, irinotecan has several clinically significant side effects, including diarrhea, which limit its clinical utility and efficacy in many patients. In an effort to discover better and improved pharmacotherapy against colorectal cancer, we synthesized a novel topoisomerase inhibitor, PCC0208037, examined its anti-tumor efficacy and related molecular mechanisms, and characterized its toxicity and pharmacokinetic profiles. PCC0208037 suppressed colorectal cancer cell (CRC) proliferation and increased cell cycle arrest, which may be related to its effects on up-regulating DNA damage response (DDR)-related molecules and apoptosis-related proteins. PCC0208037 demonstrated robust anti-tumor activity in vivo in a colorectal cancer cell xenograft model, which was comparable to or slightly better than CPT-11. In a preliminary toxicology study, PCC0208037 demonstrated much weaker tissue damage to colorectal tissue than CPT-11, and its impacts on food intake and body weight loss were more transient and recovered faster than CPT-11 in mice. This could be partially explained by the pharmacokinetic findings, which showed that PCC0208037 and its active metabolite, SN-38, were more accumulated in tumor tissue than in the intestine, as compared to CPT-11. Taken together, these results described a novel Topo I inhibitor with a comparative advantage over the standard treatment of colorectal cancer CPT-11 and could be a promising candidate compound for the treatment of colorectal cancer that warrants further investigation.
Collapse
|
3
|
Burnouf PA, Roffler SR, Wu CC, Su YC. Glucuronides: From biological waste to bio-nanomedical applications. J Control Release 2022; 349:765-782. [PMID: 35907593 DOI: 10.1016/j.jconrel.2022.07.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 11/30/2022]
Abstract
Long considered as no more than biological waste meant to be eliminated in urine, glucuronides have recently contributed to tremendous developments in the biomedical field, particularly against cancer. While glucuronide prodrugs monotherapy and antibody-directed enzyme prodrug therapy have been around for some time, new facets have emerged that combine the unique properties of glucuronides notably in the fields of antibody-drug conjugates and nanomedicine. In both cases, glucuronides are utilized as a vector to improve pharmacokinetics and confer localized activation of potent drugs at tumor sites while also decreasing systemic toxicity. Here we will discuss some of the most promising strategies using glucuronides to promote successful anti-tumor therapeutic treatments.
Collapse
Affiliation(s)
- Pierre-Alain Burnouf
- International Center for Wound Repair and Regeneration, National Cheng-Kung University, Tainan, Taiwan.
| | - Steve R Roffler
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chia-Ching Wu
- International Center for Wound Repair and Regeneration, National Cheng-Kung University, Tainan, Taiwan; Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Cheng Su
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
4
|
Martin H, Lázaro LR, Gunnlaugsson T, Scanlan EM. Glycosidase activated prodrugs for targeted cancer therapy. Chem Soc Rev 2022; 51:9694-9716. [DOI: 10.1039/d2cs00379a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In this review glycosidase activated prodrugs that target cancer cells are discussed.
Collapse
Affiliation(s)
- Harlei Martin
- School of Chemistry and Trinity Bioscience Institute, The University of Dublin, Trinity College Dublin, Dublin 2, Ireland
| | - Laura Ramírez Lázaro
- School of Chemistry and Trinity Bioscience Institute, The University of Dublin, Trinity College Dublin, Dublin 2, Ireland
- SFI Synthesis and Solid State Pharmaceutical Centre (SSPC), Ireland
| | - Thorfinnur Gunnlaugsson
- School of Chemistry and Trinity Bioscience Institute, The University of Dublin, Trinity College Dublin, Dublin 2, Ireland
- SFI Synthesis and Solid State Pharmaceutical Centre (SSPC), Ireland
| | - Eoin M. Scanlan
- School of Chemistry and Trinity Bioscience Institute, The University of Dublin, Trinity College Dublin, Dublin 2, Ireland
- SFI Synthesis and Solid State Pharmaceutical Centre (SSPC), Ireland
| |
Collapse
|
5
|
Glucuronides Hydrolysis by Intestinal Microbial β-Glucuronidases (GUS) Is Affected by Sampling, Enzyme Preparation, Buffer pH, and Species. Pharmaceutics 2021; 13:pharmaceutics13071043. [PMID: 34371734 PMCID: PMC8309147 DOI: 10.3390/pharmaceutics13071043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/03/2021] [Accepted: 07/06/2021] [Indexed: 01/02/2023] Open
Abstract
Glucuronides hydrolysis by intestinal microbial β-Glucuronidases (GUS) is an important procedure for many endogenous and exogenous compounds. The purpose of this study is to determine the impact of experimental conditions on glucuronide hydrolysis by intestinal microbial GUS. Standard probe 4-Nitrophenyl β-D-glucopyranoside (pNPG) and a natural glucuronide wogonoside were used as the model compounds. Feces collection time, buffer conditions, interindividual, and species variations were evaluated by incubating the substrates with enzymes. The relative reaction activity of pNPG, reaction rates, and reaction kinetics for wogonoside were calculated. Fresh feces showed the highest hydrolysis activities. Sonication increased total protein yield during enzyme preparation. The pH of the reaction system increased the activity in 0.69–1.32-fold, 2.9–12.9-fold, and 0.28–1.56-fold for mouse, rat, and human at three different concentrations of wogonoside, respectively. The Vmax for wogonoside hydrolysis was 2.37 ± 0.06, 4.48 ± 0.11, and 5.17 ± 0.16 μmol/min/mg and Km was 6.51 ± 0.71, 3.04 ± 0.34, and 0.34 ± 0.047 μM for mouse, rat, and human, respectively. The inter-individual difference was significant (4–6-fold) using inbred rats as the model animal. Fresh feces should be used to avoid activity loss and sonication should be utilized in enzyme preparation to increase hydrolysis activity. The buffer pH should be appropriate according to the species. Inter-individual and species variations were significant.
Collapse
|
6
|
Edupuganti VVSR, Tyndall JDA, Gamble AB. Self-immolative Linkers in Prodrugs and Antibody Drug Conjugates in Cancer Treatment. Recent Pat Anticancer Drug Discov 2021; 16:479-497. [PMID: 33966624 DOI: 10.2174/1574892816666210509001139] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/09/2021] [Accepted: 03/02/2021] [Indexed: 12/09/2022]
Abstract
BACKGROUND The design of anti-cancer therapies with high anti-tumour efficacy and reduced toxicity continues to be challenging. Anti-cancer prodrug and antibody-drug-conjugate (ADC) strategies that can specifically and efficiently deliver cytotoxic compounds to cancer cells have been used to overcome some of the challenges. Key to the success of many of these strategies is a self-immolative linker, which after activation can release the drug payload. Various types of triggerable self-immolative linkers are used in prodrugs and ADCs to improve their efficacy and safety. OBJECTIVE Numerous patents have reported the significance of self-immolative linkers in prodrugs and ADCs in cancer treatment. Based on the recent patent literature, we summarise methods for designing the site-specific activation of non-toxic prodrugs and ADCs in order to improve selectivity for killing cancer cells. METHODS In this review, an integrated view of the potential use of prodrugs and ADCs in cancer treatment are provided. This review presents recent patents and related publications over the past ten years to 2020. RESULTS The recent patent literature has been summarised for a wide variety of self-immolative PABC linkers, which are cleaved by factors including responding to the difference between the extracellular and intracellular environments (pH, ROS, glutathione), by over-expressed enzymes (cathepsin, plasmin, β-glucuronidase) or bioorthogonal activation. The mechanism for self-immolation involves the linker undergoing a 1,4- or 1,6-elimination (via electron cascade) or intramolecular cyclisation to release cytotoxic drug at the targeted site. CONCLUSION This review provides the commonly used strategies from recent patent literature in the development of prodrugs based on targeted cancer therapy and antibody-drug conjugates, which show promising results in therapeutic applications.
Collapse
Affiliation(s)
| | - Joel D A Tyndall
- School of Pharmacy, University of Otago, Dunedin, 9054. New Zealand
| | - Allan B Gamble
- School of Pharmacy, University of Otago, Dunedin, 9054. New Zealand
| |
Collapse
|
7
|
Liu G, Lovell JF, Zhang L, Zhang Y. Stimulus-Responsive Nanomedicines for Disease Diagnosis and Treatment. Int J Mol Sci 2020; 21:E6380. [PMID: 32887466 PMCID: PMC7504550 DOI: 10.3390/ijms21176380] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 02/07/2023] Open
Abstract
Stimulus-responsive drug delivery systems generally aim to release the active pharmaceutical ingredient (API) in response to specific conditions and have recently been explored for disease treatments. These approaches can also be extended to molecular imaging to report on disease diagnosis and management. The stimuli used for activation are based on differences between the environment of the diseased or targeted sites, and normal tissues. Endogenous stimuli include pH, redox reactions, enzymatic activity, temperature and others. Exogenous site-specific stimuli include the use of magnetic fields, light, ultrasound and others. These endogenous or exogenous stimuli lead to structural changes or cleavage of the cargo carrier, leading to release of the API. A wide variety of stimulus-responsive systems have been developed-responsive to both a single stimulus or multiple stimuli-and represent a theranostic tool for disease treatment. In this review, stimuli commonly used in the development of theranostic nanoplatforms are enumerated. An emphasis on chemical structure and property relationships is provided, aiming to focus on insights for the design of stimulus-responsive delivery systems. Several examples of theranostic applications of these stimulus-responsive nanomedicines are discussed.
Collapse
Affiliation(s)
- Gengqi Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China;
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Jonathan F. Lovell
- Department of Biomedical Engineering, The State University of New York at Buffalo, Buffalo, NY 14260, USA;
| | - Lei Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China;
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Yumiao Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China;
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| |
Collapse
|
8
|
Lim S, Park J, Shim MK, Um W, Yoon HY, Ryu JH, Lim DK, Kim K. Recent advances and challenges of repurposing nanoparticle-based drug delivery systems to enhance cancer immunotherapy. Theranostics 2019; 9:7906-7923. [PMID: 31695807 PMCID: PMC6831456 DOI: 10.7150/thno.38425] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 09/17/2019] [Indexed: 12/15/2022] Open
Abstract
Cancer immunotherapy is an attractive treatment option under clinical settings. However, the major challenges of immunotherapy include limited patient response, limited tumor specificity, immune-related adverse events, and immunosuppressive tumor microenvironment. Therefore, nanoparticle (NP)-based drug delivery has been used to not only increase the efficacy of immunotherapeutic agents, but it also significantly reduces the toxicity. In particular, NP-based drug delivery systems alter the pharmacokinetic (PK) profile of encapsulated or conjugated immunotherapeutic agents to targeted cancer cells or immune cells and facilitate the delivery of multiple therapeutic combinations to targeted cells using single NPs. Recently, advanced NP-based drug delivery systems were effectively utilized in cancer immunotherapy to reduce the toxic side effects and immune-related adverse events. Repurposing these NPs as delivery systems of immunotherapeutic agents may overcome the limitations of current cancer immunotherapy. In this review, we focus on recent advances in NP-based immunotherapeutic delivery systems, such as immunogenic cell death (ICD)-inducing drugs, cytokines and adjuvants for promising cancer immunotherapy. Finally, we discuss the challenges facing current NP-based drug delivery systems that need to be addressed for successful clinical application.
Collapse
Affiliation(s)
- Seungho Lim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5, Hwarangno 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Jooho Park
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5, Hwarangno 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Man Kyu Shim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5, Hwarangno 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Wooram Um
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5, Hwarangno 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Hong Yeol Yoon
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5, Hwarangno 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Ju Hee Ryu
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5, Hwarangno 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Dong-Kwon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Kwangmeyung Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5, Hwarangno 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| |
Collapse
|
9
|
Synthesis and evaluation of pyrrolobenzodiazepine dimer antibody-drug conjugates with dual β-glucuronide and dipeptide triggers. Eur J Med Chem 2019; 179:591-607. [DOI: 10.1016/j.ejmech.2019.06.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/07/2019] [Accepted: 06/16/2019] [Indexed: 12/17/2022]
|
10
|
Abstract
Twenty-five years ago, the cytotoxic drug irinotecan (IRT) was first approved in Japan for the treatment of cancer. For more than two decades, the IRT prodrug has largely contributed to the treatment of solid tumors worldwide. Nowadays, this camptothecin derivative targeting topoisomerase 1 remains largely used in combination regimen, like FOLFIRI and FOLFIRINOX, to treat metastatic or advanced solid tumors, such as colon, gastric and pancreatic cancers and others. This review highlights recent discoveries in the field of IRT and its derivatives, including analogues of the active metabolite SN38 (such as FL118), the recently approved liposomal form Nal-IRI and SN38-based immuno-conjugates currently in development (such as sacituzumab govitecan). New information about the IRT mechanism of action are presented, including the discovery of a new protein target, the single-stranded DNA-binding protein FUBP1. Significant progress has been made also to better understand and manage the main limiting toxicities of IRT, chiefly neutropenia and diarrhea. The role of drug-induced inflammation and dysbiosis is underlined and strategies to limit the intestinal toxicity of IRT are discussed (use of β-glucuronidase inhibitors, plant extracts, probiotics). The detailed knowledge of the metabolism of IRT has enabled the identification of potential biomarkers to guide patient selection and to limit drug-induced toxicities, but no robust IRT-specific therapeutic biomarker has been approved yet. IRT is a versatile chemotherapeutic agent which combines well with a variety of anticancer drugs. It offers a large range of drug combinations with cytotoxic agents, targeted products and immuno-active biotherapeutics, to treat a variety of advanced solid carcinoma, sarcoma and cancers with progressive central nervous system diseases. A quarter of century after its first launch, IRT remains an essential anticancer drug, largely prescribed, useful to many patients and scientifically inspiring.
Collapse
|
11
|
You F, Gao C. Topoisomerase Inhibitors and Targeted Delivery in Cancer Therapy. Curr Top Med Chem 2019; 19:713-729. [PMID: 30931860 DOI: 10.2174/1568026619666190401112948] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 02/01/2023]
Abstract
DNA topoisomerases are enzymes that catalyze the alteration of DNA topology with transiently induced DNA strand breakage, essential for DNA replication. Topoisomerases are validated cancer chemotherapy targets. Anticancer agents targeting Topoisomerase I and II have been in clinical use and proven to be highly effective, though with significant side effects. There are tremendous efforts to develop new generation of topoisomerase inhibitors. Targeted delivery of topoisomerase inhibitors is another way to reduce the side effects. Conjugates of topoisomerases inhibitors with antibody, polymer, or small molecule are developed to target these inhibitors to tumor sites.
Collapse
Affiliation(s)
- Fei You
- Antibody Discovery and Protein Engineering, MedImmune, One MedImmune Way, Gaithersburg, MD 20878, United States
| | - Changshou Gao
- Antibody Discovery and Protein Engineering, MedImmune, One MedImmune Way, Gaithersburg, MD 20878, United States
| |
Collapse
|
12
|
Kundu B, Das SK, Paul Chowdhuri S, Pal S, Sarkar D, Ghosh A, Mukherjee A, Bhattacharya D, Das BB, Talukdar A. Discovery and Mechanistic Study of Tailor-Made Quinoline Derivatives as Topoisomerase 1 Poison with Potent Anticancer Activity. J Med Chem 2019; 62:3428-3446. [PMID: 30897325 DOI: 10.1021/acs.jmedchem.8b01938] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
To overcome chemical limitations of camptothecin (CPT), we report design, synthesis, and validation of a quinoline-based novel class of topoisomerase 1 (Top1) inhibitors and establish that compound 28 ( N-(3-(1 H-imidazol-1-yl)propyl)-6-(4-methoxyphenyl)-3-(1,3,4-oxadiazol-2-yl)quinolin-4-amine) exhibits the highest potency in inhibiting human Top1 activity with an IC50 value of 29 ± 0.04 nM. Compound 28 traps Top1-DNA cleavage complexes (Top1ccs) both in the in vitro cleavage assays and in live cells. Point mutation of Top1-N722S fails to trap compound 28-induced Top1cc because of its inability to form a hydrogen bond with compound 28. Unlike CPT, compound 28 shows excellent plasma serum stability and is not a substrate of P-glycoprotein 1 (permeability glycoprotein) advancing its potential anticancer activity. Finally, we provide evidence that compound 28 overcomes the chemical instability of CPT in human breast adenocarcinoma cells through generation of persistent and less reversible Top1cc-induced DNA double-strand breaks as detected by γH2AX foci immunostaining after 5 h of drug removal.
Collapse
Affiliation(s)
- Biswajit Kundu
- Department of Organic and Medicinal Chemistry , CSIR-Indian Institute of Chemical Biology , 4 Raja S. C. Mullick Road , Kolkata 700032 , West Bengal , India
| | - Subhendu K Das
- Laboratory of Molecular Biology, School of Biological Sciences ; Indian Association for the Cultivation of Science , 2A & 2B, Raja S. C. Mullick Road , Kolkata , 700032 West Bengal , India
| | - Srijita Paul Chowdhuri
- Laboratory of Molecular Biology, School of Biological Sciences ; Indian Association for the Cultivation of Science , 2A & 2B, Raja S. C. Mullick Road , Kolkata , 700032 West Bengal , India
| | - Sourav Pal
- Department of Organic and Medicinal Chemistry , CSIR-Indian Institute of Chemical Biology , 4 Raja S. C. Mullick Road , Kolkata 700032 , West Bengal , India.,Academy of Scientific and Innovative Research , Kolkata 700032 , West Bengal , India
| | - Dipayan Sarkar
- Department of Organic and Medicinal Chemistry , CSIR-Indian Institute of Chemical Biology , 4 Raja S. C. Mullick Road , Kolkata 700032 , West Bengal , India.,Academy of Scientific and Innovative Research , Kolkata 700032 , West Bengal , India
| | - Arijit Ghosh
- Laboratory of Molecular Biology, School of Biological Sciences ; Indian Association for the Cultivation of Science , 2A & 2B, Raja S. C. Mullick Road , Kolkata , 700032 West Bengal , India
| | - Ayan Mukherjee
- Department of Organic and Medicinal Chemistry , CSIR-Indian Institute of Chemical Biology , 4 Raja S. C. Mullick Road , Kolkata 700032 , West Bengal , India.,Academy of Scientific and Innovative Research , Kolkata 700032 , West Bengal , India
| | - Debomita Bhattacharya
- Department of Organic and Medicinal Chemistry , CSIR-Indian Institute of Chemical Biology , 4 Raja S. C. Mullick Road , Kolkata 700032 , West Bengal , India
| | - Benu Brata Das
- Laboratory of Molecular Biology, School of Biological Sciences ; Indian Association for the Cultivation of Science , 2A & 2B, Raja S. C. Mullick Road , Kolkata , 700032 West Bengal , India
| | - Arindam Talukdar
- Department of Organic and Medicinal Chemistry , CSIR-Indian Institute of Chemical Biology , 4 Raja S. C. Mullick Road , Kolkata 700032 , West Bengal , India
| |
Collapse
|
13
|
Farouk F, Shamma R. Chemical structure modifications and nano-technology applications for improving ADME-Tox properties, a review. Arch Pharm (Weinheim) 2019; 352:e1800213. [DOI: 10.1002/ardp.201800213] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/02/2018] [Accepted: 11/11/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Faten Farouk
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry; Ahram Canadian University; Giza Egypt
| | - Rehab Shamma
- Faculty of Pharmacy, Department of Pharmaceutics and Industrial Pharmacy; Cairo University; Cairo Egypt
| |
Collapse
|
14
|
Walther R, Jarlstad Olesen MT, Zelikin AN. Extended scaffold glucuronides: en route to the universal synthesis of O-aryl glucuronide prodrugs. Org Biomol Chem 2019; 17:6970-6974. [DOI: 10.1039/c9ob01384a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
An extended scaffold is the key to facile glucuronidation for the synthesis of prodrugs.
Collapse
Affiliation(s)
- Raoul Walther
- Department of Chemistry
- Aarhus University
- Aarhus
- Denmark
| | | | - Alexander N. Zelikin
- Department of Chemistry
- Aarhus University
- Aarhus
- Denmark
- iNano Interdisciplinary Nanoscience Centre
| |
Collapse
|
15
|
Herceg V, Adriouach S, Janikowska K, Allémann E, Lange N, Babič A. Design, synthesis and in vitro evaluation of β-glucuronidase-sensitive prodrug of 5-aminolevulinic acid for photodiagnosis of breast cancer cells. Bioorg Chem 2018; 78:372-380. [DOI: 10.1016/j.bioorg.2018.03.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/14/2018] [Accepted: 03/18/2018] [Indexed: 12/13/2022]
|
16
|
“pH-triggered” drug release using shell cross-linked micelles from aqueous RAFT-synthesized PAPMA-b-PNIPAM copolymers. JOURNAL OF POLYMER RESEARCH 2018. [DOI: 10.1007/s10965-018-1564-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
17
|
Burnouf PA, Leu YL, Su YC, Wu K, Lin WC, Roffler SR. Reversible glycosidic switch for secure delivery of molecular nanocargos. Nat Commun 2018; 9:1843. [PMID: 29748577 PMCID: PMC5945669 DOI: 10.1038/s41467-018-04225-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 04/12/2018] [Indexed: 01/08/2023] Open
Abstract
Therapeutic drugs can leak from nanocarriers before reaching their cellular targets. Here we describe the concept of a chemical switch which responds to environmental conditions to alternate between a lipid-soluble state for efficient cargo loading and a water-soluble state for stable retention of cargos inside liposomes. A cue-responsive trigger allows release of the molecular cargo at specific cellular sites. We demonstrate the utility of a specific glycosidic switch for encapsulation of potent anticancer drugs and fluorescent compounds. Stable retention of drugs in liposomes allowed generation of high tumor/blood ratios of parental drug in tumors after enzymatic hydrolysis of the glycosidic switch in the lysosomes of cancer cells. Glycosidic switch liposomes could cure mice bearing human breast cancer tumors without significant weight loss. The chemical switch represents a general method to load and retain cargos inside liposomes, thereby offering new perspectives in engineering safe and effective liposomes for therapy and imaging. Retention of drugs loaded into liposomes is a major challenge to effective targeted drug delivery. Here, the authors report on the modification of drugs with a glycosidic pH sensitive switch to improve encapsulation and retention of drugs and demonstrate application in an in vivo cancer model.
Collapse
Affiliation(s)
- Pierre-Alain Burnouf
- Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, 11529, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan.,Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Yu-Lin Leu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, 71710, Taiwan
| | - Yu-Cheng Su
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Kenneth Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Wei-Chi Lin
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, 71710, Taiwan
| | - Steve R Roffler
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan. .,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
18
|
Towards antibody-drug conjugates and prodrug strategies with extracellular stimuli-responsive drug delivery in the tumor microenvironment for cancer therapy. Eur J Med Chem 2017; 142:393-415. [DOI: 10.1016/j.ejmech.2017.08.049] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 11/20/2022]
|
19
|
Cheng KW, Tseng CH, Yang CN, Tzeng CC, Cheng TC, Leu YL, Chuang YC, Wang JY, Lu YC, Chen YL, Cheng TL. Specific Inhibition of Bacterial β-Glucuronidase by Pyrazolo[4,3-c]quinoline Derivatives via a pH-Dependent Manner To Suppress Chemotherapy-Induced Intestinal Toxicity. J Med Chem 2017; 60:9222-9238. [PMID: 29120626 DOI: 10.1021/acs.jmedchem.7b00963] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The direct inhibition of bacterial β-glucuronidase (βG) activity is expected to reduce the reactivation of glucuronide-conjugated drugs in the intestine, thereby reducing drug toxicity. In this study, we report on the effects of pyrazolo[4,3-c]quinolines acting as a new class of bacterial βG-specific inhibitors in a pH-dependent manner. Refinement of this chemotype for establishing structure-activity relationship resulted in the identification of potential leads. Notably, the oral administration of 3-amino-4-(4-fluorophenylamino)-1H-pyrazolo[4,3-c]quinoline (42) combined with chemotherapeutic CPT-11 treatment prevented CPT-11-induced serious diarrhea while maintaining the antitumor efficacy in tumor-bearing mice. Importantly, the inhibitory effects of 42 to E. coli βG was reduced as the pH decreased due to the various surface charges of the active pocket of the enzyme, which may make their combination more favorable at neutral pH. These results demonstrate novel insights into the potent bacterial βG-specific inhibitor that would allow this inhibitor to be used for the purpose of reducing drug toxicity.
Collapse
Affiliation(s)
- Kai-Wen Cheng
- Institute of Biomedical Sciences, National Sun Yat-sen University , Kaohsiung 804, Taiwan
| | - Chih-Hua Tseng
- School of Pharmacy, Kaohsiung Medical University , Kaohsiung 807, Taiwan
- Department of Fragrance and Cosmetic Science, Kaohsiung Medical University , Kaohsiung 807, Taiwan
- Research Center for Natural Products and Drug Development, Kaohsiung Medical University , Kaohsiung 807, Taiwan
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University , Kaohsiung 807, Taiwan
| | - Chia-Ning Yang
- Department of Life Sciences, National University of Kaohsiung , Kaohsiung 811, Taiwan
| | - Cherng-Chyi Tzeng
- Research Center for Natural Products and Drug Development, Kaohsiung Medical University , Kaohsiung 807, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University , Kaohsiung 807, Taiwan
| | - Ta-Chun Cheng
- Center for Biomarkers and Biotech Drugs, Kaohsiung Medical University , Kaohsiung 807, Taiwan
| | - Yu-Lin Leu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science , Tainan City 717, Tainan
| | - Yu-Chung Chuang
- Department of Life Sciences, National University of Kaohsiung , Kaohsiung 811, Taiwan
| | - Jaw-Yuan Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University , Kaohsiung 807, Taiwan
- Division of Gastroenterology and General Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University , Kaohsiung 807, Taiwan
| | - Yun-Chi Lu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University , Kaohsiung 807, Taiwan
| | - Yeh-Long Chen
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University , Kaohsiung 807, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University , Kaohsiung 807, Taiwan
| | - Tian-Lu Cheng
- Institute of Biomedical Sciences, National Sun Yat-sen University , Kaohsiung 804, Taiwan
- Center for Biomarkers and Biotech Drugs, Kaohsiung Medical University , Kaohsiung 807, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University , Kaohsiung 807, Taiwan
- Department of Biomedical and Environmental Biology, Kaohsiung Medical University , Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University , Kaohsiung, 807, Taiwan
| |
Collapse
|
20
|
Zhang X, Li X, You Q, Zhang X. Prodrug strategy for cancer cell-specific targeting: A recent overview. Eur J Med Chem 2017; 139:542-563. [DOI: 10.1016/j.ejmech.2017.08.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 07/30/2017] [Accepted: 08/02/2017] [Indexed: 01/26/2023]
|
21
|
Walther R, Rautio J, Zelikin AN. Prodrugs in medicinal chemistry and enzyme prodrug therapies. Adv Drug Deliv Rev 2017; 118:65-77. [PMID: 28676386 DOI: 10.1016/j.addr.2017.06.013] [Citation(s) in RCA: 196] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 06/27/2017] [Accepted: 06/29/2017] [Indexed: 12/21/2022]
Abstract
Prodrugs are cunning derivatives of therapeutic agents designed to improve the pharmacokinetics profile of the drug. Within a prodrug, pharmacological activity of the drug is masked and is recovered within the human body upon bioconversion of the prodrug, a process that is typically mediated by enzymes. This concept is highly successful and a significant fraction of marketed therapeutic formulations is based on prodrugs. An advanced subset of prodrugs can be engineered such as to achieve site-specific bioconversion of the prodrug - to comprise the highly advantageous "enzyme prodrug therapy", EPT. Design of prodrugs for EPT is similar to the prodrugs in general medicinal use in that the pharmacological activity of the drug is masked, but differs significantly in that site-specific bioconversion is a prime consideration, and the enzymes typically used for EPT are non-mammalian and/or with low systemic abundance in the human body. This review focuses on the design of prodrugs for EPT in terms of the choice of an enzyme and the corresponding prodrug for bioconversion. We also discuss the recent success of "self immolative linkers" which significantly empower and diversify the prodrug design, and present methodologies for the design of prodrugs with extended blood residence time. The review aims to be of specific interest for medicinal chemists, biomedical engineers, and pharmaceutical scientists.
Collapse
|
22
|
Sharma SK, Bagshawe KD. Antibody Directed Enzyme Prodrug Therapy (ADEPT): Trials and tribulations. Adv Drug Deliv Rev 2017; 118:2-7. [PMID: 28916498 DOI: 10.1016/j.addr.2017.09.009] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 08/22/2017] [Accepted: 09/07/2017] [Indexed: 12/13/2022]
Abstract
Antibody directed enzyme prodrug therapy has the potential to be an effective therapy for most common solid cancers. Clinical studies with CPG2 system have shown the feasibility of this approach. The key limitation has been immunogenicity of the enzyme. Technologies now exist to eliminate this problem. Non-immunogenic enzymes in combination with prodrugs that generate potent cytotoxic drugs can provide a powerful approach to cancer therapy. ADEPT has the potential to be non -toxic to normal tissue and can therefore be combined with other modalities including immunotherapy for greater clinical benefit.
Collapse
|
23
|
Sharma SK, Bagshawe KD. Translating antibody directed enzyme prodrug therapy (ADEPT) and prospects for combination. Expert Opin Biol Ther 2016; 17:1-13. [DOI: 10.1080/14712598.2017.1247802] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Surinder K. Sharma
- Research Department of Oncology, UCL Cancer Institute, University College London, London, UK
| | | |
Collapse
|